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The instability of the Kármán vortex street is revisited under a spatio-temporal
perspective that allows the taking into account of the advection of the vortices by the
external flow. We analyse a simplified point vortex model and show through numerical
simulations of its linear impulse response that the system becomes convectively
unstable above a certain critical advection velocity. This critical velocity decreases
as the aspect ratio approaches its specific value for temporal stability, and increases
with the confinement induced by lateral walls. In the limiting unconfined case,
direct application of the Briggs–Bers criterion to the dispersion relation gives results
in excellent agreement with the numerical simulations. Finally, a direct numerical
simulation of the Re= 100 flow past a confined cylinder is performed, and the actual
advection velocity of the resulting vortex street is found to be much larger than the
critical advection velocity for convective instability given by our model. The Kármán
vortex street is therefore strongly convectively unstable.

Key words: absolute/convective instability, vortex dynamics, vortex flows

1. Introduction
The flow past a circular cylinder is one of the most famous and well-studied

problems in fluid mechanics. At a Reynolds number above a certain critical value,
the steady base flow becomes unstable through a supercritical Hopf bifurcation, and
the saturation of this primary instability leads to the formation of a time-periodic
Kármán vortex street that propagates in the wake of the cylinder (Jackson 1987;
Provansal, Mathis & Boyer 1987). An infinite double row of staggered point vortices
was first proposed by von Kármán (1911, 1912) as a simplified model for this
periodic and two-dimensional flow. However, he found this system to be linearly
unstable to infinitesimal perturbations of the positions of the vortices, except for
one specific value of the aspect ratio between transverse to longitudinal spacing of
the vortices. This result, implying secondary instability of the flow past a cylinder,
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seemed in contradiction with common observations of persistent vortex streets, which
motivated other authors to consider more sophisticated models in the hope that these
might produce a finite range of stable aspect ratios.

A first attempt was done by Rosenhead (1929), who extended Kármán’s model to
include the effect of confining walls. The instability behaviour of the street nonetheless
remained the same and stability was only observed at a specific value of the aspect
ratio for all but the highest degrees of confinement. Several authors then considered
a generalization of Kármán’s point vortex model to vortices of finite size. In this
context, Saffman & Schatzman (1982b) investigated the growth rate of the pairing
instability, a disturbance of wavelength twice the vortex spacing that was the most
unstable mode in Kármán’s model. Although they found stabilization of the pairing
instability for a finite range of aspect ratios around Kármán’s specific value, Kida
(1982) soon discovered that this perturbation was no longer the most unstable one in
the case of finite-size vortices. Errors in his calculations, however, led him to the false
conclusion that finite size still induced a finite range of stable aspect ratios. This claim
was quickly rectified by Meiron, Saffman & Schatzman (1984), who proved that the
finite-size vortex street is always unstable except for a specific value of its aspect ratio,
similarly to Kármán’s and Rosenhead’s point vortex models. Jiménez (1987) (see also
MacKay 1987) eventually found that, as a consequence of the Hamiltonian structure
and the back-to-fore symmetry of Kármán’s street of point vortices, instability for all
but a specific value of the parameters is a generic feature of all these inviscid models.
In practice, this general result settled the issue of the inviscid stability of the Kármán
vortex street, while questioning the relevance of these inviscid models and leaving
open the question about the reason for the permanence of the observed vortex streets.
In the words of Jiménez (1988), ‘the persistence of a natural vortex street is most
probably due to viscous effects, or to the differences between the spatial development
of natural wakes and the temporal evolution model. . . ’.

The above classical stability analyses consider the temporal growth of perturbations
of infinite spatial extent, and therefore predict instability of the aforementioned
inviscid models regardless of the advection velocity or spatial development of the
actual vortex street. Subsequent years, however, have seen important developments in
the study of spatially developing unstable flows from a spatio-temporal perspective,
wherein one instead analyses the linear impulse response of the system in a specific
reference frame, usually that of the laboratory. A localized initial perturbation
generates a growing wave packet that might either contaminate the whole domain,
in which case the flow is termed absolutely unstable, or be convected away from its
initial location due to advection by the external flow, corresponding to a convectively
unstable flow (see the review by Huerre & Monkewitz 1990). This time, the velocity
at which the system is advected downstream plays a crucial role in the absolute or
convective behaviour of the instability, which will in turn affect the global dynamical
behaviour of the system. An absolutely unstable flow will eventually lose its initial
structure due to the temporal growth of the instability over the whole domain.
By contrast, disturbances in a convectively unstable flow are unable to reach the
upstream source of the flow and only experience downstream spatial growth, in
such a way that the flow will retain its initial structure up to a certain downstream
location.

These concepts first became popular in the analysis of the primary instability of
open shear flows, and the Kármán vortex street was notably shown to arise from the
absolute primary instability of the steady wake flow (Monkewitz 1988; Pier 2002;
Barkley 2006). Later, Brancher & Chomaz (1997) successfully applied these ideas to
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the secondary instability of spatially periodic flows resulting from the saturation of
an unstable primary mode. In particular, they showed that the single row of vortices
induced by a mixing layer, while being subject to a secondary instability, becomes
convectively unstable above a critical value of its advection velocity. In this case, the
regular pattern of vortices is expected to persist over a certain downstream distance,
until disturbances have grown sufficiently, and lead to pairing of the vortices further
downstream.

We propose to apply the same spatio-temporal ideas to the secondary instability of
the Kármán vortex street, accounting for its natural advection at a certain velocity due
to the external flow. Returning to Kármán’s point vortices, we perform this spatio-
temporal instability analysis on Rosenhead’s model so as to account for confining
walls. Recent work has indeed shown the importance of confinement for the transition
from convective to absolute instability of wakes and mixing layers (Juniper 2006;
Healey 2009). The unconfined scenario is still included as a limiting case of the model.
We will see that the secondary instability turns out to be of convective nature in
a wide range of parameters, reconciling the longstanding conflict between temporal
instability of the inviscid models and experimental evidence of the persistence of the
Kármán vortex street. Our results are also in agreement with the work of Henderson
& Barkley (1996), who studied the secondary instability in the wake of a cylinder
using Floquet theory and showed that the real time-periodic flow is stable.

