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ON AN OPTIMIZATION PROBLEM WITH COST
OF RAPID VARIATION OF CONTROL
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Abstract

In the paper we give sufficient conditions for the existence of a solution for a Darboux-
Goursat optimization problem with a cost functional depending on the number of switchings
of a control and the rapidity of its changes. An application is given to a gas absorption
problem.

Introduction

One of the basic optimization problems is the following problem:
we are given a control system

x = f(t,x,u), x(0)=x0, (0.1)

«(•) e U (0.2)

and a cost functional

/(*,«) = / f\t,x,u)dt, (0.3)

where /„ : [0, T] x R" x Rm -> R, f : [0, T] x R" x Rm -» Rn, x(-) is
an absolutely continuous function on [0, T], «(•) is a measurable function
and belongs to a fixed set U of admissible controls.

The problem consists of the determination of the minimum of the functional I(x,u)
under conditions (0.1), (0.2). (For details, see [3].)

In many technical questions related to automatic control, it is necessary to take
account of the costs connected with the number of switchings of a control and the
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speed of its changes. In a few papers [2,4,7,8, 10,11] the authors considered system
(0.1-0.2) with a cost functional of the form

fT

I(x,u)= f°(t,x(t),u(t))dt + 0(u), (0.4)
Jo

where <P(u) is a functional depending on the number of switchings, the rapidity of
changes or on the total variation of the control u.

In [8], the author gives sufficient conditions for the existence of an optimal solution
to (0.1), (0.2), (0.4) in the case when

0(u) = YiN(u) + y2S(u), Y\,Y2>0, (0.5)

where N(u) stands for the number of points of discontinuity of the control u, while
S(u) = sup{(|«(r) - u(t')\)/(\t - t'\), t ^ t',u is continuous on [t, t']}. Necessary
optimality conditions for this problem are given in [4]. In the case when <P(u) = VM
(total variation of u), such a problem was considered in [7]. In [10, 11], effective
methods of the numerical solving of such problems are given.

It seems that the results included in the above-mentioned papers can have practical
applications (cf. MR 86b49029).

In our paper we consider an optimization problem, analogous to problem (0.1)-
(0.5), for systems with distributed parameters of the form

a ' Z (0.6)
dxdy

The basic results of the paper are a theorem on the existence of Caratheodory
solutions for systems of form (0.6) (cf. Section 1) and the theorem on the existence
of optimal processes (Sections 2 and 3). Necessary optimality conditions for these
systems will be considered in the next paper. In the last section of the paper (Section 4)
we consider some chemical interpretation of the optimal control problem described
by (0.6).

1. On the existence of Caratheodory solutions for Darboux-Goursat systems

To begin with, we shall give the definition of absolutely continuous functions of
several variables. In the space of these functions we shall investigate the existence
of solutions of hyperbolic systems of form (0.6) with Darboux-Goursat boundary
conditions.

LetF = F(Q) be an additive function of the interval Q C P2 = {(x, y) € R2; 0 <
x < I, 0 < v < l } . The function F is called absolutely continuous if, for any e > 0,
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there exists S > 0 such that £"= 1 \F(Qt)\ < £ for any system of intervals Qt C P2

such that £"= 1 | 2 , | < 5 and int0r n intg, = 0 for r ^ 5. Let z : P2 -> /?. The
function of an interval defined by the formula

^z(<2) = *(*2. J2) ~ z(*l, >"2) + z(*l> yi) ~ Z(X2, yi),

where Q — {(x, y) e R2; 0 < x, < x < x2 < 1, 0 < yx < j < y2 < 1}, is called a
function associated with z. A function z : P2 —> R is called an absolutely continuous
function on P2 if the associated function Fz (Q) is an absolutely continuous function of
the interval Q and each of the functions z(x, 0) and z(0, >>) is an absolutely continuous
function of one variable on the interval [0, 1]. The space of absolutely continuous
functions on P2 will be denoted by AC(P2, R) or, shortly, by AC.

