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ABSTRACT

The tendency of insurance providers to refrain from offering long-term
guarantees on investment or mortality risk has shifted attention to mutual risk
pooling schemes like (modern) tontines, pooled annuities or group self annu-
itization schemes. While the literature has focused on mortality risk pooling
schemes, this paper builds on the advantage of pooling mortality and morbid-
ity risks, and their inherent natural hedge. We introduce a modern “life-care
tontine”, which in addition to retirement income targets the needs of long-term
care (LTC) coverage for an ageing population. In contrast to a classical life-
care annuity, both mortality and LTC risks are shared within the policyholder
pool by mortality and morbidity credits, respectively. Technically, we rely on
a backward iteration to deduce the smoothed cashflows pattern and the sepa-
ration of cash-flows in a fixed withdrawal and a surplus from the two types of
risks. We illustrate our results using real life data, demonstrating the adequacy
of the proposed tontine scheme.
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1. INTRODUCTION

Long-term care (LTC) costs have shown a significant increase over the recent
decades. In the US, data by the National Health Expenditures Account
(NHEA) show that expenditures in the Medicare program, aiming to support
US residents with low income in LTC, raised from 225 billion in 2000 (2.2% of
the gross domestic product (GDP)) to 830 billion in 2020 (3.6% of GDP). Also
governmental spending in home health care raised from 32 billion in 2000 to
124 billion in 2020. A similar observation is made in Europe, for instance in

Astin Bulletin 52(2), 563–589. doi:10.1017/asb.2022.6 C© The Author(s), 2022. Published by Cambridge University Press on
behalf of The International Actuarial Association. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/asb.2022.6 Published online by Cambridge University Press

https://orcid.org/0000-0001-5189-5308
https://doi.org/10.1017/asb.2022.6
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/asb.2022.6


564 P. HIEBER AND N. LUCAS

Belgium, where LTC spending (in terms of GDP) increased from 1.7% in 2000
to 2.4% in 2019 (source: Eurostat).

The increasing trend of LTC costs is projected to continue in the future (Shi
and Zhang, 2013). According to United Nations projections, the number of
elderly people, that is older than 65, is projected to triple from 2020 to 2080 to
reach 2.2 billion. The global share of the elderly population is expected to rise
from 9.4% in 2020 to 20.6% in 2080, while the demand for LTC services in the
years to come is expected to further increase.

Specific insurance products are dealing with LTC risk, notably the classical
LTC cover, which provides benefits in case of dependency, and the enhanced
pension or life-care annuity. The latter combines regular payments of a life
annuity with LTC insurance (see for example, Denuit et al., 2019 for more
details). In terms of risk management, the pooling of competing risks, that is
longevity and morbidity, is quite advantageous as the two risks act in opposite
directions (Murtaugh et al., 2001). When moving into dependency, individuals
receive higher benefits but also suffer from a decrease in their life expectancy,
creating a natural hedge. The key advantages of the life-care annuity rela-
tive to the stand-alone products life annuity and classical LTC cover are its
potential to decrease the costs and to make coverage available to more poten-
tial purchasers (Spillman et al., 2003). One reason for this is a reduction in
adverse selection. Individuals with low longevity expectations are less likely to
buy annuities, forcing insurance providers to increase their premiums accord-
ingly. Indeed, it has been estimated that around 10% of the cost of life annuity
premiums is due to adverse selection (Friedman and Warshawsky, 1990). On
the other hand, classical LTC covers are not available to everyone as under-
writing mostly rejects people in bad health. Combining both products makes
insurance affordable for people in a poor health state for whom it is currently
unattractive to buy a life annuity and unaffordable to buy a classical LTC
cover. A life-care annuity allows the inclusion of this currently rejected popu-
lation, which lowers the cost for all and reduces adverse selection (Brown and
Warshawsky, 2013).

However, estimating the risks of a classical LTC cover or a life-care annu-
ity is a challenging task for the insurance provider, resulting typically in high
risk and administration charges. This might explain why the volume of the pri-
vate market for LTC insurance is still relatively small. Indeed, when looking
at the written gross premiums for long-term care insurance (LTCI), it is clear
that the private LTC insurance market is limited in most OECD countries,
although the need for a market is clearly strong (OECD, 2020). That is the rea-
son why, in this article, we suggest a mutual risk sharing scheme that keeps the
advantages of a life-care annuity but shifts risks from the insurance provider
to a policyholder pool. As the insurance provider is merely administrative in
such a product, we expect lower risk and administration charges at the expense
of a higher risk exposure to the policyholders. A mutual insurance product
would not guarantee a precise level of retirement income. On top of the invest-
ment returns from funded assets, survivors receive a higher payout funded by
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the “mortality credits” of deceased members. The very first such products are
(original) tontines dating back to the 17th and 18th century in Europe (for
more details, we refer to Milevsky, 2015; Li and Rothschild, 2019). Today,
modern versions of these original tontines exist, for example the TIAA-CREF
retirement fund in the USA, the Lifetimeplus solution of Mercer in Australia,
or “Le Conservateur” in France. In the literature, these modern versions are
named pooled annuities, group self annuitization schemes (see, e.g., Piggott et
al., 2005; Valdez et al., 2006; Stamos, 2008; Qiao and Sherris, 2013; Donnelly
et al., 2013; Donnelly et al., 2014) or (modern) tontines (see, e.g., Sabin, 2010;
Forman and Sabin, 2015; Milevsky and Salisbury, 2015; Forman and Sabin,
2016; Fullmer and Sabin, 2018; Li and Rothschild, 2019; Chen et al., 2021).
These articles follow a long tradition of mutual with profits products where
mortality or investment surplus is shared through an appropriate bonus dis-
tribution (see, for example, the well-cited book by Fisher and Young, 1965).
While the mentioned literature solely deals with the sharing of mortality risks,
we introduce a modern “life-care tontine”, which in addition to retirement
income targets the needs of LTC coverage for an ageing population. We intro-
duce the concept of “morbidity credits” that allow to share LTC risks within
the policyholder pool. We take advantage of the natural hedge between mor-
tality and morbidity risks and assign people moving to dependency a higher
death probability, allowing them to get a bigger share in future mortality cred-
its redistributed among the survivors of the tontine pool. To make the product
attractive for subscribers with different risk, we suggest a fairness condition
that ensures that the payments are actuarially fair in each payment period (see
also Donnelly et al., 2013; Donnelly et al., 2014). In other words, the life-care
tontine stays fully funded at all times with each individual investment balance
reflecting actual market values. We also allow to pool individuals from differ-
ent age cohorts (see also Donnelly et al., 2014; Milevsky and Salisbury, 2016;
Denuit, 2019). Such a product design has many advantages. (1) Compared to
a life-care annuity, a life-care tontine has significantly lower solvency capital
requirement (see also Shao et al., 2015; Chen et al., 2019), inducing lower costs.
(2) Compared to a classical tontine or pooled annuity, a life-care tontine is also
attractive for people in poor health, reducing adverse selection costs (see also,
e.g., Valdez et al., 2006 for supporting arguments with respect to mutual insur-
ance schemes and adverse selection). A life-care tontine covers the increasing
need of LTC coverage in an ageing society. (3) Being actuarially fair in each
payment period, the life-care tontine avoids the disadvantage of a closed ton-
tine pool (see, for example, the discussion in Chen et al., 2019). The design
allows to keep the pool size at a constant high level, replacing deceased indi-
viduals by new members. The sharing within the tontine pool is carried out
by the concept of mortality and morbidity credits. (4) Compared to a closed,
homogeneous insurance pool, pooling heterogeneous risks, that is different
age-cohorts or active/dependent states, allows to increase tontine pool sizes
and thus to reduce the overall risk.
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In an environment where insurance providers are no longer willing to take
on long-term guarantees, one has to avoid that longevity and LTC risks remain
fully uninsured. To avoid insurance gaps, it is necessary to design new prod-
ucts adapting to these circumstances. The trend to move to mutual insurance
schemes is not restricted to private insurance – it is also manifested in the move
from defined benefit to (collective) defined contribution in occupational and
state pensions. The presented idea of a mutual risk sharing scheme of mortal-
ity and morbidity risk can also help to design occupational pension systems
where the insurance provider is either unable or not willing to take the pen-
sion’s long-term risks. Adjusting the benefits of pensions by risk factors like
autonomy/dependence can further enhance the fairness of the pension system
(see also Holzmann et al., 2019 for a discussion of other risk factors).