The paper is structured as follows. The model and its dispersion relation are
presented in § 2, together with known temporal instability results. A numerical
method for the time evolution of the system is then introduced in § 3, and allows for
the obtention in § 4 of the critical advection velocity of the vortices above which the
model becomes convectively unstable. Finally, in § 5 this critical velocity is compared
to the advection velocity of an actual vortex street observed behind a cylinder in
a direct numerical simulation, leading to the determination of the absolutely or
convectively unstable nature of the vortex street. Conclusions follow in § 6.

2. Problem formulation and temporal stability analysis
2.1. Equations of motion

We consider the simplified model for the confined Kármán vortex street studied
by Rosenhead (1929). As shown in figure 1, this system consists of an infinite
asymmetric double row of point vortices, symmetrically enclosed between two
horizontal confining walls. Vortices in one row are situated opposite of the midpoint
between two successive vortices in the other row. The distance between two
consecutive vortices in the same row is a and that between the two rows is h.
The walls are separated by a distance d. All the vortices in the lower row have the
same circulation Γ and those in the upper row the opposite circulation −Γ .

The confinement is taken into account by assigning to each vortex in the lower and
upper rows an infinite vertical series of image vortices above and below the walls,
at positions tied to that of the corresponding physical vortex inside the channel. This
results in two doubly infinite arrays of vortices. Lower-row vortices are situated at
coordinates (ma, nd− (−1)nh/2) and have strength (−1)nΓ , while upper-row vortices
are situated at coordinates (ma + a/2, nd + (−1)nh/2) and have strength −(−1)nΓ ,
where m, n ∈ Z and n= 0 corresponds to the physical vortices. The geometry of the
system is entirely specified by the aspect ratio p = h/a of the vortex street and its
confinement ratio q = d/a, and we require p < q in order for the model to remain
physical.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.195


190 S. Mowlavi, C. Arratia and F. Gallaire

FIGURE 1. Confined Kármán vortex street.

This array of vortices corresponds to an equilibrium configuration that moves
horizontally with a self-induced velocity v0 given by Rosenhead (1929)

v0 = Γ

4d

[
tan
(

πp
2q

)
+

∞∑
m=−∞

′ sin(πp/q)
cosh(πm/q)+ cos(πp/q)

−
∞∑

m=−∞

sin(πp/q)
cosh(π(m− 1/2)/q)− cos(πp/q)

]
, (2.1)

where the prime on the summation sign means that m = 0 is excluded. This
equilibrium configuration forms the base flow of our subsequent stability analysis. In
figure 2, we plot v0 as a function of the confinement ratio q, for different values of
the aspect ratio p. As the confinement increases, the initially negative self-induced
velocity increases and eventually becomes positive, as the physical vortices become
more affected by their closest images than by the physical vortices of the opposite
row.

We now place ourselves in a frame of reference moving with the vortices at the self-
induced velocity v0. Applying a perturbation (xm, ym) and (x′m, y′m) to the positions of
the lower- and upper-row physical vortices, respectively, the coordinates of the lower-
row vortices become (ma+ xm, nd+ (−1)n(−h/2+ ym)), while those of the upper row
become (ma+ a/2+ x′m, nd+ (−1)n(h/2+ y′m)). The equations of motion of the m= 0
physical vortex of the lower row are

dx0

dt
+ v0 = − Γ2π

∞∑
m=−∞

∞∑
n=−∞

′′
(−1)n

y0 − nd− (1− (−1)n)h/2− (−1)nym

r2
m,n

+ Γ

2π

∞∑
m=−∞

∞∑
n=−∞

(−1)n
y0 − nd− (1+ (−1)n)h/2− (−1)ny′m

r′2m,n
, (2.2a)
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FIGURE 2. Non-dimensional self-induced velocity 2πav0/Γ of the vortex street versus
confinement ratio q, for different values of the aspect ratio p. As q increases, the self-
induced velocity tends to its unconfined value of −0.9557 (p= 0.10), −2.0602 (p= 0.25)
and −2.6708 (p= 0.40).

dy0

dt
= Γ

2π

∞∑
m=−∞

∞∑
n=−∞

′′
(−1)n

x0 −ma− xm

r2
m,n

− Γ

2π

∞∑
m=−∞

∞∑
n=−∞

(−1)n
x0 −ma− a/2− x′m

r′2m,n
,

(2.2b)
where the double prime on the summation sign means n= 0 is excluded when m= 0,
and r2

m,n, r′2m,n are respectively the squared distance between the m = 0 lower-row
physical vortex and other lower- and upper-row vortices

r2
m,n = (nd+ (1− (−1)n)h/2+ (−1)nym − y0)

2 + (ma+ xm − x0)
2, (2.3a)

r′2m,n = (nd+ (1+ (−1)n)h/2+ (−1)ny′m − y0)
2 + (ma+ a/2+ x′m − x0)

2. (2.3b)

Under the hypothesis of infinitesimal perturbations, (2.2) can be linearized about the
equilibrium configuration to yield

1
ω0

dx0

dt
= −

∞∑
m=−∞

′ ∞∑
n=−∞
[(−1)nA−mnxm + B−mn(ym − (−1)ny0)] −

∞∑
n=−∞

Cny0

+
∞∑

m=−∞

∞∑
n=−∞
[(−1)nA+m+1/2,nx′m + B+m+1/2,n(y

′
m − (−1)ny0)], (2.4a)

1
ω0

dy0

dt
= −

∞∑
m=−∞

′ ∞∑
n=−∞
[(−1)nB−mn(xm − x0)− A−mnym]

+
∞∑

m=−∞

∞∑
n=−∞
[(−1)nB+m+1/2,n(x

′
m − x0)− A+m+1/2,ny′m], (2.4b)
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where we have defined 1/ω0 = 2πa2/Γ as the characteristic time of the system and
the dimensionless coefficients A±mn, B±mn and Cn are expressed as

A±mn =
2m(nq+ (1± (−1)n)p/2)

[(nq+ (1± (−1)n)p/2)2 +m2]2 , (2.5a)

B±mn =
(nq+ (1± (−1)n)p/2)2 −m2

[(nq+ (1± (−1)n)p/2)2 +m2]2 , (2.5b)

Cn = 2
[(2n+ 1)q+ p]2 . (2.5c)

The double series in (2.4) can be summed over n, giving (Rosenhead 1929)

