ON THE INTEGRAL MODULUS OF CONTINUITY OF FOURIER SERIES

BABU RAM and SURESH KUMARI

(Received 23 July 1986)

Communicated by W. Moran

Abstract

For a wide class of sine trigonometric series we obtain an estimate for the integral modulus of continuity.

1980 Mathematics subject classification (Amer. Math. Soc.): 42 A 32.

1. Introduction

Let $F(x)$ be a function of period 2π in $L_{p}(1 \leqslant p<\infty)$. Then the integral modulus of continuity of order k of F in L_{p} is defined by

$$
\omega_{p}^{k}(h ; F)=\sup _{0<|t| \leqslant h}\left\|\Delta_{t}^{k} F(x)\right\|_{L_{p}}
$$

where

$$
\Delta_{t}^{k} F(x)=\sum_{\alpha=0}^{k}(-1)^{k-\alpha}\binom{k}{\alpha} F(x+\alpha t)
$$

and $\|\cdot\|_{L_{p}}$ denotes the norm in L_{p}.
Concerning the integral modulus of continuity of order 1 of a sine series whose coefficients form a quasiconvex null sequence, Izumi [2] and Teljakovskïr [5] have obtained some interesting estimates. The class of quasiconvex null sequence has further been extended by Teljakovskiĭ [6] in the following form.

Let

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} \sin k x \tag{1.1}
\end{equation*}
$$

be a sine series satisfying $a_{k}=o(1), k \rightarrow \infty$. If there exists a sequence $\left\langle A_{k}\right\rangle$ such that

$$
\begin{equation*}
A_{k} \downarrow 0, \quad k \rightarrow \infty \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{\infty} A_{k}<\infty \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{k}-a_{k+1}\right|=\left|\Delta a_{k}\right| \leqslant A_{k} \quad \text { for all } k \tag{1.4}
\end{equation*}
$$

then we say that (1.1) belongs to the class S.
Setting $A_{k}=\sum_{m=k}^{\infty}\left|\Delta^{2} a_{m}\right|$, we observe that every quasiconvex null sequence satisfies the condition S.

Let $g(x)$ be the sum of the sine series (1.1) belonging to the class S. Teljakovskĭ [6] showed that the condition

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\left|a_{k}\right|}{k}<\infty \tag{1.5}
\end{equation*}
$$

is sufficient for the integration of the series (1.1) belonging to the class S.
The aim of this paper is to find an estimate for the integral modulus of continuity of order k of the series (1.1) belonging to the class S.

2. Results

We establish the following
Theorem. If (1.1) belongs to the class S and (1.5) holds, then

$$
\begin{aligned}
\omega_{1}^{k}\left(\frac{1}{n} ; g\right) \leqslant & B_{k} n^{-k} \log n \sum_{v=1}^{n}(v+1)^{k+1} \Delta A_{v} \\
& +B_{k} \sum_{v=n+1}^{\infty}(v+1)\left(1+\log \frac{v}{n}\right) \Delta A_{v}
\end{aligned}
$$

where B_{k} is a constant depending upon k and not necessarily the same at each occurrence.

Letting $A_{v}=\sum_{m=v}^{\infty}\left|\Delta^{2} a_{m}\right|$, the case $k=1$ of our theorem yields
Corollary. If $\left\langle\mathfrak{a}_{k}\right\rangle$ is quasiconvex null sequence satisfying (1.5), then

$$
\begin{aligned}
\omega_{1}\left(\frac{1}{n} ; g\right) \leqslant & B n^{-1} \log n \sum_{v=1}^{n}(v+1)^{2}\left|\Delta^{2} a_{v}\right| \\
& +B \sum_{v=n+1}^{\infty}(v+1)\left(1+\log \frac{v}{n}\right)\left|\Delta^{2} a_{v}\right|
\end{aligned}
$$

This result corresponds to a theorem of Izumi [2] as stated in Teljakovskï̆ [5].

3. Proof of the theorem

Under the assumed hypothesis, g is integrable. Since the symmetry of the function implies $\left|\Delta_{t}^{k} g(-x)\right|=\left|\Delta_{-t}^{k} g(x)\right|$, therefore

$$
\int_{-\pi}^{\pi}\left|\Delta_{t}^{k} g(x)\right| d x=\int_{0}^{\pi}\left|\Delta_{-t}^{k} g(x)\right| d x+\int_{0}^{\pi}\left|\Delta_{t}^{k} g(x)\right| d x
$$

Hence, to prove the theorem, it is sufficient to evaluate

$$
\int_{0}^{\pi}\left|\Delta_{ \pm t}^{k} g(x)\right| d x, \quad \text { for } 0<t \leqslant \pi / n
$$