It can be demonstrated (cf. [13]) that a necessary and sufficient condition for z to
belong to AC(P2, R) is the following integral representation:

z(x,y)= f fyii2(x,y)+ f /'W+ f I2(y) + c (1.1)
Jo JO Jo Jo

where /'-2 e L\P2), l\l2 e L'([0, 1]), c € R. Making use of (1.1), one can
prove that the function z e AC possesses the partial derivatives (in the classical
s e n s e ) d z / d x = fo

y I1-2 + I1, d z / d y = f * I1-2 + I2 a n d 3 2 z / 8 x d y = I1-2 d e f i n e d f o r
(x, y) € P2 a.e. (cf. [14]).

In the space AC(P2, R), the norm is defined by the formula

MAC = ll/'-2lk(#«) + H/'lkacuD + l|/2|lz.,([o,i]) + \c\. (1.2)

It is easy to see that the space AC with norm (1.2) is a Banach space.
The definition of absolutely continuous functions of two variables can easily be

generated by induction to the case of functions of several variables. A real function z
is called absolutely continuous on

Pk = [x € tf*, 0 < x' < 1, i = 1, 2 , . . . , k}, k> 2,

if the associated function FZ(Q) (cf. [6,9]) is an absolutely continuous function of the
interval Q C Pk and each of the functions z(0, x2,..., xk),..., z(x\ ..., xk~\ 0)
is an absolutely continuous function of (k — 1) variables. Absolutely continuous
functions of k variables, k > 2, have properties analogous to those of functions of
two variables (cf. [13]). In the sequel, we shall occupy ourselves with the space of
functions of two variables.

Denote by AC(P2, Rm) the space of vector functions z = (z 1 , . . . , zm) where
z' e AC(P2, R) for / = 1, 2 , . . . , m. In this space let us consider a system of
equations of the form

32z
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with the Darboux-Goursat boundary conditions

z(x, 0) = <p(x), z(0, y) = VOO, (1.4)

where / = ( / ' , . . . , f m ) , f : P2 x (/T)3 -+ Rm. We shall assume that:

1° the functions cp and \fr are absolutely continuous on [0, 1] and (p(0) =
^ = c,

2° there exists a constant L > 0 such that
| / ' (x , y, w0, wu w2) - f'(.x, y, z0) zu z2)|

< L(\w0 - zo\ + |io, - z,| + |io2 - z2|)
for (x, y) e P2 a.e. and any points (u>0, io1; io2), (zo. zi, z2) of the (1-5)
space (Rm)\j = 1,2 m,

3° for any point (z0, zu z2) 6 (V?m)\ the function / ( • , •, z0, Z], z2) is
measurable on P2,

4° there exists z = (z0, z1; z2) such that the function / ( • , •, z0, zx, z2) is
integrable on P2.

A function z e AC(P2, Rm) will be called a Carathe'odory solution if it satisfies
(1.3) for (x, y) e P2 a.e. and boundary conditions (1.4) for any x, y G [0, 1].

We shall prove

THEOREM 1. If assumptions (1.5) are satisfied, then system of equations (1.3) with
boundary conditions (1.4) possesses a unique Carathiodory solution in the space
AC(P2, Rm) of absolutely continuous functions.

PROOF. It is easy to observe that, by substituting

w(x, y) = z{x, v) - <p(x) - x//(y) + c, c = <p(0) =

boundary value problem (1.3)—(1.4) can be reduced to a problem with homogeneous
boundary conditions. Therefore, without loss of generality, one may assume that
<p(x) = 0 and \f/(y) = 0. It follows from (1.1) that any function z e AC(P2, Rm)
satisfying the conditions z(x, 0) = 0 and z(0, y) = 0 can be represented in the form

= [ [y

Jo Jo
(1.6)

where g € Ll(P2, Rm). So, (1.3) with homogeneous boundary conditions can be
represented in the form

g(x, y) = f (x, y, rrg, fg, f'g) , (1.7)
\ ô ô Jo Jo /

where g satisfies (1.6).
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Let k > 1 be a number satisfying the inequality

2mL(- + -) = a < 1,
k1 k

121

(1.8)

where L is the constant from the Lipschitz condition (cf. (1.5)). In the space
L}(P2, Rm) let us introduce a Bielecki norm (cf. [1]) defined by the formula

II A ' I I , = f f e-k«+»\g(x,y)\dxdy.
Jo Jo

It is easy to show that
< 11*11* < \\g\\u.

