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The following theorem was proved in [1].

THEOREM 1. Let S and T be continuous, commuting mappings of a complete, bounded
metric space (X, d) into itself satisfying the inequality

d(SpV'x, SqT'y)^c.max{d(SrT'x, S'T'y), d{S'T'x, SpT'x), d(SsT'y, S T ' y ) :

for all x, y in X, where 0 « c < 1 and p, p', q, q' 3= 0 are fixed integers with
Then S and T have a unique common fixed point z. Further, if p' or q' = 0, then z is the
unique fixed point of S and if p or q = 0, then z is the unique fixed point of T.

It was shown that the condition that S and T commute was necessary in this theorem.
It is possible however that the condition that X be bounded is not necessary in this
theorem. We now prove the following theorem which does not require S and T to
commute or X to be bounded.

THEOREM 2. Let S and T be continuous mappings of a complete metric space (X, d)
into itself satisfying the inequality

d(S"x,Ty)^c.max{d(Srx,Ty):0^r^p;0^s^q} (1)

for all x, y in X, where 0 =£ c < 1 and p, q are fixed positive integers. Then S and T have a
unique common fixed point z. Further, z is the unique fixed point of S and T.

Proof. Let x be an arbitrary point in X and put

A = max{d(Tsx, T"x): 0 « s =£ q}.

Suppose that the sequence {S"x: n = 1, 2,...} is unbounded. Then there exists an integer
n ̂  p such that

d = d(Snx, Tx) 3* max{d(Srx, T"x): 0 =£ r =£ n}

with
d>cA/(l-c) .

Thus

d{Srx, Tsx)«d(S'x, Tx) + d^x, Tx)^d + A

for 0=£r=£n and O«;s=£q. On using inequality (1), it now follows that

d = d(Snx, Tx) ss c. max{d(Srx, Tx): n - p *s r « n; 0 =£ s *s q} =£ c(d + A)
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and so d=£cA/(l-c) giving a contradiction. This contradiction implies that the sequence
{Snx : n = 1, 2,...} must be bounded.

Similarly, we can prove that the sequence {Tx : n = 1, 2,...} is bounded and so

M = sup{d(Srx, Tx): r, s = 0, 1, 2,...}

is finite. Now for arbitrary e >0, choose a positive integer N such that cNM<e. It follows
that for m,n^N. max{p, q}

d(Smx, T"x) =sc. max{d(Srx, Tx): m - p =sr =£ m; n -q s s s =sn}

s=c2 . max{d(Srx, Tx):m-

and so

d(Smx, Srx)s=d(Smx, T"x) + d(T"x, Srx)<2e

for m, n, r^N. max{p, q}. Thus {S"x : n = 1, 2,...} is a Cauchy sequence in the complete
metric space X and so has a limit z in X. Further, since

d(Snx, Tnx)<e

for n^N. max{p, q). the sequence {Tx: n = 1, 2,...} also converges to z. From the
continuity of S and T it now follows immediately that z is a common fixed point of S and
T.

Now suppose that w is a second fixed point of T. Then

d(z, w) = d(Spz, T«w)

s£c.max{d(Srz, Tsw):0s=rsSp;0s=s=£q}

= cd(z, w)

proving that z-w, since c < l . Similarly we can prove that z is the unique fixed point of
S. This completes the proof of the theorem.

COROLLARY 1. Let S be a mapping and let T be a continuous mapping of a complete
metric space (X, d) into itself satisfying the inequality

d(Sx, Tqy) =£ c. max{d(Srx, Ty) :O^r^l;O^s^q}

for all, x, y in X, where 0 ^ c < l and q is a fixed positive integer. Then S and T have a
unique common fixed point z. Further, z is the unique fixed point of S and T.

Proof. Let x be an arbitrary point in X. Then as in the proof of Theorem 2, the
sequences {S"x: n = 1,2,...} and {Tx: n = 1,2,...} converge to a point z in X. Since T
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is continuous, z is a fixed point of T. Further

d(Sz,z) = d(Sz,T«z)

=Sc.max{d(Srz, Tz):0=£rs£l; O=£s=sq}

= cd(Sz, z)

proving that Sz = z, since c < l . Thus z is a common fixed point of S and T. The
uniqueness of z follows from the proof of the theorem, since the continuity of S was not
used to prove the uniqueness.

COROLLARY 2. Let S and T be mappings of a complete metric space (X, d) into itself
satisfying the inequality

d(Sx, Ty)«c. max{d(x, y), d(x, Ty), d(y, Sx)}

for all x, y in X, where 0 = s c < l . Then S and T have a unique common fixed point z.
Further, z is the unique fixed point of S and T.

Proof. Let x be arbitrary point in X. Then again the sequences {Snx : n = 1, 2 , . . . } and
{Tnx: n = 1, 2 , . . . } converge to a point z in X. Further

d(Sz, z)^d{Sz, T"x) + d(Tnx, z)

=£c. max{d(z, T""1*), d(z, Tnx), (T"-lx, Sz)} + d(Tnx, z).

Letting n tend to infinity it follows that

d(Sz,z)^cd(Sz,z)

proving that Sz = z, since c < 1. Similarly, we can prove that z is also a fixed point of T.
The uniqueness of z again follows from the proof of the theorem.
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