We write

$$
\begin{align*}
\int_{0}^{\pi}\left|\Delta_{ \pm t}^{k} g(x)\right| d x & =\int_{0}^{(k+1) \pi / n}+\int_{(k+1) \pi / n}^{\pi} \tag{3.1}\\
& =I_{1}+I_{2}, \text { say }
\end{align*}
$$

We first estimate I_{1}. Denoting by $\tilde{D}_{v}(x)$ the kernel conjugate to the Dirichlet kernel, the use of partial summation yields

$$
\begin{aligned}
g(x) & =\sum_{v=1}^{\infty} \Delta a_{v} \tilde{D}_{v}(x) \\
& =\sum_{v=1}^{\infty} A_{v} \frac{\Delta a_{v}}{A_{v}} \tilde{D}_{v}(x) \\
& =\sum_{v=1}^{\infty} \Delta A_{v} \sum_{i=0}^{v} \frac{\Delta a_{i}}{A_{i}} \tilde{D}_{i}(x)
\end{aligned}
$$

Then

$$
\begin{aligned}
I_{1} \leqslant & \sum_{v=1}^{n}\left[\Delta A_{v} \int_{0}^{(k+1) \pi / n} \sum_{i=0}^{v}\left|\Delta_{ \pm t}^{k} \tilde{D}_{i}(x)\right| d x\right] \\
& +\int_{0}^{(k+1) \pi / n}\left|\Delta_{ \pm t}^{k} \sum_{v=n+1}^{\infty} \Delta A_{v} \sum_{i=0}^{v} \tilde{D}_{i}(x)\right| d x \\
= & I_{11}+I_{12} .
\end{aligned}
$$

If $\tilde{D}_{i}^{(k)}(x)$ denotes the k th derivative of $\tilde{D}_{i}(x)$, then to estimate I_{11} we use the equality (Aljančić [1], Ram [3])

$$
\left|\tilde{D}_{i}^{(k)}(x)\right|=\left\{\begin{array}{ll}
B_{k} i^{k+1}, & 0 \leqslant x \leqslant \pi \tag{3.2}\\
B_{k} i^{k} x^{-1}, & 0<x \leqslant \pi
\end{array} \quad(k=1,2, \ldots)\right.
$$

and obtain

$$
\begin{aligned}
I_{11} & \leqslant B_{k} t^{k} \sum_{v=1}^{n} \Delta A_{v} \int_{0}^{(k+1) \pi / n}\left(\sum_{i=0}^{v}\left|\tilde{D}_{i}^{(k)}\left(x \pm \theta_{i} t\right)\right|\right) d x \\
& \leqslant B_{k} n^{-k} \sum_{v=1}^{n} \Delta A_{v}(v+1)^{k+1}
\end{aligned}
$$

To estimate I_{12}, we use the inequality (Timan [7])

$$
\frac{1}{\pi} \int_{0}^{c / n}\left|\tilde{D}_{v}(x)\right| d x \leqslant \frac{2}{\pi} \log \frac{v}{n}+o(1), \quad c>0, v \geqslant n
$$

and obtain

$$
\begin{aligned}
I_{12} & \leqslant B_{k}\left(\sum_{v=n+1}^{\infty} \Delta A_{v} \sum_{i=2}^{v}\left[\log \frac{i}{n}+o(1)\right]\right) \\
& =B_{k}\left(\sum_{v=n+1}^{\infty} \Delta A_{v}\left[(v+1) \log \frac{v}{n}+(v+1)\right]\right) .
\end{aligned}
$$

It follows therefore that

$$
\begin{align*}
I_{1} \leqslant & B_{k} n^{-k} \sum_{v=1}^{n}(v+1)^{k+1} \Delta A_{v} \tag{3.3}\\
& +B_{k}\left[\sum_{v=n+1}^{\infty}(v+1)\left(1+\log \frac{v}{n}\right) \Delta A_{v}\right] .
\end{align*}
$$

To estimate I_{2}, we have

$$
\begin{aligned}
I_{2}= & \int_{(k+1) \pi / n}^{\pi}\left|\Delta_{ \pm t}^{k} g(x)\right| d x \\
\leqslant & \int_{(k+1) \pi / n}^{\pi}\left|\sum_{v=1}^{n} \Delta a_{v} \Delta_{ \pm t}^{k} \tilde{D}_{v}(x)\right| d x \\
& +\int_{(k+1) \pi / n}^{\pi}\left|\Delta_{ \pm t}^{k} \sum_{v=n+1}^{\infty} \Delta a_{v} \tilde{D}_{v}(x)\right| d x \\
= & I_{21}+I_{22} .
\end{aligned}
$$