The paper is organized as follows: In Section 2, we introduce a 2-state
alive/dead framework through a fair tontine scheme allowing members to
freely join the pool. This framework enables to pool heterogeneous cohorts,
like inDonnelly et al. (2014),Milevsky and Salisbury (2016) andDenuit (2019).
Section 3 extends this to a 3-state framework, with a dependent state getting
a specific (higher) payoff. The classical life-care annuity is compared with our
life-care tontine. The fairness of the product is demonstrated and the payoffs
are smoothed over time to fit the actual needs. Sections 4 and 5 conclude and
make additional remarks.

2. 2-STATE FRAMEWORK

In a first step, we consider a 2-state framework where individuals have two
possible states “alive” or “dead”.We later extend this basic setting to a modern
life-care tontine. Let us introduce the set of all individuals at initiation byL0 =
{1, 2, ..., n}. Time is discretized in periods t= 0, 1, 2, . . .. Assume that individual
j ∈ L0, aged xj with a remaining lifetime Tj, contributes a single premium cj(0)
at time 0. Financial assets are invested in a risk-free bank account with a time-
dependent, deterministic, risk-free rate δs, s≥ 0. The maximal age is denoted by
ω. For now, the remaining lifetimes Tj, j ∈ L0, are assumed to be independent.

2.A. Tontine payoff

The n individuals form a tontine pool. Given the total initial premium pay-
ment, they decide on a withdrawal plan for the pool, that is for t= 0, 1, 2, . . .,
they (together) withdraw the amount Wj(t) in a way that the premium
equivalence

n∑
j=1

cj(0)︸ ︷︷ ︸
total contributions

=
n∑
j=1

ω−xj∑
t=1

e−
∫ t
0 δsdsWj(t)︸ ︷︷ ︸

discounted benefits individual j

(2.1)
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holds. The account value left according to the agreed decumulation plan for
individual j at time t= 0, 1, 2... is denoted cj(t). Equation (2.1) shows the main
property of a tontine: the sum of all payoffs to the pool is deterministic, leaving
no risk for the insurance provider. The payoff to a single individual Wj(t),
however, is random and may depend on the mortality experience in the pool.
In the remainder of this section, we will demonstrate that (2.1) holds also at
later points in time, that is the tontine scheme is fully funded at all times and
satisfies for all t≥ 0:

n∑
j=1

cj(t)︸ ︷︷ ︸
total account values

=
n∑
j=1

ω−xj∑
s=t+1

e−
∫ s
t δuduWj(s)︸ ︷︷ ︸

discounted future benefits individual j

. (2.2)

We proceed by iteration to obtain Lt = { j ∈ L0 |Tj > t}, the subset of par-
ticipants still alive at time t. Let us defineDt = { j ∈ L0 | t− 1<T :j ≤ t} = Lt−1
− Lt, the subset of participants dying in (t− 1, t]. We denote by tpxj =
E[1Tj>t]=E[1j∈Lt ] the probability for individual j aged xj to survive t years
and set tqxj := 1− tpxj . For annual survival and death probabilities, we
abbreviate pxj := 1pxj and qxj := 1qxj . For t= 1, 2, . . . ,ω − xj, we obtain the
Bernoulli distribution 1j∈Lt ∼Ber (tpxj ) and 1j∈Dt | { j ∈ Lt−1} ∼Ber (qxj+t−1).
Note that our assumption of a maximal age ω implies that individuals never
reach age ω + 1, that is qω = 1.

Let us now look at an individual j ∈ Lt−1 and a single time period (t− 1, t].
During the time period (t− 1, t], the individual j’s account value accrues to

an amount of e
∫ t
t−1 δsdscj(t− 1). In case of death in (t− 1, t], this account

value is lost and distributed to the pool of individuals. Otherwise, the indi-
vidual receives a payment at time t. This payment is decomposed into a
fixed withdrawal sj(t) and mortality credits from deceased pool members. In
Section 3.3, this payoff is extended to a life-care tontine that also
includes “morbidity credits”. Each individual’s account value is iteratively
determined via

cj(t)=
{
e
∫ t
t−1 δsdscj(t− 1)− sj(t) , j ∈ Lt

0 , otherwise
(2.3)

in a way that the account is depleted at the maximal age ω, that is
cj(ω − xj)= 0. With this, we can solve (2.3) to get, for individual j ∈ Lt at
time t:

cj(t)=
ω−xj∑
u=t+1

e−
∫ u
t δsdssj(u) . (2.4)

To define the variable part of the payoff (the mortality credits), formally,
denote as

Xj(t) := 1j∈Dt · e
∫ t
t−1 δsdscj(t− 1)
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the random variable that is 0 in the case where the individual is alive at time
t and equal to the accrued account value e

∫ t
t−1 δsdscj(t− 1) in case of death in

the time interval (t− 1, t]. At each time t= 1, 2, . . ., we have to distribute the
pool’s total mortality credit

X (t) :=
∑

j∈Lt−1

Xj(t)=
∑
j∈Dt

e
∫ t
t−1 δsdscj(t− 1)

among the individuals j ∈ Lt−1 according to some predefined rule. We define
properties of a fair distribution rule βj(X (t)) later in this section.

The annual payoff to individual j is denoted byWj(t) (see above). At time t
and for an individual j ∈ Lt−1, it is given by

Wj(t)=
{
sj(t)+ βj

(
X (t)

)
, if j ∈ Lt

βj
(
X (t)

)
, if j ∈ Dt

(2.5)

decomposed of

• sj(t): individual, fixed withdrawal amount,

• βj
(
X (t)

)
: collective part of the benefits, that is the mortality credits.

