
The Art of Modelling Stars in the 21st Century
Proceedings IAU Symposium No. 252, 2008
L. Deng & K.L. Chan, eds.

c© 2008 International Astronomical Union
doi:10.1017/S1743921308022461

Angular momentum and overshooting: two
as yet unsolved problems in stellar mixing

V. M. Canuto1,2† and Y. Cheng1,3

1NASA, Goddard Institute for Space Studies, New York, NY 10025, USA
email: vcanuto@giss.nasa.gov, ycheng@giss.nasa.gov

2Dept. of Appl. Phys. and Appl. Math., Columbia University, New York, NY 10027, USA
3Ctr. Clim. Sys. Res., Columbia University, New York, NY 10025, USA

Abstract. Helioseismological data have given us two interesting results: the differential-to-
uniform solar rotation curve and the extent of the overshooting region (OV). As of today, no
model (including numerical simulations) has been able to reproduce these findings. Here, we first
present a new model for the angular momentum. It contains new terms representing vorticity
and buoyancy that were left out in all previous formulations without a clear justification. It is
shown that they extract angular momentum from the stellar core, a welcome feature since the
standard angular momentum equation leads to a rotation curve that is considerably higher than
what is observed. As for the overshooting extent, all models yield values that are an order of
magnitude larger than the helio data of 0.07Hp . We propose a criterion whose main ingredient
is a new flux conservation law that includes new terms, one of which increases the dissipation
in the radiative zone and thus lowers the OV extent, a tendency in the desired direction. Since
we have not coupled the new models to a solar structure-evolution code, we cannot at this stage
carry out a comparison with the helio data. The purpose is to exhibit the fact that in both
cases the missing ingredients are of such nature as to improve the previous model predictions.
A proper quantification remains to be done.
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1. Introduction
Since mixing in stars is a complex interplay of processes as diverse as unstable strat-

ification, stable stratification, differential rotation, gravity waves, double-diffusion, etc.,
the formalism employed to model mixing should be sufficiently general to account for
such a large variety of processes. And yet, the literature shows that this is not the case,
the two methodologies being employed being: a) large scale numerical simulations and
b) heuristic models. In the first case (e.g., Brummell et al., 2002), the values of several
parameters, such as the Prandtl number, are widely different from those in stars. The
authors of those studies have however stated that their primary goal was the elucida-
tion of the intertwined physical processes and not to provide stellar studies with tools
to model the processes of interest. The consequence is that mixing processes are still
modeled using heuristic arguments that have severe limitations, as we discuss in section
5. Our assessment is that heuristic models should be abandoned for lack of physical com-
pleteness. As a substitute we suggest, work out and assess models of at most algebraic
complexity that avoid the guessing work that heuristic models always entail. It is in-
structive to point out that an analogous situation existed in geophysics, specifically in
modeling atmospheric and oceanic mixing. More than 25 years ago, it was decided to
forgo the heuristic approach in favor of a more predictive and flexible tool known as RSM
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(Reynolds Stress Methodology) which is now commonly used. For reasons unclear to the
present authors, stellar mixing studies are lagging behind geophysical studies and this
paper will thus discuss a new model as well as the limitations of the heuristic models. The
RSM is a set of equations for the turbulent correlations of the velocity and temperature
fields that follow from the Navier-Stokes equations and the temperature equations. The
RMS’main features can be summarized as follows: mathematical structure, the relevant
equations are a set of linear algebraic equations and thus pose no particular numerical
problems; flexibility, which is one of the key advantages, means that adding new pro-
cesses such as rotation, vorticity, double-diffusion, etc, does not require guessing work
since the RSM has a well defined set of procedural rules; assessment, the results of the
RSM can be assessed before being used in a stellar context, an important feature that
none of the heuristic model satisfies, raising the justified doubt that these models were
constructed and tailored to a specific astrophysical setting, a feature that limits their
predictive power. Since the RSM was discussed in detail elsewhere, we refer to that work
for more details (Canuto, 2008).