(1.9)

(1.10)

Consequently, the norms \\g\\k and ||g||z.> are equivalent.
Denote by F = (Fl,..., Fm) : Ll(P2, Rm) - • L\P2, Rm) an operator defined

by the formula

Fj(g)(x, y) = fi (x, y, f fg(x, y), fg(x, y), Ig(x, y)) . (1.11)
V Jo Jo Jo Jo /

It follows from assumptions (1.5) that the operator F is well-defined. We shall
demonstrate that F is a contracting operator if the norm in the space Ll(P2, Rm) is
defined by (1.9). We have

\\F(g) - F(h)\\k =

f
o Jo

(x, y, f'fg, [g, fXg) - f (x, y, ffh, fk fXh) dxdy
\ Jo Jo Jo Jo / \ Jo Jo Jo Jo J

<mL *-*<*+» \g-h\+mL «-*«*+'> / \g - h\
Jo Jo Jo Jo Jo Jo Jo

+ mL f f e-k(x+y) f'\g-h\. (1.12)
Jo Jo Jo

Integrating the last integral by parts, we obtain

j e-tu+y) f \g-h\(s, y) ds) dx dy
\ Jo /

/ (e k(x+y) / \g-h\ (s, y) ds) dx dy
.Jo Jo J

/

' r i fx x=\ r11 i

— -e~k{x+y)I \g—h\(s,y)ds\x_0+ I -e~k(x+y)\g— h\(x,y)dx \dy
Jo Jo ^ J

\g-h\(x,y)dxdy

https://doi.org/10.1017/S0334270000010286 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010286


122 D. Idczak, K. Kibalczyc and S. Walczak [6]

= I ff {-e-k°-x) + 1) e-^+»\g - h\ (x, y)dxdy11 Jo Jo

<l\\g-h\\k.
In an analogous way we shall obtain the inequality

0 Jo

Integrating by parts twice, we get the estimate

fy\g-h\(x,y)<Ug-h\\k.
Jo K-

f |
Jo Jo

= Ti [ [
k JoJo

[
o Jo

[ \ V + % - h\(x,y) dx dy

Consequently, from (1.12) we obtain

\\F(g) ~ F(h)\\k < 2mL (J-2 + j \ \\g - h\\k = a\\g - h\\k.

Since the number k satisfies (1.8), we ascertain that F (cf. (1.11)) is a contracting
operator. So, there exists exactly one point g0 £ L\P2, Rm) such that g0 =
Adopting

/ go(x,y),
Jo Jo

we obtain a solution of (1.3) in the space of absolutely continuous functions on P2.

= /
Jo Jo

2. On the existence of optimal solutions for some control problem

We shall first prove a theorem on the continuous dependence of solutions of (1.3)
upon the function parameter (control). We shall make use of the following:

LEMMA 1. (cf. [5]) If a function <p : P2 x / ? ' - > / ? , / > 1, satisfies the conditions:

1° tp{-, •, v) is measurable on P2 with any v € /?',
2° <p(x, y, •) is continuous on R2 with any (x, y) e P2,
3° for any «(•, •) € LP<(P2, /?'). 1 < Pi < oo, the function

<P(;;U(;))£L>*(P2,R),1<P2<OO,

then the operator 0 : L"'(P2, R) -> L^{P2, R) defined by the formula <P(u)(x, y) =
<p(x,y,u(x,y)) is continuous.
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Let us now consider a control system

_32z__
dxdy ~ -

where z e AC(P2, Rm), u e L'(P2, Rr), / = ( / ' , . . . , f m ) , 1 < s < oo, r > 1. We
shall assume that:

1. there exists a constant L > 0 such that
| / y (* . y, u)0, u;,, w2, u) — fJ(x, y, z0, zu z2, u)\

< L(\w0 — zo\ + |ioi — zj + \w2 — z2|)
for any (x, y) € P2, wit z, € Rm, i = 0 , 1 , 2 , « e ^?r,

2. for any z, e /?m and u e /?r, the function / ( - , - , z0, zu z2, u) is ^ 2 )
measurable on P2, for any (x, y) 6 P2 and z, e Rm, the function
/ (x , j , z0, Zi, z2, •) is continuous on Rr,

3. for any control u € LS(P2, Rr), there exists a point z, 6 /?"", / =
0, 1, 2, such that the function f'{x, y, z0, zuz2, u{x, y)) isintegrable
on P2,j = 1,2, ...,m.