Note that the fixed withdrawal amount sj(t) is received only if the individ-
ual survives until time t. The individual always receives the mortality credit
βj
(
X (t)

)
– either to increase the fixed payoff (if j ∈ Lt) or as a death benefit

(if j ∈ Dt). With (2.1), (2.4) and (2.5), it is possible to show that the scheme
remains fully funded, that is the sum of individual account values at each time
t is equal to the sum of discounted future benefits, see (2.2). In Definition 2.1,
we define properties of a fair distribution rule βj

(
X (t)

)
, see also, for example,

Denuit (2019). At the end of this section, we demonstrate how these properties
lead to an actuarially fair tontine product.

Definition 2.1 (Fair distribution rule: mortality credits). If the share distributed
to individual j ∈ Lt−1 is denoted by βj

(
X (t)

)
, a fair distribution rule has to satisfy

the following properties:

• Self-sufficiency property:
∑

j∈Lt−1
βj
(
X (t)

)=X (t).

• Positivity property: βj
(
X (t)

)≥ 0.
• Fairness property:

Et−1
[
βj
(
X (t)

)] = Et−1
[
1j∈Dt

]︸ ︷︷ ︸
probability to die in (t− 1, t]

· e
∫ t
t−1 δsdscj(t− 1)︸ ︷︷ ︸

amount at risk at time t

, (2.6)

where Et := E[ · | Ft] is an expectation conditional on the information
Ft := σ (Lt).

In the 2-state framework, we have that Et−1
[
1j∈Dt

]= qxj+t−1, the proba-
bility that an individual is going to die in the time interval (t− 1, t]. Fairness
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implies that – on average – he receives the same payoff whether he joins the ton-
tine pool or not. In the first case, he receives βj

(
X (t)

)
, in the latter case Xj(t),

resulting in the fairness condition Et−1[Xj(t)]=Et−1[βj(X (t))], see (2.6). Thus,
to be fair, on average, any individual j ∈ Lt−1 receives the amount (2.6), which
is on average proportional to both the death probability and the account value.
Three examples of a fair distribution rule are presented in Examples 2.2–2.4.

Example 2.2 (Conditional mean risk sharing rule). At time t, each individual
j ∈ Lt−1 receives the mortality credit (respectively death benefit):

βj
(
X (t)

)=Et−1[Xj(t) |X (t)] . (2.7)

(see, e.g., Denuit and Dhaene, 2012; Denuit, 2019)

Example 2.3 (Linear risk sharing rule). At time t, each individual j ∈ Lt−1
receives the mortality credit (respectively death benefit):

βj
(
X (t)

)= qxj+t−1 · cj(t− 1)∑
j∈Lt−1

qxj+t−1 · cj(t− 1)
·X (t) . (2.8)

(see, e.g., Donnelly et al., 2013; Donnelly et al., 2014 and Schumacher, 2018)

Example 2.4 (Linear regression rule). At time t, each individual j ∈ Lt−1
receives the mortality credit (respectively death benefit):

βj
(
X (t)

)=Et−1[Xj(t)]+ Covt−1 [Xj(t),X (t)]
Vart−1 [X (t)]

(
X (t)−Et−1[X (t)]

)
. (2.9)

For a motivation and comparison between the 3 distribution rules, we refer
the interested reader to Denuit and Robert (2021).

The withdrawal plan (2.5) needs to be defined, that is one needs to know
how to distribute the fixed withdrawals sj(t) over time. The only requirements
we have are the premium equivalence (2.1) and the fairness of the distribu-
tion rule in Definition 2.1. Keeping this as general as possible, we assume that
individual j pays the premium cj(0) to receive an average payoff of bj(t), for
t= 1, 2, . . . ,ω − xj. The individual might, for example, ask for an (on average)
constant payoff bj(t)≡ bj =Et−1[Wj(t) | j ∈ Lt] (see also Remark 2.5 for a dis-
cussion on the choice of bj(t)). In the following, we show how to define the
split between fixed withdrawal sj(t) and mortality credits to reach the desired
average payoff bj(t).

Remark 2.5 (Choice of bj(t) and adverse selection). Note that the individual
payoffs bj(t) allow for a lot of flexibility in the tontine designs as the payoff
is specific to each individual. If each individual may freely choose the aver-
age payoff bj(t), one should pay special care to adverse selection. For example
depending on their personal health state, people will be incited to ask for a
different payoff. In order to avoid adverse selection, it makes sense to choose
bj(t)≡ b(t) equal for everybody in the pool. There might be reasons to choose
this payoff to be increasing with time due to a higher liquidity need at old ages
(see, e.g., Weinert and Gründl, 2021) or the fact that individuals are risk-averse
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with respect to mortality risk (see, e.g., Milevsky and Salisbury, 2015; Chen
et al., 2021). An individual with logarithmic preferences optimally chooses
a constant payoff bj(t)≡ b(t) (see, for example, Corollary 3 and Lemma 4 in
Milevsky and Salisbury (2015) for a proof).

To determine the fixed withdrawals over time, let us have a closer look at
the expected payoff of a survivor j ∈ Lt:

Et−1[Wj(t) | j ∈ Lt]=Et−1
[
1j∈Lt · sj(t)+ 1j∈Lt−1 · βj

(
X (t)

) ∣∣ j ∈ Lt
]

= sj(t)+Et−1
[
βj
(
X (t)

)]
= sj(t)+ qxj+t−1e

∫ t
t−1 δsdscj(t− 1) . (2.10)

Therefore, if survivors want to receive on average a payoff bj(t) at time t, one
needs to set

sj(t)+ qxj+t−1e
∫ t
t−1 δsdscj(t− 1)= bj(t) . (2.11)

As the maximal age is ω, we can, for each individual j, iteratively solve the set
of equations (2.11) backwards in time to obtain:

sj(t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bj(t)
1+ qω−1

, for t= ω − xj

bj(t)− qxj+t−1

ω−xj∑
u=t+1

e−
∫ u
t δsdssj(u)

1+ qxj+t−1
, for t= ω − xj −1,ω − xj −2, . . . , 1.

(2.12)

The advantage of the decomposition into a fixed and a variable payoff by
the backwards iteration (2.12) is the fact that it depends on quantities related
to individual j only and is independent of the other individuals in the pool. For
a constant average payoff bj(t)≡ bj, one typically obtains mortality credits that
are increasing over time while the fixed payoff sj(t) is decreasing over time (see
the numerical example in Section 2.2).