2q2

π2ω0

dx0

dt
= −

∞∑
m=−∞

′ [D+mxm + E+m(ym + y0)− F−m (ym − y0)] − sec2

(
πp
2q

)
y0

+
∞∑

m=−∞
[D−m+1/2x′m − E−m+1/2(y

′
m − y0)+ F+m+1/2(y

′
m + y0)], (2.6a)

2q2

π2ω0

dy0

dt
= +

∞∑
m=−∞

′ [(E+m + F−m )(xm − x0)−D+mym]

−
∞∑

m=−∞
[(E−m+1/2 + F+m+1/2)(x

′
m − x0)+D−m+1/2y′m], (2.6b)

where the dimensionless coefficients D±m , E±m and F±m are defined as

D±m =
sinh(πm/q) sin(πp/q)

[cosh(πm/q)± cos(πp/q)]2 , (2.7a)

E±m =
cosh(πm/q) cos(πp/q)± 1
[cosh(πm/q)± cos(πp/q)]2 , (2.7b)

F±m =
1

cosh(πm/q)± 1
. (2.7c)

Note that the equations of motion for the remaining lower-row physical vortices can
be readily deduced from the above expressions. The linearized equations of motion
relating to the upper row can be obtained from (2.6) by reversing the sign of ω0,
swapping +1/2 with −1/2 in the indices and interchanging primed and unprimed
variables. The resulting two sets of equations, for the lower and upper rows, form the
linearized governing equations of the system, expressed in the reference frame moving
at the advection velocity of the vortices.

2.2. Dispersion relation
We hereafter non-dimensionalize all quantities with the characteristic length a and time
1/ω0 = 2πa2/Γ . Let us now expand the perturbation into normal modes of the type[

xm
ym

]
=
[
α
β

]
ei(km−ωt), (2.8a)[

x′m
y′m

]
=
[
α′

β ′

]
ei(k(m+1/2)−ωt), (2.8b)
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where k is the wavenumber, ω is the frequency and α, β, α′, β ′ are complex numbers.
Both k and ω may be complex and are related through a dispersion relation that we
now seek to obtain. Introducing (2.8) into (2.6), the governing equations are reduced
to four coupled equations for constants α, β, α′ and β ′M + iω N O P

Q M + iω R −O
O −P M + iω −N
−R −O −Q M + iω


αβα′
β ′

=
0

0
0
0

 , (2.9)

where the coefficients M, N, O, P, Q and R, defined in appendix A, depend on the
perturbation wavenumber k, the aspect ratio p and the confinement ratio q. There are
two possible modes of disturbance: a symmetric mode with α = α′, β = −β ′, and
an antisymmetric mode with α =−α′, β = β ′. Grouping the two modes together, we
obtain [

M ±O+ iω N ∓ P
Q± R M ±O+ iω

] [
α
β

]
=
[

0
0

]
, (2.10)

where the upper and lower signs correspond to the symmetric and antisymmetric
modes, respectively. Finally, setting the determinant of the above matrix to zero
yields the dispersion relation

ω= i
[
(M ±O)+ s

√
(Q± R)(N ∓ P)

]
, (2.11)

where s=±1 give two solution branches for each mode. Equation (2.11) is a corrected
version of the dispersion relation given by Rosenhead (1929), who incorrectly fixed
the spatial phase by imposing modal solutions with a cosine spatial dependence.
This error was also noted by Jiménez (1987), but he did not provide the correct
dispersion relation since he was only interested in the stability from a temporal
perspective, which turns out to be unaffected by this issue. To our knowledge, the
correct dispersion relation for the confined Kármán vortex street is given in (2.11)
for the first time.

2.3. Temporal stability analysis
For the temporal stability of this discrete system, k is assigned a real value between 0
and 2π, while ω is given by the dispersion relation (2.11) and may be complex. The
imaginary part of ω gives the growth rate of the perturbation, and needs to be zero
for all values of k for the system to be temporally stable to infinitesimal disturbances.
We restrict ourselves to values of k between 0 and π, since symmetric disturbances
of wavenumber 2π − k are equivalent to the complex conjugate of antisymmetric
disturbances of wavenumber k and vice-versa (as acknowledged in Meiron et al.
(1984), it was the oversight that the symmetry about k=π relates to different modes
that led (Saffman & Schatzman 1982b) to expect the most unstable perturbation for
k=π). Note that the conservative nature of the system implies that the two solution
branches pertaining to each mode will be either real or complex conjugate numbers.

Figure 3 compares the growth rate ωi of the unstable branch of the symmetric
(continuous lines) and antisymmetric (dotted lines with circles) modes versus the
wavenumber k, for different aspect ratios p and two confinement ratios q. When the
confinement is very weak, as shown in figure 3(a) for q = 20, the two modes have
the same growth rate that reaches a maximum at k=π, which is no longer the case
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FIGURE 3. Temporal dispersion relation. Growth rate ωi of the symmetric (continuous
line) and antisymmetric (dotted line with circles) modes versus wavenumber k, for
different aspect ratios p and (a) q= 20, i.e. almost no confinement, and (b) q= 1.2, i.e.
strong confinement. The growth rate of antisymmetric perturbations of wavenumber 2π− k
is equivalent to that of symmetric perturbations of wavenumber k and vice-versa.

under strong confinement, as seen in figure 3(b) for q= 1.2. Comparing figures 3(a)
and (b) shows that both the aspect and confinement ratios have an effect on the range
of unstable wavenumbers and the amplitude of the growth rate. In figure 4, we plot
the isolines of the growth rate of the most unstable wavenumber versus the aspect and
confinement ratios. The vortex street is temporally stable when this maximum growth
rate is zero, which only happens at a very specific value of the aspect ratio unless the
confinement is extremely strong. Interestingly, nearly unadvected vortex streets falling
in the stable region of strong confinement have been observed in recent experiments
of a moving stripe dragging the surface of shallow water in a long tank (Boniface
2014). When the confinement decreases, the range of stable aspect ratios reduces to
a specific value that approaches the limiting value p0 = 1/π sinh−1 1 ' 0.281 found
by von Kármán (1912) in the unconfined case.