From the above assumptions as well as from Theorem 1, it follows that, for any control
M € LS(P2, Rr), there exists exactly one solution of (2.1) in the space of absolutely
continuous functions AC(P2, Rm). This solution will be denoted by zu and called the
trajectory of (2.1) corresponding to the control u. Since zu (x, 0) = 0 and zu (0, y) = 0,
therefore the norm of the trajectory zu is defined by the formula (cf. (1.2))

-udxdy

We shall prove

(x,y) dxdy. (2.3)

THEOREM 2. If assumptions (2.2) are satisfied and the sequence of controls un tends
to M0 in the space LS(P2, Rr), then the sequence of trajectories zUn tends to zUo in the
space AC(P2, Rm).

PROOF. Denote by FUII = ( F j , . . . , F") : Ll(P2, Rm) -* L\P2, Rm) an operator
defined by the formula

> y) = fJ (*, y. / f'g, f'g, f'g. "nix,
\ Jo Jo Jo Jo

where j = 1, 2 , . . . , m; g € L\P2, Rm), (x, y) e P2. Identically as in the proof of
Theorem 1, we can show that there exists k > 1 such that ar = 2mL(p + j) < 1 and

\\FuAg)-FUn(h)\\k<a\\g-h\\k (2.4)
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for any g, h e L\P2, Rm) and n = 0, 1, 2 , . . . , where || • \\k stands for the norm
denned by (1.9).

For any control «„, the operator FUn possesses a fixed point gn = FUn(gn) such that

zUn(x,y)= / / gn{x,y)dxdy, n = 0 , 1 , 2 , . . . ,
Jo Jo

and zUn is a trajectory of system (2.1). Inequality (2.4) implies

llgn - go\\k = WFuSSn) ~ FUo(go)\\k

< \\Fu.(gn) - IF,.(go)lit + HFH.(ft>) - FB0(g0)ll*

< cc\\gn - golU + ||FH.(g0) - FBo(go)ll*.

Making use of (1.10), we get

\\gn ~ go\\o <
e2k

Since zu(x,0) = 0 and zu(0, j ) = 0, we have (cf. (2.3))

l|z«n — ZUo|Uc(/>2,«'") = ll̂ « — go\\ L'(P*, !{"•)•

Consequently,

Hz«. - z«.ll < YZ^\\F*M ~ FBo(go)ll, n = 1, 2 , . . . .

From Lemma 1 it follows that the operator Fu is continuous, thus zUn —>• zUo as

«n —>• «o» 1 5 ^ < oo.

A function M0 : P2 -*• Rr° will be called piecewise continuous on f2 if there
exist points 0 = x0 < x} < • • • < xPo = 1 and 0 = yo < y\ < • • • < yqo = 1
such that the function u0 is continuous on each interval Pik = (JC,-, x,+i) x (yit yi+i),
i = 0, l,...,p0- l;k = 0, 1, . . . ,<7o- 1.

Let M0 = («o> • • • > Mo°) ^ e a piecewise continuous function on P2 such that
uo(x, y) € Af0 C /?r° and 5o(«o) < oo. where Mo is a compact set and the func-
tional SO(MO) is defined by the formula

= sup IS0(«o) = sup { ,,.., . , , ,„ .A, , (x,y)^(x, y), (x , y ),(x, y) e Pik,

(2.5)
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The set of such functions will be denoted by Uo- Denote by U\ the set of functions
«i = Mi(x) = (u\(x),..., Mj'Cx)) piecewise continuous on [0, 1] and such that
ui(x) e A/,, 5I(M,) < oo, where M\ c Rr' is a compact set, the functional S^MO is
defined by the formula

= sup \ | l t l ( g : " ; W I , *' # x. x', * € / » , ) . (2.6)

where Piti = 1,2,..., p, denote the intervals of continuity of the function u\.
Let U2 stand for the set of functions u2 = M2(;y) = M0 = (ul

2(y),..., M^
piecewise continuous on [0, 1] and such that u2(y) € M2, S2(u2) < oo, where
M2 C Rn is a compact set, the functional S2(u2) is defined by the formula

= sup { M g : ; ; w l , y ̂  y, y,, e a } , (2.7)

and Q*, A: = 1, 2 , . . . , q, denote the intervals of continuity of the function M2.
The set U = Uo x U\ x U2 will be called a set of admissible controls, and its

elements - admissible controls. The control u0 = uo(x, y) will be called an interval
control, whereas Mi = M](JC) and M2 = u2{y) - boundary controls.