2.B. Numerical example 1

Let us illustrate our payoff in a numerical example, considering a pool of size
n= 10 000 where half of the pool has initial age 65 and half of the pool has
initial age 85. For illustrative purposes, we choose the interest rate as δj = 0 and
an average payoff of bj(t)≡ bj = 1 for both cohorts. We use an illustrative data
set provided by the Germany Actuarial Society (disability tables DAV2008P)
that is available in the online appendix of this article.1 We apply the backward
iteration (2.12) to obtain the fixed part of the payoff sj(t) and use (2.4) to get
the account value cj(t) for t= 1, 2, . . . ,ω − xj. Figure 1 gives the total payoff
Wj(t) and the fixed part of the payoff sj(t) for an individual from the 65-year
cohort (left) and the 85-year cohort (right). For the payoff Wj(t), we plot one
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FIGURE 1. Evolution of fixed withdrawal sj(t) and total payoffWj(t) (one simulation path), young (left)
and old cohort (right). We use the conditional mean risk sharing rule for this illustrative example.
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FIGURE 2. Evolution of the personal account cj(t) with time, young (left) and old cohort (right).

random path. We observe that mortality credits are increasing over time and
are higher for the 85-year cohort. Figure 2 shows the individual account value
cj(t) for both cohorts. According to Theorem 2.6, this account value is equal
to the expected discounted value of future payoffs for individual j.
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2.C. Actuarial fairness

Equations (2.5) and (2.12), together with one of the sharing rules from
Examples 2.2–2.4, fully define the payoff of a tontine in a 2-state framework.
The first advantage of this scheme is that it allows to pool policyholders with
different mortality risks, for example from different age cohorts. The second
advantage is that it is actuarially fair in each period: at each time t, the expected
discounted future payoffs to any individual j equal this individual’s current
account value cj(t), see Theorem 2.6.

Theorem 2.6 (Actuarial fairness 2-state framework). The fairness condition
(2.6) implies that the current account value (2.3) is actuarially fair at each time
t= 0, 1, . . . ,ω − xj, that is:

cj(t)=Et

[ ω−xj∑
k=t+1

e−
∫ k
t δsdsWj(k)

]
. (2.13)

The conditional mean risk-sharing rule (2.7), the linear sharing rule (2.8) and the
linear regression rule (2.9) satisfy the fairness condition (2.6).

Proof. At time t= ω − xj, individual j reaches the maximum possible age. The
last year of life the individual only receives death benefits, and with (2.4) we get

cj(ω − xj)= 0. It implies that cj(ω − xj − 1)= e
− ∫ ω−xj

ω−xj−1 δsdssj(ω − xj). We prove
(2.13) by backwards induction. Assume that (2.13) holds for t. Using (2.3),
(2.5) and (2.6), we find for an individual j ∈ Lt−1:

Et−1

[ ω−xj∑
k=t

e−
∫ k
t−1 δsdsWj(k)

]
= e−

∫ t
t−1 δsds

(
Et−1

[
1j∈Lt · sj(t)+ βj

(
X (t)

)]
+ pxj+t−1 · cj(t)

)
= e−

∫ t
t−1 δsds

(
pxj+t−1 · sj(t)+Et−1

[
βj
(
X (t)

)]
+ pxj+t−1 · cj(t)

)
= e−

∫ t
t−1 δsds

(
pxj+t−1 · (sj(t)+ cj(t))

+ qxj+t−1 · e
∫ t
t−1 δsdscj(t− 1)

)
= cj(t− 1) .

This shows that (2.13) also holds for t− 1. Condition (2.6) is satisfied for the
conditional mean risk-sharing rule as for each individual j ∈ Lt−1:

Et−1
[
βj
(
X (t)

)]=Et−1

[
Et−1[Xj(t) |X (t)]

]
=Et−1[Xj(t)]= qxj+t−1 · e

∫ t
t−1 δsdscj(t− 1)
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as well as for the linear risk-sharing rule as

Et−1
[
βj
(
X (t)

)]=Et−1

[
qxj+t−1 · cj(t− 1)∑n

j=1 1j∈Lt−1 · qxj+t−1 · cj(t− 1)
X (t)

]

= qxj+t−1 · cj(t− 1)∑
j∈Lt−1

qxj+t−1 · cj(t− 1)
·Et−1

[
X (t)

]
= qxj+t−1 · e

∫ t
t−1 δsdscj(t− 1) ,

and the linear regression rule:

Et−1
[
βj
(
X (t)

)]=Et−1

[
Et−1[Xj(t)]+ Covt−1 [Xj(t),X (t)]

Vart−1 [X (t)]

(
X (t)−Et−1[X (t)]

)]

=Et−1[Xj(t)]= qxj+t−1 · e
∫ t
t−1 δsdscj(t− 1) .

Theorem 2.6 demonstrates that our tontine scheme allows to share mortal-
ity risk between heterogeneous individuals (i.e. individuals with different life
expectancies), see also Donnelly et al. (2014), Milevsky and Salisbury (2015),
Denuit (2019). The fact that the scheme is fair at each time point t gives a sec-
ond advantage: the design allows individuals to later join the tontine scheme at
an actuarially fair price. By design, joining the scheme does not affect the aver-
age benefits of the existing members. In contrast, in a closed tontine scheme,
the number of pool members is decreasing over time, leading to an increase in
risk at old ages (see, e.g., Chen et al., 2019).

3. 3-STATE FRAMEWORK

In a second step, we extend the framework from the previous section to a
life-care tontine and consider a 3-state semi-Markov model where any indi-
vidual is either active (a), dependent (i) or dead (d). Initially, each individual is
assumed to be in state active. In Section 3.1, we introduce additional notation
for the 3-state model. We discuss the payoff of a life-care annuity in Section
3.2 before introducing our life-care tontine product together with the concept
of morbidity credits in Section 3.3.

3.A. Additional notation

For an xj-year old individual, let us define:

(a) tpaaxj : the t-period sojourn probability in active state.

(b) tpaixj : the t-period transition probability from state a to i. Return from
the dependent state to the active state is not possible.
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(c) 1padxj = q(a)xj and 1pidxj ; z = q(i)xj ; z: the annual death probabilities in state a
and i, respectively. It is semi-Markovian in the latter case, with z=
0, 1, 2 . . . the time already spent in dependency.

The individual’s remaining lifetime Tj is decomposed into:

Tj =T (a)
j +T (i)

j , (3.1)

where T (a)
j is the time spent in autonomy and T (i)

j is the time spent in depen-

dence or disability. We have P(T (i)
j = 0)> 0. Let us define the number of

individuals in the active and dependent state, respectively, at a future time t:

At :=
{
j ∈ Lt

∣∣T (a)
j > t

}
, (3.2)

It ; z :=
{
j ∈ Lt

∣∣T (a)
j ≤ t,Tj > t, z= t−T (a)

j

}
, (3.3)

It := ∪t−1
z=0It ; z = { j ∈ Lt

∣∣T (a)
j ≤ t,Tj > t

}= Lt \ At . (3.4)

Relating this to the notation above, this means that tpaaxj =E[1j∈At ],

tpaixj =E[1j∈It ], q(a)xj+t−1 =E[1j∈Dt∪At−1 ], q(i)xj+t−1 ; z =E[1j∈Dt∪It−1 ; z−1 ], and

piixj+t−1 ; z−1 =E[1j∈Lt∪It−1 ; z−1 ].