We now write

$$
I_{21} \leqslant \sum_{m=1}^{n-1} \int_{(k+1) \pi /(m+1)}^{(k+1) \pi / m}\left|\sum_{v=1}^{n} \Delta a_{v} \Delta_{ \pm t}^{k} \tilde{D}_{v}(x)\right| d x .
$$

By virtue of $t \leqslant \pi / n$ and $x \geqslant(k+1) \pi /(m+1)$, it follows that

$$
x-k t \geqslant \frac{k+1}{m+1} \pi-\frac{k}{n} \pi=\frac{\pi}{m+1}+k \pi\left(\frac{1}{m+1}-\frac{1}{n}\right) \geqslant \frac{\pi}{m+1} .
$$

Therefore in the subinterval $[(k+1) \pi /(m+1),(k+1) \pi / m]$, using (3.2), we have

$$
\begin{aligned}
\left|\sum_{v=1}^{n} \Delta a_{v} \Delta_{ \pm t}^{k} \tilde{D}_{v}(x)\right| & \leqslant B_{k} t^{k} \sum_{v=1}^{n}\left|A_{v} \frac{\Delta a_{v}}{A_{v}}\right| \max _{x-k t \leqslant \xi \leqslant x+k t}\left|\tilde{D}_{v}^{(k)}(\xi)\right| \\
& \leqslant B_{k} t^{k} \sum_{v=1}^{m} v^{k+1}\left|A_{v} \frac{\Delta a_{v}}{A_{v}}\right|+\frac{B_{k} t^{k}}{x-k t} \sum_{v=m+1}^{n} v^{k}\left|A_{v} \frac{\Delta a_{v}}{A_{v}}\right| \\
& \leqslant B_{k} t^{k} \sum_{v=1}^{m} v^{k+1} A_{v}+B_{k} t^{k} m \sum_{v=m+1}^{n} v^{k} A_{v}
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{v=1}^{m} v^{k+1} A_{v} & =\sum_{v=1}^{m} \Delta A_{v} \sum_{i=0}^{v} i^{k+1}+A_{m+1} \sum_{i=0}^{m} i^{k+1} \\
& \leqslant \sum_{v=1}^{m}(v+1)^{k+2} \Delta A_{v}+m^{k+2} A_{m+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{v=m+1}^{n} v^{k} A_{v} & =\sum_{v=m+1}^{n} \Delta A_{v} \sum_{i=0}^{v} i^{k}+A_{n+1} \sum_{i=0}^{n} i^{k}-A_{m+1} \sum_{i=0}^{m} i^{k} \\
& \leqslant \sum_{v=m+1}^{n}(v+1)^{k+1} \Delta A_{v}+n^{k+1} A_{n+1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I_{21} \leqslant & B_{k} n^{-k}\left[\sum_{m=1}^{n-1} m^{-2}\left(\sum_{v=1}^{m}(v+1)^{k+2} \Delta A_{v}+m^{k+2} A_{m+1}\right)\right] \\
& +B_{k} n^{-k}\left[\sum_{m=1}^{n-1} m^{-1}\left(\sum_{v=m+1}^{n}(v+1)^{k+1} \Delta A_{v}+n^{k+1} A_{n+1}\right)\right] \\
= & B_{k} n^{-k}\left[\sum_{m=1}^{n-1} m^{-2} \sum_{v=1}^{m}(v+1)^{k+2} \Delta A_{v}+\sum_{m=1}^{n-1} m^{k} A_{m+1}\right. \\
& \left.+\sum_{m=1}^{n-1} m^{-1} \sum_{v=m+1}^{n}(v+1)^{k+1} \Delta A_{v}+\sum_{m=1}^{n-1} m^{-1} n^{k+1} A_{n+1}\right]
\end{aligned}
$$

The first term in the square bracket is

$$
\begin{aligned}
\sum_{v=1}^{n-1}(v+1)^{k+2} \Delta A_{v}\left(\sum_{m=v}^{n-1} m^{-2}\right) & \leqslant \sum_{v=1}^{n-1}(v+1)^{k+2} \Delta A_{v}\left(\sum_{m=v}^{\infty} m^{-2}\right) \\
& \leqslant B_{k} \sum_{v=1}^{n-1}(v+1)^{k+1} \Delta A_{v}
\end{aligned}
$$

the second term is

$$
\begin{aligned}
\sum_{m=1}^{n-1} m^{k} A_{m+1} & =\sum_{m=1}^{n-1} \Delta A_{m+1} \sum_{i=0}^{m} i^{k}+A_{n} \sum_{i=0}^{n} i^{k} \\
& \leqslant \sum_{m=1}^{n-1} m^{k+1} \Delta A_{m+1}+n^{k+1} A_{n}
\end{aligned}
$$