In the class of admissible controls u = (u0, uu u2) e U, defined above, let us
consider a control system of the form

dxdy <y---'3x'8y'-J' Z(*'0) = °' 2 ( ° ' j ) = ° '

u(x, y) € M = Mo x M, x M2, z € AC(P2, Rm), (2.8)

with a cost functional

f 2

I(z,u)= I f°(x, y, z(x, y), u(x, y)) dx dy + y^aiNi(ui) + fiS,-(«,-) -> min
(2.9)

where a,, /J, > 0, Â , («,) stands for the number of intervals of continuity of the controls
uh i = 0, 1, 2,; 5,(M,) are defined by (2.5M2.7).

The functionals A', and 5,, / = 0,1,2, can be interpreted as costs connected with
the number of switchings of the control u and the speed of its changes, whereas the
numbers or,, /J, as weights connected with these costs.
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In the sequel, we shall assume that:

a) the function / satisfies (2.2),
b) f°(-, •, z, u) is measurable with any z e Rm and u e Rr,

r = r0 + rx + r2; f°(x, y, •, •) is continuous for (x, y) e P2,
c) /°(-, •, z(-, •), w(-, •)) is an integrable function for any admissible pair

(z, u) where u e U, z = zu is the solution of (2.8) corresponding to ,~ in1)
the control u,

d) there exists a constant A such that
fP2 f°(x, y, z(x, y), u(x, y)) dx dy > A

for any admissible control u e U and the trajectory z = zu satisfying
(2.8).

Let C > 1 be a fixed real number. Denote by U£ the set of functions

f/o
c = {ue Uo; N0(u) < C and So(") < C}.

We shall show

LEMMA 2. From each sequence {«"} C U£ one can choose a subsequence {«"*}
consisting of functions which possess exactly s < C intervals of continuity. This
subsequence converges almost everywhere on P2 to a function u° G £/<f, and the
number of intervals of continuity of the function u° is equal to s° < s < C. Moreover,
foreache > 0, there exists N = N (s) such that S0(u°) < S0(u

nt) + eforanynk > N.

PROOF. Let {«"} C UQ be an arbitrary sequence. It follows from the definition of the
set UQ that the number of intervals of continuity of any function u" is less than C. So,
there exist points 0 = x^ < x" < •• • < xn

p = 1, 0 = y$ < y" < • • • < y^ = 1 such
that the function u" is continuous on the intervals

i = 0 , l , . . . , p - l ; k = O,l,..-,q-l, P < C , q < C .

(In the case C = 1, all the functions u" are continuous on P2.) Choosing a sub-
sequence, if necessary, we may assume that the numbers p and q are constant for all
« = 1, 2 , . . . . Put s = p • q. From each sequence {x?} and [y%] we can choose
convergent subsequences. (In the sequel, subsequences will be denoted by the same
symbols as original sequences.)

Let x? -> xi and yn
k -+ y°, / = 0, 1, . . . , p; k = 0, 1, . . . , q. We have 0 =

x° < x°{ < • • • < x° = 1 and 0 = y$ < y° < • • • < y° = 1. Assume that,
with fixed / and k, xf < xf+l and y° < y°+]. Let e > 0 be a sufficiently small
number. Note that on the interval P%c = (x? + e, x°+i - e) x ( ^ + s, y%+l - e)
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the sequence u" will be compact in the topology of uniform convergence. Indeed,
on this interval all the functions u" with a sufficiently large n are defined, commonly
bounded (u"(x, y) G Mo) and equicontinuous (50(M") < C). Consequently, from the
Ascoli-Arzela theorem it follows that there exists a uniformly convergent subsequence.
Passing with e -> 0, we shall obtain pointwise convergence on the whole interval
Pj>k = (xf, xf+l) x (y°, y°+l). Proceeding in this way with the successive intervals P?k,
we shall get a subsequence of {un} converging almost everywhere to some function
u° e UQ . The number of intervals of continuity of the function u° is equal to
s0 < s. In the case when xf = xf+i or yf = yk+l, Pfk is a degenerate interval and its
two-dimensional measure is equal to zero. Such a case may therefore be omitted.