2. The angular momentum problem
The angular momentum equation is given by (Γ = sinθ):

∂

∂t

(
r2Ω

)
= −Γ−1r−2 ∂

∂r

(
r3τrφ

)
− Γ−3 ∂

∂θ

(
Γ2τθφ

)
+ ... (2.1)

where τij = uiuj are the Reynolds stresses. If one assumes that τrφ is governed only by
shear Sij , one has:

τrφ = −2Km Srφ , Srφ =
1
2
rΓ

∂Ω
∂r

, 2Sij = ui,j + uj,i (2.2)

where Km is a momentum diffusivity, (2.1) then becomes (Talon and Zahn, 1998; Talon
and Charbonnel, 2003; Palacios et al., 2003, 2006):
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∂Ω
∂r

)
+ ... (2.3)

Thompson et al. (2003) have written that (2.3) predicts rotation of the solar interior at
a rate several times higher than the surface rate in stark disagreement with helio data of
nearly uniform rotation. The first obvious conclusion is that since shear alone does not
fully represent the mean flow, one must also include vorticity:

Vij =
1
2

(ui,j − uj,i) , Vrφ = −1
2
r−1Γ

∂

∂r

(
r2Ω

)
(2.4)

which leads to a real “diffuse nature” of the angular momentum. Furthermore, it seems
natural that if one wants to explain the different behavior of the solar rotation curve in the
convective and radiative zones, one must have an “ingredient” capable of differentiating
between the two regimes. The obvious candidate is the buoyancy flux that is positive in
the first case and negative in the second. On the basis of these qualitative considerations,
one concludes that in addition to shear and vorticity, the Reynolds stresses must also
depend on buoyancy and thus τij (S, V,B). Finally, one must account for possible radiative
losses and thus the formalism must include a Peclet number. We conclude that the final
form of the Reynolds stresses must be:

τij (S, V,B, Pe) (2.5)
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3. Reynolds stresses and heat fluxes
In the presence of shear, vorticity, buoyancy and radiative losses, the general form of

the traceless Reynolds stress tensor bij = τij − δij2K/3 is (Canuto and Minotti, 2001):

Aτ−1bij = −8K

15
Sij −

1
2
Zij +

1
2
Bij (3.1)

where

Zij = bikVjk + bjkVik , Bij = α (giJj + gjJi) −
2
3
δijαgkJk (3.2)

Here, A = 5, α = −ρ−1
0 ∂ρ/∂T is the volume expansion coefficient and Ji = uiθ is the heat

flux for which the RSM provides the following equations (Canuto and Minotti, 2001):

τ−1AijJj = −τij
∂T

∂xj
, τ = 2Kε−1 (3.3)

Aij = λ5δij + λ6τSij + λ7τVij + λ8τ
2αgi

∂T

∂xj
+ 2εipjΩ0

p (3.4)

with λ6,7,8 = 0.786, 0.643, 0.547. Canuto and Dubovikov (1998) and Canuto (2008)
showed that the Peclet number dependence enters via the two remaining variables:

λ−1
5 = aPe(1 + bPe)−1(1 + Ri)−1 , λ8 = cPe(1 + dPe)−1 (3.5)

a = (4π2)−1 , b = 5a(1 + σ−1
t ), c =

8
3
(7π2)−1 , d = 4(7π2)−1σ−1

t (3.6)

where σt = 0.72 and Ri is the Richardson number which is present only in the stable
stratification case.

4. New results of the RSM model
We have numerically solved the set of linear algebraic Eqs.(3) and in figure 1 we

present the heat diffusivity as a function of Ri and for different values of Pe; in figure 2
we plot the momentum diffusivity while in Fig.3 we plot the turbulent Prandtl number
σt(Ri, Pe) ≡ Km /Kh , which is the ratio between momentun and heat diffusivities. As
one can see, the ratio in not constant but increases with Ri. For large Pe, we have
superimposed a variety of LES, DNS, lab and direct measurements (Canuto et al., 2008)
that the model reproduces quite well.

An example of the results that are obtained from our method is given in figure 1.