3. Numerical method
3.1. Numerical integration of the governing equations

We consider a finite vortex street consisting of M physical vortices and we
compute its temporal evolution through direct time integration of the equations
of motion. However, the model contains an infinite number of vortices in the
streamwise direction, represented by the infinite series in the equations of motion.
We thus introduce additional virtual vortices situated to the left and right of the
M physical vortices and slaved to them in such a way that the displacement of
the virtual vortex of index m′ is equal to that of the mth physical vortex, where
m = (m′mod M) ∈ [0, M − 1]. The linearized perturbation equations (2.6) are then
applied to each of the M physical vortices, taking into account the velocities induced
by the virtual vortices, and are advanced in time with an Adams–Bashforth scheme.
This procedure is implemented in MATLAB with a time step 1t= 0.005 and M= 402
physical vortices. Since the amplitude of the velocities induced by the virtual vortices
decreases as 1/m2 with their index m, we found that including 10M virtual vortices is
largely sufficient in order to reduce the error to a negligible value. In the following,
lengths and time are non-dimensionalized with a and 1/ω0 = 2πa2/Γ , respectively.
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FIGURE 4. (Colour online) Temporal dispersion relation. Isolines of the growth rate of the
most unstable wavenumber versus aspect ratio p and confinement ratio q. The black lines
indicate the range of parameter values under which the spatio-temporal characteristics of
the impulse response of the vortex street is evaluated in figures 11 and 12.

3.2. Validation
In order to validate the numerical method, we calculate the response of the vortex
street to a random initial perturbation spanning the entire wavenumber spectrum, from
which we can extract the temporal growth rate of each real wavenumber k. Recall
however that there are two modes of disturbance, symmetric and antisymmetric,
with two branches each. Therefore, for every wavenumber k we construct from the
solution a state vector consisting of the Fourier transforms of the horizontal and
vertical displacements in both rows and we rely on a Krylov subspace method of
dimension 4 with Gram–Schmidt orthogonalization to isolate the temporal growth
rate of each unstable mode. In figure 5, we plot in solid line the growth rate ωi

of the two leading eigenmodes, obtained from the calculated response at times 18,
18.1, 18.2, 18.3 and 18.4 of the Kármán street with parameters q= 1.2 and p= 0.2.
The black and grey lines correspond respectively to the symmetric and antisymmetric
modes, and both agree extremely well with the analytical dispersion relation (2.11)
shown in dotted lines with circles.

4. Spatio-temporal results

The absolute/convective nature of the instability associated with the vortex street is
determined by the spatio-temporal behaviour of the growing wave packet induced by
a localized initial perturbation. In a similar fashion as done in Brancher & Chomaz
(1997) and Delbende, Chomaz & Huerre (1998), we carry out a numerical simulation
of the impulse response of the vortex street and we directly retrieve the asymptotic
properties of the resulting wave packet. The total time of the simulation is about 40
and is chosen such that the asymptotic regime is reached while ensuring that the wave
packet remains contained within the elementary vortices.
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FIGURE 5. Comparison of the temporal dispersion relation extracted from the simulation
with its analytical counterpart. The growth rate of the symmetric (black) and antisymmetric
(grey) modes are plotted against the wavenumber, for parameters q= 1.2 and p= 0.2.

The numerical simulation is carried out in the frame of reference moving with
the vortices, and is initialized with a localized perturbation created by a small
vertical displacement of the centre vortex in both rows. In order to visualize the
growth of the perturbation, the displacements from the two rows are first assembled
together, resulting in vectors x̄m and ȳm for the horizontal and vertical displacements
respectively, where even (odd) indices indicate lower (upper) row vortices. The
envelope of this composed signal is then computed from its analytic representation,
i.e. by setting all negative-wavenumber modes of its Fourier transforms to zero.
Finally, the Fourier components corresponding to temporally stable wavenumbers are
also set to zero and the reconstructed real amplitude of the perturbation is defined as

A(x, t)=
√
|x̄m(t)|2 + |ȳm(t)|2, (4.1)

where m = round(2x) and | · | denotes the complex modulus. The growth rate
observed along spatio-temporal rays x/t = vg radiating from the initial location
of the perturbation can be evaluated from values of the amplitude at two distinct time
instants t1 and t2 via the following expression

σ(vg)' ln[A(vgt2, t2)/A(vgt1, t1)]
t2 − t1

. (4.2)

The results in §§ 4.1 and 4.2 will be presented in the same frame of reference in
which the simulation is carried out, i.e. that moving with the vortices.

4.1. Unconfined case
4.1.1. Results from the numerical method

Numerical simulations with a confinement ratio q = 100 that approaches the
unconfined limiting case are first considered. The growth of the impulse response wave
packet for p=0.25 is illustrated in figure 6(a) through the time series of the amplitude
A(vgt, t) observed along each spatio-temporal ray x/t= vg. The corresponding growth
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FIGURE 6. Evolution of the impulse response wave packet generated by a localized initial
perturbation for q= 100 and p= 0.25. (a) Time series of the amplitude A(vgt, t) observed
along each spatio-temporal ray x/t = vg versus group velocity vg and (b) corresponding
growth rate σ(vg) evaluated from the amplitude at times t1 = 18 and t2 = 36. The
streamwise extent of the wave packet is delineated by the leading- and trailing-edge
velocities v±g such that σ(v±g )= 0.

rate σ(vg) obtained from (4.2) with the amplitude at times t1 = 18 and t2 = 36 is
displayed in figure 6(b). The wave packet is seen to grow symmetrically about the
ray vg = 0, and its streamwise extent is given by the spatio-temporal rays v+g and v−g
such that σ(v±g )= 0, i.e. the rays along which a neutral wave is observed. Because of
the symmetric behaviour of the wave packet, these velocities are equal in magnitude.

In the frame of the simulation that moves with the vortices, the absolute growth rate
σ(vg=0) observed along the ray x/t=vg=0 is positive, thus the instability is absolute
and contaminates the whole domain. In reality, however, a street of shed vortices
behind an obstacle is advected in the downstream direction due to the external flow.
We therefore also consider that our system of point vortices moves horizontally at a
certain positive velocity va > 0, and we study the absolute or convective nature of the
instability in the laboratory frame. Because of the Galilean invariance of the system,
the absolute growth rate observed in that case is simply given by the growth rate
measured along the ray x/t= vg=−va in the frame of the vortices. Figure 6(b) shows
that σ(vg=−va) becomes negative for values of va larger than |v−g |, revealing that the
system becomes convectively unstable above a critical advection velocity va,0 = |v−g |.