We shall prove the second part of the proposition. Let s > 0 be an arbitrary number.
Directly from the definition of the supremum and from (2.5) it follows that

e

2'~ \(x',y')-(x,y)\ 2

where (x', y') and (x, y) are some points of the interval Pfk. Since the sequence {«"*}
converges to u0, therefore

for nk sufficiently large. Hence

Let us denote by f/,c and (/f the sets

(7,c = ( « 6 l / , ; A/,(«) < C and S,(M) < C},

i/2
c = {u € £/2; yV2(«) < C and S2(M) < C).

Analogously to Lemma 2 one can show

LEMMA 3. From each sequence [u"} C Uf one can choose a subsequence {«"*}
consisting of functions which possess exactly s < C intervals of continuity. This
subsequence converges almost everywhere on [0, 1] to a function u° 6 f/,c, and the
number of intervals of continuity of the function u° is equal to s° < s < C. Moreover,
for each e > 0, there exists N = N(e) such that Sx (w°) < 5] (u"k) + efor any nk > N.
Analogously -for the set t/2

c.
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On the basis of the above lemmas and Theorem 2, we shall prove

THEOREM 3. If (2.10) are satisfied, then control system (2.8) with cost functional (2.9)
possesses an optimal solution in the class of admissible controls U = UQ X U\ X U2

and in the class of absolutely continuous trajectories z e AC(P2, Rm).

PROOF. Denote by Z the set of admissible processes (z, u) in (2.8)-(2.9), i.e. u € U
and z is the trajectory of (2.8) corresponding to the control u. It follows from (2. lO.d)
that inf{/(z,«); (z, u) e Z} = m > —oo. Let {(z",w")} c Z be a minimizing
sequence, i.e. I(z",u") -> m. It can easily be noticed that there exists C > 1 such
that

;=o

Since a,, /J, > 0, from the sequence [un] we can choose a subsequence {«"*} satisfying
the conditions of Lemmas 2 and 3. Let u"k —> u°. From Theorem 2 we infer that

f°(x, y, zn>, «"') -> f f°(x,y,z°,u0), (2.11)

where z° is the trajectory corresponding to the control u°.
Let s > 0 be an arbitrary real number. It follows from (2.11) and from Lemmas 2

and 3 that
m < /(z°, u°) < I(znt, «"') + s (2.12)

for nk sufficiently large. Since /(z"*, w"*) -*• m, from (2.12) we obtain /(z°, «°) = m.

REMARK 1. We have assumed that a,, /J, > 0, / = 0, 1, 2. Directly from the proof of
Theorem 3 it follows that, in the case when f° and / do not depend on uh one can
put a, = 0 and fr = 0 for / = 0, 1 or 2 and Theorem 3 will still remain true.

REMARK 2. In the existence theorems for the classical problems of Bolza or Lagrange
one assumes the convexity of the function f° and the convexity of the set of trajectories
(cf. [3]). In Theorem 3 we managed to omit the assumptions of convexity because
the cost functional (2.9) contains components depending on the number of intervals
of continuity of the control u and the rapidity of its changes.

3. An optimal control problem with the bounded number of switchings of
controls

In this section we shall consider the optimal control systems with a commonly
bounded number of swithchings of controls.
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Let Ko, K\, K2 be some fixed positive integers. Denote by UKo a subset of Uo (cf.
(2.5)) consisting of controls u whose number of continuity intervals is not greater than
Ko. In an analogous way we define the sets UK, C f/i and UKl C U2 (cf. (2.6) and
(2.7)). Let UK = UKo x UKl x UKl.

In the set of admissible controls u = (u0, U\,u2) e UK, let us consider a control
system of the form

32z / dz dz

z(x, 0) = 0, z(0, y) = 0, « € £/jr, z e AC(P2, /?"), (3.1)

with a performance index

/ ( Z , M ) = / f ° ( x , y , z , u ) d x d y + / ' fiiSi(Ui), (3.2)

where )3, > 0 and the functionals 5, are defined by (2.5)-(2.7).
Now, we prove the following existence theorem for the optimal control problem

(3.1H3.2).