5. Previous heuristic mixing model
Here, we compare the results of Figs.1–3 with those of the heuristic relations used by

various authors (Mathis et al., 2004; Palacios et al., 2003, 2006; Charbonnel and Talon,
2005, 2007; Maeder and Meynet, 2001):

Pe >> 1 :
Km,h

χ
= 2

Ri(cr)
Ri

=
1

3Ri
(5.1)

where χ(cm2s−1) is the radiative diffusivity. (5.1) is consistent with Fig. 1 if:

Pe ≈ 102 (5.2)
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Figure 1. The heat diffusivity Kh in units of the radiative diffusivity vs. the Richardson number
Ri for different values of the Peclet number. As expected, the stronger the effect of stable
stratification, the larger is the value of Ri and the smaller is the resulting diffusivity. We plot
Kh multiplied by Ri in order to allow a direct comparison with the heuristic model (5.1). See
the text for details.

As for the momentum diffusivity in Fig. 2, (5.1) is not satisfied. The only possibility is
to impose (5.1) but that in turn implies a unique value of Ri equal to:

Ri ≈ 0.1 (5.3)

This means that the heuristic model is valid for only one combination of Pe, Ri given by
(5.2) and (5.3) which is quite unusual for any model. Finally, (5.1) implies a turbulent
Prandtl number of unity whereas Fig. 3 shows that it is a rather strong function of Ri
unless one limits the validity of the model to Ri << 1.

6. New angular momentum equation
Using a method of symbolic algebra, we have solved Eqs. (3) without meridional cur-

rents. Introducing three dimensionless variables x, X and Z to characterize stratification,
shear and vorticity in units of the dynamical time scale τ = 2K/ε:

x ≡ (τN)2 , X ≡ τSrφ , Z ≡ τVrφ (6.1)

the explicit form of the Reynolds stress that enters (2.1) turns out to be:

τrφ = −2K(1)
m Srφ − 2xK(2)

m Vrφ (6.2)

which yields the new angular momentum equation to:

r2 ∂

∂t

(
r2Ω

)
=

∂

∂r

(
K(1)

m r4 ∂Ω
∂r

)
+

∂

∂r

(
xK(2)

m r2 ∂r2Ω
∂r

)
(6.3)

Several considerations are in order:1) the presence of vorticity has now introduced a
new term which has the character of a true diffusion of angular momentum whereas the
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Figure 2. Same as in figure 1 but for the momentum diffusivity Km .

first traditional term, in spite of being usually called “diffusion”, is not, 2) the new term
entails vorticity multiplied by buoyancy represented by the variable x which is negative
in the convective zone and positive in the radiative, stably stratified, zone, 3 ) in the
latter zone, where we can take Ω = constant as from the helio data, only the second
term in (6.3) survives and since x > 0, this implies an outward transport of angular
momentum from the radiative interior, an “extraction process” that in principle drives
it toward a state of uniform rotation, 4) since in the radiative zone turbulence is much
weaker than in the CZ, the eddies life time is correspondingly longer and the variable x is
an increasing function of Ri making its largest contribution to the second term in (6.3),
5) the two momentum diffusivities are not the same since they themselves depend on x,
X, Z but for the purposes of this paper their expressions are not relevant (they can be
provided by request to the authors). 6) even if one assumes that the two diffusivities in
(6.3) are the same and of the form (5.1), the first term in (6.3) decreases like Ri−1 while
the combination xKm decreases with Ri with a lower power.

In summary, the inclusion of both buoyancy and vorticity leads to a new angular mo-
mentum equation which may provide a better model for the helio data since it contains
a mechanism to extract angular momentum from the stellar core that is absent in the
commonly used formula (2.3).

7. New equation for the OV extent
As for the OV extent, numerical simulations (Brummel et al., 2002) yield a value

of about 0.5Hp which is an order of magnitude larger than the helio data of 0.07Hp .
To reconcile model results with the data, we suggest a new criteria for the OV extent.
Consider the equation for the turbulent kinetic energy K(D/Dt ≡ ∂/∂t + ui∂/∂xi):

DK

Dt
+

∂Fke
i

∂xi
= Pb + Pm − ε (7.1)
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Figure 3. Turbulent Prandtl number σt = Km /Kh vs. Ri for different Pe. The data corre-
sponding to the Pe > 1 case, are as follows: meteorological observations (Kondo et al., 1978,
slanting black triangles; Bertin et al., 1997, snow-flakes), lab experiments (Strang and Fernando,
2001, black circles; Rehmann and Koseff, 2004, slanting crosses; Ohya, 2001, diamonds), LES
(Zilitinkevich et al., 2007, 2008, triangles), DNS (Stretch et al., 2001, five-pointed stars).