The above numerical procedure is repeated for a range of values of the aspect ratio,
and the magnitude of the trailing-edge velocity |v−g | obtained in each case is plotted
versus the aspect ratio p in circles in figure 7. A steep decrease of |v−g | is observed
as p approaches its temporally stable specific value p0 ' 0.281, implying that the
critical advection velocity va,0 above which the system becomes convectively unstable
is lowered. Finally, note that the wave packet is observed to grow symmetrically about
the ray vg = 0 for all values of the aspect ratio, thus the leading-edge velocity v+g is
equal to |v−g |.
4.1.2. Results from the analytical dispersion relation

In this unconfined case, the dispersion relation ω = ω(k) assumes a simple form
reported in Lamb (1932) and Saffman (1992), and is given in non-dimensional form
by

ω=±H + s
√

I2 −G2, (4.3)
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FIGURE 7. Magnitude of the trailing-edge velocity |v−g | of the impulse response wave
packet generated by a localized initial perturbation for the limiting unconfined case
(q=100) versus aspect ratio p. Results from numerical simulations of the impulse response
(circles) are compared with predictions from the unconfined analytical dispersion relation
(solid line). In this unconfined situation, the leading-edge velocity has equal magnitude
with the trailing-edge velocity.

where one takes +H and −H for the symmetrical and antisymmetrical modes
respectively, s = ±1 gives two solution branches for each mode and the coefficients
G, H and I are expressed as

G= 1
2

k(2π− k)− π2

cosh2 pπ
, (4.4a)

H = πk sinh p(π− k)
cosh pπ

+ π2 sinh pk
cosh2 pπ

, (4.4b)

I = π2 cosh pk
cosh2 pπ

− πk cosh p(π− k)
cosh pπ

, (4.4c)

(note that the first sinh term in the expression for H incorrectly appears as a cosh
in Saffman 1992). This simple analytical expression of the dispersion relation allows
for a direct analytical determination of the growth rate of the impulse response wave
packet. Invoking steepest descent arguments (Huerre & Monkewitz 1990), one finds
that the asymptotic growth rate σ(vg) along an arbitrary ray x/t= vg is given by

σ(vg)=ω′i(k∗), (4.5)

where subscript i denotes the imaginary part, ω′=ω′(k) is the dispersion relation in a
frame moving at group velocity vg and expressed through the following Doppler shift

ω′ =ω− kvg, (4.6)

and k∗ is the complex wavenumber observed along the ray x/t = vg, which verifies
the following saddle point condition

∂ω′

∂k
(k∗)= 0. (4.7)
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FIGURE 8. Spatial branches k±(ω′) of the Doppler-shifted unconfined dispersion relation
(4.6) and saddle point k∗ resulting from the pinching of these branches as ω′i decreases,
for (a) p = 0.3, vg = −1.62 and (b) p = 0.35, vg = −2.03. In both cases, these critical
values of vg give ω′i(k

∗)= σ(vg)= 0 and hence correspond to v−g .

In addition, the Briggs–Bers criterion states that the saddle point k∗ must result from
the pinching of two spatial branches k±(ω′) = {k(ω′r + iω′i) | ω′r ∈ R, ω′i fixed} that
originate in the lower and upper half-k-planes for sufficiently large positive values of
ω′i (Briggs 1964). As an example, figure 8 shows these spatial branches in the complex
k-plane, calculated as isolines of ω′i(k), and the saddle point k∗ resulting from the
pinching of these branches as ω′i decreases, for p = 0.3, vg = −1.62 (figure 8a) and
p= 0.35, vg =−2.03 (figure 8b). Note that jumps between the two solutions s=±1
of ω(k) occur when the phase of the square root argument in (4.3) crosses π or −π,
behaviour that has to be accounted for and corrected when plotting isolines of ω′i(k).
Once the saddle point k∗ is located, the growth rate along the ray x/t = vg can be
calculated as σ(vg)= ω′i(k∗). Finally, the critical value of vg < 0 at which σ(vg)= 0
gives the trailing-edge velocity v−g of the impulse response wave packet. In this regard,
the values of vg used in figure 8 give σ(vg)= 0 and thus correspond to v−g for p= 0.3
and 0.35.

Two different methods are used in order to locate numerically the saddle point
k∗ and calculate v−g . When p < 0.23 or p > 0.32, the saddle point is computed in
an iterative fashion by repeatedly fitting the function ω′(k) to a complex quadratic
polynomial, each time leading to a new guess value for k∗, until convergence is
achieved (Deissler 1987). Inside the range 0.23 6 p 6 0.32, however, the saddle point
k∗ is found by locating the minimum of the partial derivatives of ω′i(k) along both kr
and ki directions, because its proximity with the real k axis (as shown in figure 8a)
does not allow for a reliable complex quadratic fit. The resulting curve for |v−g | as a
function of p is displayed by the solid line in figure 7 and shows excellent agreement
with the discrete values obtained previously from simulations of the impulse response.
In addition to providing a further validation of the numerical method introduced in
the previous section, the analytical curve reveals a cusp at the stable value of the
aspect ratio p0= 1/π sinh−1 1. Intriguingly, this cusp saturates at a finite value of |v−g |
around 0.837, whereas one would expect |v±g | to tend towards zero as the system
approaches its stable configuration.

This counter-intuitive property of the impulse response wave packet can be
explained by the behaviour of the dispersion relation ω(k) for values of p close
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FIGURE 9. Self-similar behaviour of the dispersion relation in a narrow range of p
around the stable value p0. (a) Temporal growth rate ωi(k) evaluated at p = p0 + 0.001,
together with its elliptic approximation ωe

i (k) and the definitions of ωi,m and 1k. (b) Linear
dependency of ωi,m and 1k on p as the latter approaches p0.

to p0. Figure 9(a) shows the temporal growth rate ωi(k) evaluated at p= p0 + 0.001,
together with the imaginary part of an elliptic approximation of ω(k) defined by

ωe(k)= c+ iωi,m

√
1−

(
k−π

1k

)2

, (4.8)

where c is a real constant (numerical calculations indeed reveal that ωr remains
constant around k = π and p = p0), ωi,m is the maximum temporal growth rate and
1k is the half-width of the temporally unstable wavenumber region. Both ωi,m and
1k depend on p and are extracted from ωi(k). Since the elliptic approximation
ωe(k) agrees extremely well with the exact dispersion relation, it may be employed
instead of ω(k) to derive an analytical expression for the edge velocities v±g of the
impulse response, valid only for p close to p0. To that effect, we first calculate the
complex wavenumber k∗ observed along the ray x/t = vg and given by the saddle
point condition (4.7)