THEOREM 4. If the functions f and f° satisfy (2.2) and (2.10), then control system
(3.1) with performance index (3.2) possesses an optimal solution in the class of
admissible controls u € UK and in the class of absolutely continuous trajectories
z e AC(P2, Rm).

PROOF. Let Zk denote the set of admissible processes (z, u) in (3.1)—(3.2). It follows
from (2.10d) that inf{/(z, u); (z, u) e Zk)'= m > -oo. Let {(z", u")} C Zk be a
minimizing sequence, i.e. I(z", u") -> m. Since (cf. (2.10))

f\x,y,z\u")>A, n = l ,2 , . . . ,

for some A, there exists a constant D > 0 such that Z^AS/ tw") - ^- ^y the
definition of admissible controls, the number of continuity intervals of u", n = 0, 1,2,
is commonly bounded. It follows from Lemmas 2 and 3 that there exists some
subsequence {u"k} C {«"} such that u"k —> u° a.e. and u° e Uk. Further, by an
identical argumentation as in the proof of Theorem 3, we obtain the assertion of
Theorem 4.

REMARK 3. It is easy to notice that, in the case when functions f° and / do not depend
on Ui, we can put /?, = 0 in (3.2), and Theorem 4 will be true, / = 0, 1 or 2.
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4. Application to the optimization of some chemical processes

Consider a gas filter made in the form of a pipe filled up with a substance S which
absorbs a poison gas. Through the filter a mixture of air and gas is pressed at a speed
v = v(t) > a > 0 with the aid of an aggregation A. Denote by M = u(x, t) the
quantity of the poison gas being present in the capacity unit of the substance 5 at a
distance x from the inlet of the filter and at a moment t. Assume the speed v = v(t)
to be so great that the diffusion process plays no essential role in the motion of the
gas. In this case, the process of the absorption of the poison gas by the filter filled up
with the substance 5 is described by a differential equation of the form

B
««(*, 0 + 3^"'(*. 0 + PYUAX, 0 = 0 (4.1)

under the boundary conditions

u(x,0) = «0exp( x),
\ v0 ) (4.2)

M(0, i) = «o>
where u0 is the gas concentration at the inlet to the filter (u0 = const.), v(t) denotes
the speed of the flow of the mixture of air and gas through the filter at the moment t,
vQ = v(0), B and y are physical quantities characterizing the given gas (for details,
see [12], chapter II).

With the aid of the aggregation A we are able to control the flow speed v = v(t)
in the interval [a, b] i.e. v(t) e [a, b] where 0 < a < b < oo. Without loss of
generality we may assume that x 6 [0, 1] and t € [0, 1]. We shall also assume that
u() is a piecewise continuous function on [0, 1].

Put
/ 8 \

u(x, t) = z(x, t) + «oexp I x .
\ "o /

It is easy to demonstrate that (4.1)-(4.2) is equivalent to a system of the form

zxl{x, t) + ByzAx, t) + -y-z,{x, t) - ^ - ^ e x p (—x) = 0, (4.3)
V(t) VQ \ V 0 /

z(;t,0) = 0, z(O,r) = O. (4.4)

The function v = v(t) will be treated as a control in (4.3)-(4.4).
Suppose that each rapid or sudden change in the speed of the flow of the gas

through the filter is expensive and should be taken into account in the general costs of
air filtration. Consequently, the cost functional ought to have the form

/ (z, v) = I f f\x, t,z(x, t), v{t))dxdt + aN(v) + pS(v), (4.5)
Jo Jo
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where or, /J > 0, N(v) denotes the number of points of discontinuity of the control v,

Qk,k = \,2,... ,q, stand for the intervals of continuity of the control v.
Assume that the function f° satisfies (2.10). In that case, it can easily be noticed

that control system (4.3H4.4) with cost functional (4.5) satisfies all the conditions of
Theorem 3 (cf. Remark 1). Hence it appears that there exists some v* = v*(t) which
is the optimal speed of the flow of the gas through the filter.

The necessary optimality conditions which allows one to determine the optimal
control D* will be considered in our next paper.
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