where Fke
i is the flux of K and Pb,m = (αgiJi,−τijSij ) are the productions of buoyancy

and shear. Next, consider the flux conservation law (Canuto, 1997):

Frad
i + Fconv

i + Fke
i + uj (Eδij + τij ) = constant = C (7.2)

E = cpT + K + K + G, K =
1
2
u2 , giui =

DG

Dt
(7.3)

where Fconv
i = cpJi . While the “traditional” flux conservation law used in stellar models

contains only the first two terms in (7.2), one must also account for the flux of K repre-
sented by the third term; however, in the presence of mean currents, one has new terms,
the first of which represents the flux uiE, where E is the sum of enthalpy cpT , turbulent
kinetic energy K, mean field kinetic energy K and gravitational energy G while the other
term is the flux of the Reynolds stresses. Eliminating the heat flux between (7.1) and
7.2), yields in the stationary case the equation for the flux of K:

∂Fke
i

∂xi
+

α

cp
giF

ke
i = Φold + Φnew (7.4)

Φold = C − αc−1
p giF

rad
i , Φnew = −τijSij − αc−1

p gi(τij uj + Eui) − ε (7.5)

After some algebra, one obtains that:

Φnew = −
(

1 + T2
r

Hp

)
ε + (T0 + T1)ε − H−1

p (E + u2
r )ur (7.6)

The key result is that the first term shows that the dissipation increases with depth thus
reducing the extent of the OV compared to the standard criterion without Φnew . This is
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predicated on the fact that:
T2 ∼ (τN)2(τΩ)2 (7.7)

is positive in the radiative zone since N 2 > 0. At the same time, the eddies life time is
the largest since turbulence is weak and thus (τN)2 > 1.

In conclusion, the new term in the OV equation (7.4) contributes a term that reduces
the OV extent which is a desired feature since no model has thus far been able to reproduce
the helio data of OV ≈ 0.07Hp .

8. Conclusions
The form of the standard angular momentum equation (2.3) yields results that are

not in agreement with helio data since the extraction of angular momentum from the
radiative zone is too inefficient. We show that (2.3) is based on a very restricted form
of the Reynolds stresses. If one uses the full form of the Reynolds stresses that entails
shear, vorticity and buoyancy, the combination of the last two ingredients gives rise to a
new term that is larger than the canonical one that contains only shear and which leads
to extraction of angular momentum from the core, a tendency in the right direction.

As for the OV extent, the key ingredient is the new flux conservation law that entails
Reynolds stresses and mean flows. One of the new terms leads to an increased dissipation
of the flux of turbulent kinetic energy which in turn entails a smaller OV extent, a welcome
feature since thus far all models have yielded an OV extent about an order of magnitude
larger than the helio data of 0.07Hp .

An interesting aspect of the new models is the relative simplicity of the equations
determining Reynolds stresses and heat fluxes since they are given by linear algebraic
equations. This is especially relevant if one considers the amount of information they
contain: stable stratification, unstable stratification, rigid rotation, shear, and radiative
losses (Peclet number). Having established the qualitative behavior of the two models,
what is needed next is a specific computation in conjunction with a stellar code.
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Discussion

Langer: For obtaining angular momentum transport in radiative zones, do you assume
turbulence to exist?

Canuto: I do assume, as does everybody else, that in the radiative zone there is a variety
of instabilities which ultimately will give give rise to a turbulent flow.

Zahn: You mentioned the fact that numerical simulations predict an overshoot which is
much too strong. But that is so because such simulations are run with a Peclet number
which is too low, owing to the lack of resolution. For a given strength of the convection,
the higher thermal diffusion, i.e. the lower the Peclet number, and the deeper is the
overshoot, because the buoyancy force is lessened.

Canuto: One thing is what simulations do and another is what the physics of the
problem dictates – since the Peclet’s number is directly proportional to the rsm turbulent
velocity and since the latter is getting smaller as one approaches the bottom of the CZ, so
does the Peclet’s number – inside the radiative region, such rsm velocity is even smaller
and so is Pe – Thus, small Pe, small rsm and small OV distance go together.

https://doi.org/10.1017/S1743921308022461 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308022461