∂ωe

∂k
(k∗)= vg ⇔ k∗ =π+ i

1k2vg√
ω2

i,m −1k2v2
g

. (4.9)

The growth rate along the ray x/t= vg can then be calculated with (4.5)

σ(vg)=ωe
i (k
∗)− k∗i vg =

√
ω2

i,m −1k2v2
g . (4.10)

Finally, setting σ(vg) = 0 gives the edge velocities of the impulse response wave
packet

|v±g | =
ωi,m

1k
. (4.11)

Figure 9(b) illustrates the dependency of ωi,m and 1k on the aspect ratio p as the
latter tends towards its stable value p0. A linear relationship is observed between all
three quantities, implying that |v±g | converges to a constant value of ωi,m/1k' 0.8377
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FIGURE 10. Evolution of the impulse response wave packet generated by a localized
initial perturbation for q = 1.5 and p = 0.25. (a) Time series of the amplitude
A(vgt, t) observed along each spatio-temporal ray x/t = vg versus group velocity vg and
(b) corresponding growth rate σ(vg) evaluated from the amplitude at times t1 = 18 and
t2 = 36. The streamwise extent of the wave packet is delineated by the leading- and
trailing-edge velocities v±g such that σ(v±g )= 0.

as p approaches p0, in perfect agreement with our previous findings. Therefore, it is
the proportional decrease to zero of both ωi,m and 1k as p tends to p0, akin to a
self-similar behaviour of the dispersion relation, that causes the impulse response wave
packet to retain finite width while its height shrinks to zero when the system moves
towards its stable configuration.

4.2. Effect of the confinement
The influence of the confinement on the spatio-temporal properties of the impulse
response of the vortex street is now investigated through numerical simulations at
smaller values of the confinement ratio q. Following the same procedure as before,
the growth of the impulse response wave packet at p= 0.25 and q= 1.5 is illustrated
in figure 10(a) through the time series of the amplitude A(vgt, t) observed along each
spatio-temporal ray x/t= vg. The corresponding growth rate σ(vg) obtained from (4.2)
with the amplitude at times t1 = 18 and t2 = 36 is displayed in figure 10(b). This
time, the wave packet is no longer symmetric and grows asymmetrically about the ray
vg = 0, with its trailing-edge velocity v−g having greater magnitude than its leading-
edge velocity v+g . The confinement thus appears to break the symmetric behaviour of
the impulse response that was observed in the unconfined case.

This numerical procedure is repeated for a range of values of the confinement
and aspect ratios, indicated by black lines in figure 4. Figure 11 shows the resulting
leading- and trailing-edge velocities v±g of the impulse response wave packet versus
the aspect ratio p, for two values of the confinement ratio, q= 1.6 (figure 11a) and
1.2 (figure 11b). The calculated velocities are represented with dots and joined by
straight lines. As the aspect ratio approaches the temporally stable specific value, the
streamwise extent of the wave packet is reduced and its spatio-temporal expansion
gradually shifts towards the negative x direction. Comparing figures 11(a) and (b)
shows that the confinement strongly affects the degree of asymmetry of the wave
packet, to the point that the latter becomes convectively unstable in the frame of the
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FIGURE 11. Leading- and trailing-edge velocities v±g of the impulse response wave packet
generated by a localized initial perturbation versus aspect ratio p, for two values of the
confinement ratio, (a) q = 1.6 and (b) q = 1.2. The velocities given by the numerical
simulations are represented with dots and joined by straight lines.
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FIGURE 12. Leading- and trailing-edge velocities v±g of the impulse response wave packet
generated by a localized initial perturbation versus confinement ratio q, for two values of
the aspect ratio, (a) p = 0.26 and (b) p = 0.31. The velocities given by the numerical
simulations are represented with dots and joined by straight lines.

simulation at q= 1.2. The effect of the confinement is investigated in more detail in
figure 12, where the leading- and trailing-edge velocities v±g are plotted versus the
confinement ratio q, for two values of the aspect ratio. It is observed that increasing
the confinement at a given aspect ratio leads to a decrease in the signed values of
both v+g and v−g . While the sharp decrease observed in figure 12(a) for p=0.26 can be
attributed to the aspect ratio getting closer to the specific value for temporal stability
as q decreases (see figure 4), a steady decrease is also observed in figure 12(b) for
p = 0.31 even though the maximum temporal growth rate is approximately constant
in this case.

In the reference frame of the vortices, the instability observed in figures 11 and
12 is either absolute or convective with both v±g < 0, in which case the impulse
response wave packet propagates in the upstream direction. When taking into account
the advection va of the vortices in the downstream direction, the relevant absolute
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FIGURE 13. Flow configuration for the DNS, frame of reference and
computational domain.

to convective instability transition is nonetheless that giving rise to downstream
propagation of the impulse wave packet. Thus, the critical advection velocity
va,0 above which the instability becomes convective is like before given by |v−g |.
Consequently, the increase of |v−g | observed in figure 12 for decreasing values of
q implies that the confinement, remarkably, reinforces the absolute nature of the
instability. This destabilizing effect of the confinement was also observed by Juniper
(2006, 2007) and Biancofiore & Gallaire (2011) for the primary instability of confined
two-dimensional jets and wakes.

5. Application to the vortex street in the wake of a cylinder
5.1. Stability of the Kármán vortex street in the near wake

The critical advection velocity va,0 given by our numerical technique remains to be
compared with actual values of the advection velocity va of the Kármán vortex street
that develops past an obstacle in order to determine the absolute or convective nature
of the instability. To that effect, we perform a direct numerical simulation (DNS) of
the Re= 100 flow past a circular cylinder in the geometry shown in figure 13. The
simulation is carried out in a confined channel and three different values 10, 8 and 6
are considered for the blockage ratio β =H/D, where H is the height of the channel
and D the diameter of the cylinder. The details concerning the implementation of the
DNS can be found in appendix B. In the following, all lengths are expressed in terms
of the diameter D of the cylinder, and velocities are non-dimensionalized with the
free-stream velocity U.