3.B. Life-care annuity

In this section, we introduce life-care annuities and base ourselves on the works
of, for example, Murtaugh et al. (2001), Spillman et al. (2003), Rickayzen
(2007), Brown and Warshawsky (2013), Shao et al. (2015) and Chen et al.
(2021). In contrast to the mutual insurance scheme discussed in this article,
in a life-care annuity, mortality and morbidity risks are taken by an insurance
provider. Each individual j pays the single premium cj(0) to buy an annuity
with a future payment stream of bj(t), t= 1, 2, . . . ,ω − xj. This annuity is sup-
plemented with an LTC cover that provides an annual amount of (αj − 1) · bj(t)
as long as people are dependent. αj > 1 is an individual-specific constant reflect-
ing an increased payoff in dependency. This additional LTC cover is an LTC
annuity where the risk is taken by the insurance company. Ignoring adminis-
tration and risk charges, the fair single premium cj(0) of the life-care annuity
is given by

cj(0)=
ω−xj∑
t=1

(
tpaixj e

− ∫ t0 δsdsαj · bj(t)+ tpaaxj e
− ∫ t0 δsdsbj(t)

)
. (3.5)
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3.C. Life-care tontine

Based on the tontine scheme introduced in Section 2, we present a life-care ton-
tine that on average provides the same payout as the life-care annuity from the
previous Section 3.2. In a life-care tontine, payments are adapted according to
the autonomy/dependence of an individual. We define by c(a)j (t) and c(i)j (t ; z)
the current account values of an active and dependent individual, respectively;
z indicates the time spent in dependency. Assuming that, at time 0, every indi-
vidual is autonomous, we set c(a)j (0)= cj(0). The main idea is that individuals
moving into the dependent state have a higher death probability than people
staying in active state. If mortality credits in a tontine scheme account for this
increase, the payments in dependency naturally increase. To define payments
in a life-care tontine for an individual j ∈ Lt−1, we modify the fairness condi-
tion (2.6) to distinguish between active ( j ∈ At−1) and dependent individuals
( j ∈ It−1 ; z), with z the time spent in dependency (in years):

Et−1
[
βj
(
X (t)

) ∣∣ j ∈ At−1
]= q(a)xj+t−1 · e

∫ t
t−1 δsdsc(a)j (t− 1) , (3.6)

Et−1
[
βj
(
X (t)

) ∣∣ j ∈ It−1 ; z
]= q(i)xj+t−1 ; z · e

∫ t
t−1 δsdsc(i)j (t− 1 ; z) , (3.7)

where from now on, Et := E[ · | Ft] is an expectation conditional on the
information Ft := σ (At,It; 0,It; 1, . . . ,It; t−1). With this design, we apply
Definition 2.1 to the 3-state framework. The increased death probability in
dependency (q(i)xj+t−1 ; z > q(a)xj+t−1) increases the share of mortality credits and
thus the overall payoff as soon as an individual moves from the active to the
dependent state.

Again, the cash-flows satisfy the premium equivalence (2.1). In a tontine,
the payoff to the pool (left hand side of (2.1)) is fixed, leaving the insurance
provider with no mortality nor morbidity risk. The payoffs to the pool mem-
bers Wj(t) are random and depend on the mortality and morbidity in the
pool.

3.C.1. Adjusting mortality credits to dependency
Mortality credits are now distributed according to the individual’s state (active,
dependent, dead) using the fairness condition (3.6) and (3.7). We aim for
an average payoff αj

(
T (a)

) · bj(t) in dependency, where αj(T (a)) is a constant
that depends on the time spent in the active state. In our notation, this
means that:

E[Wj(t) | j ∈ At]= bj(t) , (3.8)

E[Wj(t) | j ∈ It ; t−T (a) ]= αj
(
T (a)) · bj(t) , t≥T (a). (3.9)

To achieve the desired average payoff (3.8) and (3.9) in the active and depen-
dent state, respectively, we – as in Section 2 – decompose the payoff in a fixed
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and a variable part. The fixed part of individual j in the active and dependent
state is denoted by s(a)j (t) and s(i)j (t ; z), respectively. The pool observes time-t
withdrawalsWj(t). For an individual j ∈ Lt−1:

Wj(t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(a)j (t)+ βj

(
X (t)

)
, if j ∈ At

s(i)j (t ; z)+ βj
(
X (t)

)
, if j ∈ It ; z

βj
(
X (t)

)
, if j ∈ Dt.

(3.10)

Starting with an initial account value of c(a)j (0)= cj(0), the account for an active

individual j ∈ At−1 (t≤T (a), z≥ 1) evolves as in the 2-state framework, see
(2.3):

c(a)j (t)=

⎧⎪⎪⎨⎪⎪⎩
e
∫ t
t−1 δsdsc(a)j (t− 1)− s(a)j (t) , j ∈ At and t<T (a)

e
∫ t
t−1 δsdsc(a)j (t− 1)− s(i)j (t ; 0) , j ∈ It ; 0 and t=T (a)

0 , otherwise.

(3.11)

The state-dependent constant αj(T (a)) is chosen in a way that the product
is actuarially fair, that is, at the time T (a) that an individual moves into
dependency, the account value does not change:

c(i)j
(
T (a);0

)︸ ︷︷ ︸
increased payoff for t≥T (a) + 1

+ (αj(T (a))− 1)bj(T (a))︸ ︷︷ ︸
increased payoff at time T (a)

=ET (a)

[ ω−xj∑
k=T (a)+1

e−
∫ k
T(a)

δsdsWj(k)

∣∣∣∣∣ j ∈ IT (a);0

]
+ (αj(T (a))− 1)bj(T (a))

=ET (a)

[ ω−xj∑
k=T (a)+1

e−
∫ k
T(a)

δsdsWj(k)

∣∣∣∣∣ j ∈ AT (a)

]
= c(a)j

(
T (a)) . (3.12)

We choose the constants αj(T (a)) such that (3.12) is satisfied. In dependency
(t>T (a), j ∈ It−1), the account value evolves as follows:

c(i)j (t ; z)=
{
e
∫ t
t−1 δsdsc(i)j (t− 1 ; z− 1)− s(i)j (t ; z) , j ∈ It

0 , otherwise.
(3.13)

The way to determine the payoff decomposition is presented in Theorem 3.1.
Figure 3 gives a sample path for an active male person with an average pay-
off of bj(t)= 1 (left) and an individual that moves into dependency at time
T (a) = 15 (right). The first years after moving into dependency are typically
accompanied by a strong increase in mortality. In this case, the fixed part of
the payoff even turns negative. Looking at the total payoffWj(t) (dashed line)
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FIGURE 3. Evolution of fixed withdrawal s(a)j (t) and s(i)j (t ; t−T (a)) and total payoffWj(t) (one simulation

path), xj = 65,T (a) = ω − xj (left) and T (a) = 15 (right).

and its 95% confidence intervals (dotted line) in Figure 3, the slightly negative
fixed payoff does not seem to be an issue: The total payoff is rather stable over
time.