and the third term is

$$
\begin{aligned}
\sum_{m=1}^{n-1} m^{-1} \sum_{v=m+1}^{n}(v+1)^{k+1} \Delta A_{v} & =\sum_{v=1}^{n-1}(v+1)^{k+1} \Delta A_{v} \sum_{m=1}^{v-1} m^{-1} \\
& \leqslant B_{k} \sum_{v=2}^{n-1}(v+1)^{k+1} \Delta A_{v} \log v \\
& \leqslant B_{k} \log n \sum_{v=1}^{n-1}(v+1)^{k+1} \Delta A_{v}
\end{aligned}
$$

Therefore

$$
I_{21} \leqslant B_{k} n^{-k} \log n \sum_{v=1}^{n}(v+1)^{k+1} \Delta A_{v}
$$

Lastly, making use of Abel's transformation and Fomin's Lemma (Ram [4], Lemma 1), we have

$$
\begin{aligned}
& I_{22} \leqslant \sum_{\alpha=0}^{k}\binom{k}{\alpha} \int_{(k+1) \pi / n \pm \alpha t}^{\pi \pm \alpha t}\left|\sum_{v=n+1}^{\infty} \Delta a_{v} \tilde{D}_{v}(x)\right| d x \\
& \leqslant B_{k} \int_{\pi / n}^{\pi+k \pi / n}\left|\sum_{v=n+1}^{\infty} \Delta a_{v} \tilde{D}_{v}(x)\right| d x \\
& \leqslant B_{k} \int_{\pi / n}^{(k+1) \pi}\left|\sum_{v=n+1}^{\infty} A_{v} \frac{\Delta a_{v}}{A_{v}} \tilde{D}_{v}(x)\right| d x \\
& =B_{k} \int_{\pi / n}^{(k+1) \pi}\left[\left|\sum_{v=n+1}^{\infty} \Delta A_{v} \sum_{i=0}^{v} \alpha_{i} \tilde{D}_{i}(x)\right|+A_{n+1} \sum_{i=0}^{n} \alpha_{i} \tilde{D}_{i}(x) \mid\right] d x\left(\alpha_{i}=\frac{\Delta a_{i}}{A_{i}}\right) \\
& \leqslant B_{k}\left[\sum_{v=n+1}^{\infty} \Delta A_{v} \int_{0}^{(k+1) \pi}\left|\sum_{i=0}^{v} \alpha_{i} \tilde{D}_{i}(x)\right| d x+A_{n+1} \int_{0}^{(k+1) \pi}\left|\sum_{i=0}^{n} \alpha_{i} \tilde{D}_{i}(x)\right| d x\right] \\
& \leqslant B_{k}\left[\sum_{v=n+1}^{\infty}(v+1) \Delta A_{v}+(n+1) A_{n+1}\right] \\
& \leqslant B_{k} \sum_{v=n+1}^{\infty}(v+1) \Delta A_{v} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{2} \leqslant B_{k}\left[n^{-k} \log n \sum_{v=1}^{n}(v+1)^{k+1} \Delta A_{v}+\sum_{v=n+1}^{\infty}(v+1) \Delta A_{v}\right] . \tag{3.4}
\end{equation*}
$$

The conclusion of the Theorem follows from (3.1), (3.3), and (3.4).

References

[1] S. Aljančić, 'Sur le module des séries de Fourier particulières et sur le module des séries de Fourier transformees par des types divers', Bull. Acad. Serbe Sci. Arts 30 (6) (1967), 13-38.
[2] M. Izumi, and S. Izumi, 'Modulus of continuity of functions defined by trigonometric series,' J. Math. Anal. Appl. 24 (1968), 564-581.
[3] B. Ram, 'On the integral modulus of continuity of Fourier series', J. Analyse Math. 28 (1975), 78-85.
[4] B. Ram, 'Convergence of certain cosine sums in the metric space L', Proc. Amer. Math. Soc. 66 (1977), 258-260.
[5] S. A. Teljakovskĩ, 'The integral modulus of continuity of functions with quasiconvex Fourier coefficients', Sibirsk. Mat. $\check{Z} .11$ (1970), 1140-1145.
[6] S. A. Teljakovskiì, 'A sufficient condition of Sidon for the integrability of trigonometric series', Mat. Zametki 14 (1973), 317-328.
[7] A. F. Timan, Theory of approximation of functions of ral variables (Hindustan Publishing Corporation, India, 1966).

Department of Mathematics
Maharshi Dayanand University
Rohtak-124001
India