For each value of the blockage ratio β, the local properties Γ , a, p, q and the
advection velocity ua of the vortex street are retrieved from the DNS at four different
streamwise locations x = 10, 20, 30 and 40, following the procedure detailed in
appendix C. The local values of p and q at each location are then fitted to our
point vortex model, allowing for the obtention from our numerical technique of the
corresponding critical advection velocity va,0 = |v−g | above which the street becomes
locally convectively unstable. Finally, this critical value is translated into the scale of
the DNS via the relation

ua,0 = 1
U

Γ

2πa
va,0. (5.1)

The results are reported in table 1. The local advection velocities ua are much
larger than the corresponding critical velocities ua,0 for convective instability. This
reveals that the vortex street is strongly convectively unstable at all considered
streamwise locations and for all values of β. Furthermore, the strength Γ of the
vortices is observed to decay by viscous diffusion as they are advected downstream
of the cylinder, resulting in a decrease of the critical advection velocity ua,0, as
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β x St Γ a p q ua ua,0 um
a

10 10 0.170 2.82 5.50 0.189 1.82 0.935 0.224 0.917
20 0.170 2.34 5.53 0.260 1.81 0.940 0.119 0.918
30 0.170 1.93 5.62 0.302 1.78 0.955 0.101 0.931
40 0.170 1.53 5.65 0.336 1.77 0.960 0.092 0.945

8 10 0.177 2.94 5.43 0.199 1.47 0.960 0.227 0.923
20 0.177 2.36 5.43 0.284 1.47 0.960 0.128 0.929
30 0.177 1.94 5.43 0.324 1.47 0.960 0.140 0.942
40 0.177 1.56 5.43 0.346 1.47 0.960 0.119 0.954

6 10 0.187 3.00 5.20 0.185 1.15 0.970 0.236 0.943
20 0.187 2.38 5.20 0.227 1.15 0.970 0.175 0.952
30 0.187 1.94 5.20 0.231 1.15 0.970 0.144 0.960
40 0.187 1.54 5.20 0.231 1.15 0.970 0.114 0.969

TABLE 1. Comparison of the advection velocity ua of the vortex street with the critical
velocity ua,0 for convective instability. The values of St, Γ , a, p, q and ua are retrieved
from the DNS at various streamwise locations x. Our numerical technique based on the
point vortex model is then invoked to obtain the corresponding local values of ua,0, and
um

a is calculated with (5.2).

evidenced by (5.1). The vortex street will therefore remain convectively unstable
further downstream of the cylinder. This rationalizes the intuition of Jiménez (1987)
that ‘differences between the spatial development of natural wakes and the temporal
evolution model’ would explain the persistence of natural vortex streets.

Jiménez, however, also alluded to viscous effects as another possible explanation
for this phenomena. In regard to viscosity, one might as well question the relevance
of comparing advection velocities retrieved from a DNS of the viscous Navier–Stokes
equations with critical velocities obtained from an idealistic point vortex model. These
questions can be answered by approximating the advection velocity of the vortices
with the inviscid model via the relation

um
a = 1+ v0

U
, (5.2)

where v0 is the dimensional self-induced velocity given by (2.1). This relation
symbolizes the idea that the vortices are advected at the free-stream velocity minus
their self-induced velocity. It allows for an estimation of the error incurred by the
use of the point vortex model and therefore the importance of viscous effects. The
resulting approximate velocities are reported in table 1 and compare favourably with
the values of ua retrieved from the DNS, both quantities following similar trends.
More importantly, they both have the same order of magnitude, while values of ua

are larger by almost an order of magnitude compared with values of the critical
velocity ua,0. This confirms that viscous effects are negligible and that the persistence
of natural vortex streets is due to the strongly convective nature of their inviscid
instability.

Even though strongly convective, the instability could still be developing down-
stream, affecting the robustness of the vortex street. In order to quantify this effect,
we calculate the spatial growth rate of the instability in the laboratory frame by
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applying Gaster’s transformation to the unconfined analytical dispersion relation (4.3).
Extrapolating the non-dimensional advection velocity of the vortex street from the
DNS results of the least confined case, we find that the maximum spatial growth rate
is of the order of −ki ' 0.01, meaning that disturbances double in amplitude every
200 vortices. This negligible growth rate confirms that the vortex street is robust over
a large distance downstream of the obstacle.

5.2. Possible relevance for the secondary street in the far wake
We now discuss if the secondary instability of the Kármán vortex street, despite being
strongly convective with very small spatial growth rate, could still become significant
sufficiently far downstream. Saffman & Schatzman (1982a) suggested indeed that
the stability properties of the Kármán street could be relevant for the slow evolution
process giving rise to the appearance of the ‘secondary vortex street’ first described
by Taneda (1959). These secondary vortex streets appear at approximately a hundred
diameters downstream of the obstacle with a larger wavelength and smaller frequency
than the primary street.

Since these first studies, there have been considerable efforts to explain the origin
of the secondary vortex street and some debate regarding whether the mechanism
is vortex merging or a mean flow instability. Matsui & Okude (1983) made forced
experiments showing the merging of two or three vortices depending on the forcing
frequency. These vortex merging ideas were supported by theoretical and numerical
work by Aref & Siggia (1981) and Meiburg (1987). The experiments of Cimbala,
Nagib & Roshko (1988), on the contrary, showed that the vortices of the primary
vortex street have decayed at the point where the secondary street forms, and they
argued that the frequency of the secondary street is unrelated to the vortex shedding
frequency. They also performed a local stability analysis of the mean flow and
computed the spatial growth with surprisingly good results for the dominant frequency
considering various crude approximations. Williamson & Prasad (1993) confirmed the
pertinence of the mean flow stability analysis of Cimbala et al. (1988) but also
showed that the frequency of the secondary street is actually connected to the vortex
shedding frequency through an extremely high sensitivity to free-stream disturbances,
explaining also the observed variability between experimental facilities. These features
are characteristic of convective instabilities. Accordingly, the more recent study of
Kumar & Mittal (2012) was able to convincingly relate the secondary vortex street
to a convectively unstable mode of the global flow.