Theorem 3.1 (Choice of αj
(
T (a)

)
, s(a)j (t), s(i)j (t ; t−T (a))) Consider an annual

time grid t ∈N. An active individual (j ∈ At) receives the fixed payoff s(a)j (t)
determined via the backwards iteration:

s(a)j (t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bj(t)

1+ q(a)
ω−1

, for t= ω − xj

bj(t)− q(a)xj+t−1

ω−xj∑
u=t+1

e−
∫ u
t δsdss(a)j (u)

1+ q(a)xj+t−1

, for 1≤ t< ω − xj.

(3.14)

https://doi.org/10.1017/asb.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.6


578 P. HIEBER AND N. LUCAS

A dependent individual that spent t−T (a) years in dependency (j ∈ It ; t−T (a)),
receives for time t≥T (a) the fixed payoff

s(i)j
(
t ; t−T (a))= αj(T (a)) · s̃ (i)j (t ; t−T (a)) , (3.15)

where s̃ (i)j (t ; t−T (a)) is, for t≥T (a), determined via the backwards iteration:

s̃ (i)j (t ; t−T (a))=⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bj(t)

1+ q(i)
ω−1;t−T (a)−1

, for t= ω − xj

bj(t)− q(i)
xj+t−1;t−T (a)−1

ω−xj∑
u=t+1

e−
∫ u
t δsds s̃ (i)j (u;u−T (a))

1+ q(i)
xj+t−1;t−T (a)−1

, for T (a) ≤ t< ω − xj.

(3.16)

The factor αj(T (a)) that increases payments in dependency is determined via:

αj
(
T (a))=

ω−xj∑
u=t+1

e−
∫ u
t δsdss(a)j (u)+ bj(t)

ω−xj∑
u=t+1

e−
∫ u
t δsds s̃ (i)j (u;u−T (a))+ bj(t)

. (3.17)

Proof. See Appendix A.

Figure 4 presents the function αj(T (a)) in our data set, the table DAV2008P
provided by the German Actuarial Society, see also the online appendix for
a detailed description. If αj(T (a))= 1, this would mean that an individual in
dependency would receive, on average, the same payoff as if he/she were active.
We want to stress that the higher payoff in dependency does not necessarily
lead to an increase in present value of the individual: this remains a tradeoff
between the increase in mortality rates and the increase in payoff. From our
data, we observe that a fair value of αj(T (a)) takes values between 2 and 4 which
implies a considerable increase of benefits in dependency, that is a dependent
individual may receive a 2-4 times higher payoff than an active individual. The
increase strongly depends on the time T (a) the person moves into dependency.
If we want to fix the increase in dependency, say to αj(T (a))= αj as in the case
of the life-care annuity in Section 3.B, we need to share the corresponding
loss/gain that appears if somebody moves into dependency, see the following
section.
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FIGURE 4. Adjustment constant αj(T (a)) for an xj = 65 year old as a function of the time in the active state
T (a) (if T (i) > 0).

3.C.2. A priori fixation of αj(T (a))
As a next step, we want to fix the payoff in dependency with a predetermined
increase in the dependent state to αj. In other words, we want to smooth
αj
(
T (a)

)
from the previous section (see Figure 4). A gain/deficit from this payoff

adjustment is shared within the pool by so-called morbidity credits. Formally,
denote as

Yj(t) := 1j∈It ; 0

((
c(a)j (t)− c(i)j (t ; 0)

)+ (1− αj
)
bj(t)

)
the morbidity credits for individual j. Morbidity credits are needed to adjust
the benefits of individuals that have moved to the dependent state in (t− 1, t]
and are still alive at time t (that is an individual j ∈ It ; 0). They contain two
parts:

(
1− αj

)
bj(t) increases the payoff at the first payoff date after moving into

dependency while
(
c(a)j (t)− c(i)j (t ; 0)

)
adjusts the later payoffs. The morbidity

credits are redistributed among the pool of individuals. Note that they can
be positive or negative, depending on whether the αj

(
T (a)

)
-value is higher or

lower than the “fair” increase determined in the previous section (for our data
set, see the values presented in Figure 4). At each time t= 1, 2, . . . ,T , we have
to distribute

Y (t) :=
∑
j∈At−1

Yj(t)

according to some predefined rule. We, similarly to the concept of mortality
credits in the previous section, introduce a function γj

(
Y (t)

)
that redistributes

the morbidity credits Y (t) within the pool, see Definition 3.2.

Definition 3.2 (Fair distribution rule: morbidity credits) If the share distributed
to individual j ∈ Lt−1 is denoted by γj

(
Y (t)

)
, a fair distribution rule has to satisfy

the following properties:

• Self-sufficiency property:
∑

j∈Lt−1
γj
(
Y (t)

)=Y (t).
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• Fairness property:

Et−1
[
γj
(
Y (t)

) ] = Et−1
[
1j∈It ; 0

]︸ ︷︷ ︸
probability to get dependent in (t− 1, t]

· (c(a)j (t)− c(i)j (t)+ (1− αj
)
bj(t)

)︸ ︷︷ ︸
required capital at time t

.

(3.18)

Again, we can, for example, choose a conditional mean risk-sharing, lin-
ear sharing or linear regression rule as a distribution rule γj(·). For an active
individual, we can rewrite (3.18) to obtain

Et−1
[
γj
(
Y (t)

) ∣∣ j ∈ At−1
]= paixj+t−1 · (c(a)j (t)− c(i)j (t)+ s(a)j (t)− s(i)j (t)

)
. (3.19)

If the individual is dependent or dead already at time t− 1, we obtain
Et−1[γj(Y (t)) | j ∈ It−1]=Et−1[γj(Y (t)) | j ∈ Dt−1]= 0, that is in a fair distri-
bution scheme dead or dependent people do (on average) not receive any
morbidity credits. In our tontine scheme, we thus redistribute the credits
among active individuals j ∈ At−1 only. In a later extension, it might make
sense to share the risk Y (t)−Et−1[Y (t)] among all survivors j ∈ Lt−1. The
pool observes time-t withdrawals Wj(t), decomposed into a fixed withdrawal,
mortality and morbidity credits. For an active individual j ∈ At−1:

Wj(t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(a)j (t)+ βj

(
X (t)

)+ γj
(
Y (t)

)
, if j ∈ At

s(i)j (t ; 0)+ βj
(
X (t)

)+ γj
(
Y (t)

)
, if j ∈ It ; 0

βj
(
X (t)

)+ γj
(
Y (t)

)
, if j ∈ Dt.

(3.20)

For a dependent individual j ∈ It−1 that moved into dependency at time
T (a) < t:

Wj(t)=
{
s(i)j (t ; t−T (a))+ βj

(
X (t)

)
, if j ∈ It

βj
(
X (t)

)
, if j ∈ Dt.