Thus, the idea that the vortex merging dynamics could play a role on the formation
of the secondary vortex street seems now largely dismissed in favour of the opposing
view of a mean flow instability. However, as pointed out by Inoue & Yamazaki (1999)
the two scenarios are compatible and whether the primary vortices have or not fully
decayed at the appearance of the secondary street depends on the external forcing
conditions. In our view, these are not mutually exclusive but rather complimentary
approaches, neither of them considering the stability of the actual flow but rather
constituting different approximations. The actual flow is indeed composed both of (i) a
spatially evolving mean flow superimposed to (ii) a spatially evolving time-periodic
train of downstream-travelling structures, with decreasing relative importance as the
vortices of the primary instability progressively diffuse. While the potential influence
of the former on the secondary vortex street formation is well captured by a global
stability analysis of the mean flow, the present secondary stability analysis partially
captures the role of the latter as well.
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According to our present computations, the propagation velocity of the instability
front is given by ua − ua,0 ' 0.87 at the furthest downstream position in the least
confined case, totally in line with the propagation velocity of 0.827–0.925 of the wave
packets of the secondary vortex street reported by Kumar & Mittal (2012). Therefore,
the appearance of the secondary vortex street is not inconsistent with the convective
instability of the point vortex model.

A more complete and rigorous approach would be to generalize the Floquet analysis
of the temporally periodic primary vortex street of Henderson & Barkley (1996) by
extending the domain size and looking for transient growth and receptivity.

6. Conclusions

In the present work, the classical problem of the stability of the Kármán vortex
street has been re-examined under a spatio-temporal perspective. We based our
analysis on the point vortex model of Rosenhead (1929), accounting for the influence
of confining walls, and we considered the vortices to be advected in the downstream
direction at a certain unknown velocity. In this situation, numerical simulations of the
linear impulse response of the system showed the existence of a critical advection
velocity above which the street of point vortices becomes convectively unstable in
the laboratory frame. This critical advection velocity was observed to decrease as
the aspect ratio of the street approaches its temporally stable isolated value, and to
increase with the confinement. In the unconfined limiting case, direct application of
the Briggs–Bers criterion to the dispersion relation revealed that the critical advection
velocity saturates to a non-zero value as the system tends to its stable aspect ratio.
This remarkable property was explained by the self-similar behaviour of the dispersion
relation when close to the stable aspect ratio.

Finally, the properties of an actual Kármán vortex street were retrieved at specified
streamwise locations from the DNS of the Re = 100 flow past a circular cylinder,
under various degrees of confinement. Fitting these local properties to our point
vortex model yielded the corresponding critical advection velocity of the vortices
for local convective instability in each case. Comparing these values with the actual
advection velocities recovered from the DNS indicated that the vortex street is strongly
convectively unstable at all streamwise locations and for all considered degrees of
confinement. This finally provides the point vortex model with an explanation for
the permanence of Kármán streets at low Reynolds numbers despite their temporal
instability to small perturbations, and proves that viscous effects are not responsible.
The model is thus reconciled with the stability of the actual two-dimensional flow in
the wake of a cylinder (Henderson & Barkley 1996).

More complicated patterns of vortices are observed in the wake of oscillating
bodies (Williamson & Roshko 1988), and it would be interesting to perform similar
spatio-temporal instability analyses in these cases, still using simple inviscid models.
Schnipper, Andersen & Bohr (2009) obtained a rich variety of these vortex wakes by
varying the amplitude and frequency of the oscillation, with most of them showing
strong downstream persistence. We therefore expect regular pattern of vortices to be
convectively unstable in a wide range of configurations.
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Appendix A. Coefficients of the dispersion relation
The coefficients M, N, O, P, Q and R appearing in the dispersion relation of the

confined Kármán vortex street in § 2.2 have the following expressions:

M =− π2

2q2

∞∑
m=−∞

′
D+meikm, (A 1a)

N = − π2

2q2

∞∑
m=−∞

′ [(E+m − F−m )e
ikm + (E+m + F−m )]

+ π2

2q2

∞∑
m=−∞

(E−m+1/2 + F+m+1/2)−
π2

2q2
sec2

(
πp
2q

)
, (A 1b)

O= π2

2q2

∞∑
m=−∞

D−m+1/2eik(m+1/2), (A 1c)

P=− π2

2q2

∞∑
m=−∞

(E−m+1/2 − F+m+1/2)e
ik(m+1/2), (A 1d)

Q= π2

2q2

∞∑
m=−∞

′ [(E+m + F−m )e
ikm − (E+m + F−m )] +

π2

2q2

∞∑
m=−∞

(E−m+1/2 + F+m+1/2), (A 1e)

R=− π2

2q2

∞∑
m=−∞

(E−m+1/2 + F+m+1/2)e
ik(m+1/2), (A 1f )

where coefficients D±m , E±m and F±m have been previously defined at (2.7).

Appendix B. Conditions for the DNS
The computational domain and the frame of reference for the DNS are shown in

figure 13. Since our numerical method for the calculation of the critical advection
velocity of the vortex street relies on an inviscid point vortex model, a uniform
velocity profile U is imposed at the entrance of the domain, together with a free-slip
condition at the top and bottom walls. The Reynolds number Re = UD/ν is set to
100, value at which vortex shedding is present (see Sahin & Owens 2004). The
incompressible Navier–Stokes equations are solved with the software FreeFem++ and
the computations are carried out on a mesh with 12 308 nodes and 23 986 triangular
elements. A non-dimensional time step U/D1t equal to 0.05 is used. In order
to assess the adequacy of the spatial resolution, the value of the vortex shedding
frequency f , given in terms of the Strouhal number St = fD/U, is monitored for the
case β = 10. Increasing the mesh resolution to 16 575 nodes and 32 415 elements
involved variations of the Strouhal number lower than 1.8 %, indicating convergence
of the results.

Appendix C. Retrieving vortex street properties from the DNS
In order to retrieve from the DNS the non-dimensional local properties Γ , a, p,

q and the advection velocity ua of the vortex street at various streamwise locations,
we delineate at each considered location a fixed box of length 4.5 and height 7.5β.
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The length of the box is chosen to be approximately one and a half that of each
vortex, so that its circulation Γ and centre coordinates may be obtained by integrating
respectively the positive vorticity and its centre of mass over the box, at the time
of crossing of a positive vortex. The vertical distance h between the two rows of
vortices can then be retrieved from the y coordinate of the vortex centre, while
the advection velocity ua of the vortices is given by the time derivative of the x
coordinate. In addition, the Strouhal number of the flow can be obtained from the
frequency spectrum of the time history of the x coordinate, from which the distance
between consecutive vortices in the same row follows via the relation a = ua/St.
Finally, the aspect and confinement ratios are readily obtained with p = h/a and
q= d/a, respectively.
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