(3.21)

Figure 5 illustrates one simulation run in the 3-state framework, compar-
ing an active person (left) to an individual moving into dependency at time
T (a) = 15. The product is shown to be actuarially fair in Theorem 3.3.

Theorem 3.3 (Actuarial fairness 3-state framework). The fairness conditions
(3.6), (3.7) and (3.18) imply that the current account value is actuarially fair for
a dependent individual if, at each time t=T (a), . . . ,ω − xj:

c(i)j
(
t ; t−T (a))=Et

[ ω−xj∑
k=t+1

e−
∫ k
t δsdsWj(k)

∣∣∣∣∣ j ∈ It ; t−T (a)

]
. (3.22)
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Similarly, it is actuarially fair for an active individual as, at each time t=
0, 1, . . . ,ω − xj:

c(a)j (t)=Et

[ ω−xj∑
k=t+1

e−
∫ k
t δsdsWj(k)

∣∣∣∣∣ j ∈ At

]
. (3.23)

Proof. See Appendix B.

Note that at time t=T (a), we have that s(a)j (t)− s(i)j (t ; 0)= (1− αj)bj(t). As
in the 2-state framework, the payoff is split into a fixed part, mortality and
morbidity credits in a way that we obtain a desired average payoff. For an
active individual, this average payoff is bj(t), while for a dependent individual it
is increased to αj · bj(t), where αj > 1 is a predetermined constant. In the 3-state
framework, we need to separately look at active and dependent individuals,
as they have different time patterns of average mortality and morbidity cred-
its. Mortality credits are shared within the whole group. However, dependent
individuals receive a larger share of these credits due to their higher mortality
risk. Theorem 3.4 shows how to determine the fixed part of the payoff and the
account values for active and dependent individuals, respectively.
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Theorem 3.4 (Choice of s(a)j (t), s(i)j (t ; t−T (a))) Consider an annual time grid
t ∈N. For a dependent individual (j ∈ It), we follow Theorem 3.1 and use (3.16)
to obtain for each T (a) = 1, 2, . . . ,ω − xj − 1:

s(i)j
(
t ; t−T (a))= αj · s̃ (i)j (t ; t−T (a)), for t=T (a) + 1,T (a) + 2, . . . (3.24)

and the corresponding account value at time t≥T (a):

c(i)j
(
t ; t−T (a))= ω−xj∑

u=t+1

e−
∫ u
t δsdss(i)j

(
u;u−T (a)) . (3.25)

An active individual (j ∈ At) receives the fixed payoff s
(a)
j (t) determined via the

backwards iteration:

s(a)j (ω − xj)= bj(ω − xj)

1+ q(a)
ω−1

,

s(a)j (t)= 1

1+ q(a)xj+t−1

(
bj(t) · paixj+t−1

(
1− αj

)− q(a)xj+t−1

ω−xj∑
u=t+1

e−
∫ u
t δsdss(a)j (u)

+ bj(t) · αj + paixj+t−1

ω−xj∑
u=t+1

e−
∫ u
t δsds

(
s(a)j (u)+ s(i)j (u;u− t)

))
, (3.26)

for t= ω − xj − 1,ω − xj − 2, . . . , 1 .

At time T (a), we have that:

s(i)j (T (a);0)= s(a)j (T (a))+ (αj − 1)bj(T (a)) . (3.27)

Proof. See Appendix C.

As in the 2-state case, the computation of the fixed components of the payoff
s(a)j (t), s(i)j (t ; t−T (a)) can be carried out for each individual separately.

4. OUTLOOK, FURTHER RESEARCH AND PRACTICAL IMPLICATIONS

The paper relies on the sharing of mortality and morbidity risk. Several simpli-
fying assumptions were used, and they might be relaxed in future research. This
short section highlights several interesting research questions, some practical
implications, and possible extensions.

First, in the numerical examples, we assume that each individual’s mortal-
ity and morbidity risk is independent of the other pool members’ risk. This is
only true if there are no systematic risks affecting every pool member simul-
taneously, like a pandemic, improved medication or a general increase in life
expectancy. The existence of systematic morbidity risk is still controversially
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discussed (for example, Fries, 1980 detects a rectangulariation of morbidity,
while Fuino and Wagner, 2020 find that “the duration of LTC has not signif-
icantly changed in the period from 1995 to 2009”). It would be interesting to
analyze the life-care tontine in a fully calibrated mortality and morbidity risk
model that accounts for systematic risk factors (see, for example, the model
frameworks of Christiansen et al., 2014; Li et al., 2017; Sherris andWei, 2021).
For systematic mortality risk models applied to tontines and pooled annuities,
see, for example, Qiao and Sherris (2013), Chen et al. (2021). Our assumption
of independent remaining lifetimes can easily be relaxed as the separation in
fixed payoff, mortality and morbidity risk can be carried out separately for
each individual. In this derivation, there is no constraint on the dependence
structure between individual lifetimes.

In our framework, each individual receives the same investment return (see
also Donnelly et al., 2014 for a stochastic version of this setting). In partic-
ipating life insurance, however, this is not always the case as contracts with
different guaranteed rates are pooled (see, for example, Hansen andMiltersen,
2002; Hieber et al., 2019). It might be interesting to discuss an actuarially fair
risk sharing scheme where both mortality and financial risk are heterogeneous
between individual contracts.

Last, it might be worthwhile to explore more complex mutual insurance
schemes. Instead of purely investing in a mutual insurance scheme, it might
make sense to combine traditional retirement products and mutual insurance
(see, e.g., Chen et al., 2019; Chen et al., 2020; Weinert and Gründl, 2021).
For such schemes, the analysis of the interplay between heterogeneity and
income stability is an interesting path for future research (see also, for example,
Bernhardt and Qu, 2022; Denuit et al., 2022).

5. CONCLUSION

We designed a novel mutual insurance scheme called life-care tontine and dis-
cuss its potential use in an LTC cover perspective. The product relies on the
natural hedge inherent between mortality and morbidity risks. When moving
into dependency, individuals may need a higher payoff for a shorter remain-
ing lifetime, allowing to easily pool these risks with healthy individuals. As in
the case of a life-care annuity, the pooling of mortality and morbidity risks
reduces adverse selection costs and provides more people access to LTC insur-
ance. Further, the insurance provider is merely administrative, leading to a
significant reduction in risk and administration charges (see, e.g., Chen et al.,
2019). The drawback naturally is that the systematic risk lies with the policy-
holders. A major innovation is the development of a creative product design:
cashflows can be smoothed to fit the current and future needs of the market.
The product is actuarially fair at each point in time, allowing people to later join
the tontine scheme. The individual flexibility of our payoff design answers the
individual practical needs of the insureds. Technically, we rely on a backward
iteration used to deduce the smoothed cashflows patterns and the separation
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of cash-flows in a fixed withdrawal, mortality and morbidity credits. The flexi-
bility and fairness of the system results from the fact that this iteration can be
carried out individually for each pool member. The pooling scheme shares the
mortality and morbidity risks within the pool. An increase in pool size reduces
the volatility of the payoff but not the average payoff to each individual. The
average future payoffs are based on each individual’s risk, for example, the age
and health status. The 2-state and 3-state models are applied to real life data,
providing coherent simulations and illustrating the adequacy of our product
framework.
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APPENDIX A. PROOF OF THEOREM 3.1

The payoff s̃ (i)j (t ; t−T (a)) for a dependent individual j ∈ It receiving an aver-

age payoff bj(t) at times t≥T (a) is obtained using the 2-state semi-Markov
backwards iteration system (3.14), see also the similar iteration in Section 2,
Equation (2.12).

As we do not allow for additional payments in dependency, we want to
choose αj(T (a)) in (3.15) such that the present value of future payoffs does not
change if a person moves to dependency, that is (3.12) is satisfied. This implies,
for an active individual j ∈At−1:

c(a)j (t)=

⎧⎪⎪⎨⎪⎪⎩
e
∫ t
t−1 δsdsc(a)j (t− 1)− s(a)j (t) , if j ∈ At

c(i)j (t ; 0) , if j ∈ It

0 , if j ∈ Dt

=
⎧⎨⎩ e

∫ t
t−1 δsdsc(a)j (t− 1)− s(a)j (t) , if j ∈ Lt

0 , if j ∈ Dt.

As in Section 2, Equation (2.12), we can solve this system to obtain:

c(a)j (t)=
T∑

u=t+1

e
∫ u
t δsds s(a)j (u) . (A.1)

The backward iteration (3.14) determines the fixed part of the payoff s(a)j (t)
for an active individual, see also the 2-state framework in Section 2, Equation
(2.12).

Let us name c̃ (i)j (t ; t−T (a)) the reference amount, based on a predetermined

αj(T (a))-value of 1 and the corresponding fixed payments s̃ (i)j (t ; t−T (a)). We
have

s(i)j
(
t ; t−T (a))= αj

(
T (a)) · s̃ (i)j (t ; t−T (a)) .

It is deduced that

c(i)j
(
t ; t−T (a))= αj

(
T (a)) · c̃ (i)j (t ; t−T (a)) .
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We solve for α in (3.12). If we use (3.12), that is if we assume that the present
value of future payoffs is unchanged if a person moves into dependency, we
obtain

αj
(
T (a))= c(a)

(
T (a)

)+ bj(t)

c̃ (i)
(
T (a) ; 0

)+ bj(t)
=

ω−xj∑
u=t+1

e−
∫ u
t δsdss(a)j (u)+ bj(t)

ω−xj∑
u=t+1

e−
∫ u
t δsds s̃ (i)j (u;u−T (a))+ bj(t)

.

APPENDIX B. PROOF OF THEOREM 3.3

At time ω − xj, we have q
(i)
ω ; z = 1 and the cash flows only consist of mortality

credits. Fairness condition (3.7) is supposed to hold implying c(i)j (ω − xj ; z)=
0, ∀z. Assume that (3.22) holds for time t. For a dependent person j ∈ It−1,
with time spent in dependency z= t−T (a), we have:

Et−1

⎡⎣ω−xj∑
k=t

e−
∫ k
t−1 δsdsWj(k)

∣∣∣∣∣ j ∈ It−1 ; z−1

⎤⎦
= e−

∫ t
t−1 δsds

(
Et−1

[
Wj(t)+ 1j∈It · c(i)j (t ; z)

∣∣ j ∈ It−1 ; z−1
])

= e−
∫ t
t−1 δsds

(
piixj+t−1 ; z · s(i)j (t ; z)+Et−1

[
βj
(
X (t)

)]+ piixj+t−1 ; z · c(i)j (t ; z)
)

= e−
∫ t
t−1 δsds

(
piixj+t−1 ; z · s(i)j (t ; z)+ q(i)xj+t−1 · e

∫ t
t−1 δsdsc(i)j (t− 1 ; z− 1)

+ piixj+t−1 ; z · c(i)j (t ; z)
)

= c(i)j (t− 1 ; z− 1) .

This proves (3.22) for t− 1. For an active person j ∈ At−1, we also have that
c(a)j (ω − xj)= 0. Using (3.6–3.7), backward iteration enables to obtain:

Et−1

[ ω−xj∑
k=t

e−
∫ k
t−1 δsdsWj(k)

∣∣∣∣∣ j ∈ At−1

]

= e−
∫ t
t−1 δsdsEt−1

[
Wj(t)+ 1j∈At · c(a)j (t)+ 1j∈It · c(i)j (t ; 0)

∣∣ j ∈ At−1
]

= e−
∫ t
t−1 δsds

(
paaxj+t−1 · s(a)j (t)+ paixj+t−1 · s(i)j (t ; 0)+Et−1

[
βj
(
X (t)

)]
+Et−1

[
γj
(
Y (t)

)]+ paixj+t−1 · c(i)j (t ; 0)+ paaxj+t−1 · c(a)j (t)
)
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= e−
∫ t
t−1 δsds

(
paaxj+t−1 · s(a)j (t)+ paixj+t−1 · s(i)j (t ; 0)

+ q(a)xj+t−1c
(a)
j (t− 1)e−

∫ t
t−1 δsds

+ paixj+t−1

((
c(a)j (t)− c(i)j (t ; 0)

)+ (s(a)j (t)− s(i)j (t ; 0)
))

+ paixj+t−1 · c(i)j (t ; 0)+ paaxj+t−1 · c(a)j (t)
)

= c(a)j (t− 1) .

APPENDIX C. PROOF OF THEOREM 3.4

For an active person, we can compute the expected value of (3.20) to obtain:

E[Wj(t) | j ∈ At]=E
[
s(a)j (t)+ βj

(
X (t)

)+ γj
(
Y (t)

) ∣∣ j ∈ At
]

= saj (t)+ c(a)j (t− 1)e
∫ t
t−1 δsdsq(a)xj+t−1

+ paixj+t−1

((
c(a)j (t)− c(i)j (t ; 0)

)+ (1− αj
)
bj(t)

)
.

(C.1)

We use (3.16) to obtain s(i)j
(
t ; t−T (a)

)= αj · s̃ (i)j (t ; t−T (a)) for t=T (a) + 1,

T (a) + 2, ... and for all T (a). We have

c(i)j (t ; 0)=
ω−xj∑
u=t+1

e−
∫ u
t δsdss(i)j (u ; u− t). (C.2)

If survivors want on average an annual payoff of bj(t), we need to set

s(a)j (t)+ c(a)j (t− 1)e
∫ t
t−1 δsdsq(a)xj+t−1 + paixj+t−1

((
c(a)j (t)− c(i)j (t ; 0)

)
+ (1− αj

)
bj(t)

)
= bj(t) .

We can iteratively solve this set of equations backwards in time to obtain
(3.26). Equation (3.27) takes into account the immediate increase of benefits
at the first payment date after moving into dependency.
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