IDEMPOTENT MULTIPLIERS OF $H^{1}(T)$

I. KLEMES

1. Introduction. Let as usual $\mathbf{T}=\mathbf{R} / 2 \pi \mathbf{Z}$ be the circle, and H^{1} the subspace of $L^{1}(\mathbf{T})$ of all f such that $\hat{f}(n)=0$ for all integers $n<0$. The norm

$$
\|f\|_{1}=\int_{0}^{2 \pi}|f(t)| d t / 2 \pi, \quad f \in L^{1}
$$

restricted to H^{1}, makes it a Banach space. By a multiplier of H^{1} we mean a bounded linear operator $m: H^{1} \rightarrow H^{1}$ such that there is a sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ in \mathbf{C} with

$$
\widehat{m(f)}(n)=c_{n} \hat{f}(n) \text { for all } n \geqq 0 \text { and all } f \in H^{1}
$$

We use the notation

$$
m * f=m(f) \quad \text { and } \quad \hat{m}(n)=c_{n} .
$$

m is called idempotent if

$$
\hat{m}(n) \in\{0,1\} \quad \text { for all } n \geqq 0
$$

A measure $\mu \in M(\mathbf{T})$ is called idempotent if

$$
\hat{\mu}(n) \in\{0,1\} \quad \text { for all } n \in \mathbf{Z}
$$

Recall that the mapping $f \mapsto \mu * f=$ convolution of μ and $f, f \in L^{1}$, defines a multiplier, which restricts to a multiplier m of H^{1} such that

$$
\hat{m}(n)=\hat{\mu}(n), \quad n \geqq 0 .
$$

The support (abbreviated supp) of a sequence will mean the set of all indices at which the sequence is not 0 . For idempotent measures we have the following characterization.
1.1 ([3]). A set $E \subset \mathbf{Z}$ is of the form
$E=\operatorname{supp} \hat{\mu}$
for some idempotent $\mu \in M(\mathbf{T}) \Leftrightarrow$

$$
\begin{equation*}
E=\left(\bigcup_{i=1}^{N} a_{i} \mathbf{Z}+b_{i}\right) / F \tag{1}
\end{equation*}
$$

for some $N \in \mathbf{N}, a_{i}, b_{i} \in \mathbf{Z}, 1 \leqq i \leqq N$, and some finite set $F \subset \mathbf{Z}$.

Received September 10, 1986.

In this paper we will characterize the sets $E \subset\{n \in \mathbf{Z}: n \geqq 0\}$ of the form

$$
E=\operatorname{supp} \hat{m}
$$

for some idempotent multiplier m of H^{1}. We first note that the collection of such sets is closed under finite intersection and complementation in $\{n \geqq 0\}$, and that it includes the intersections of $\{n \geqq 0\}$ with all sets of the form (1) above. It also includes lacunary sets: $E=\left\{n_{1}<n_{2}<\ldots\right\} \subset \mathbf{N}$ is called lacunary if there exists $q \in \mathbf{R}$, $q>1$ such that

$$
n_{k+1} \geqq q n_{k} \quad \text { for all } k \geqq 1
$$

This is a consequence of Paley's inequality [8]:

$$
\left(\sum_{h=1}^{\infty}\left|\hat{f}\left(n_{k}\right)\right|^{2}\right)^{1 / 2} \leqq c(q)\|f\|_{1}, \quad f \in H^{1}
$$

This means that there is a bounded linear operator $m: H^{1} \rightarrow H^{2} \subset H^{1}$ such that

$$
\widehat{m(f)}=\chi_{E} \hat{f} \quad \text { for all } f \in H^{\prime}
$$

These remarks prove the easy direction (\Leftarrow) of the following conjecture of A. Pełczyński.
1.2 A set $E \subset\{n \in \mathbf{Z}: n \geqq 0\}$ is of the form

$$
E=\operatorname{supp} \hat{m}
$$

for some idempotent multiplier m of $H^{1} \Leftrightarrow E$ is a finite Boolean combination of lacunary sets, finite sets, and sets of the form

$$
(a \mathbf{Z}+b) \cap\{n \in \mathbf{Z}: n \geqq 0\}
$$

(i.e., arithmetic sequences).
2. Proof of $\mathbf{1 . 2}(\Rightarrow)$. Our first step is to remove the arithmetic sequences from supp \hat{m} using weak* limits. This idea has appeared before for measures; see for instance [4] and [2, Chapter 1]. We prove:
2.1 For some idempotent measure μ, the multiplier m_{0} defined by

$$
\begin{equation*}
m_{0} * f=m * f-\mu * f, \quad f \in H^{1} \tag{2}
\end{equation*}
$$

has the gap property: for all $y \geqq 0$ there is $x \geqq 0$ such that

$$
[x, x+y] \cap \operatorname{supp} \hat{m}_{0}=\emptyset
$$

Proof of 2.1. For each $n \geqq 0$ let K_{n} denote the Fejér kernel

$$
K_{n}(t)=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) e^{i j t}, \quad t \in \mathbf{T} .
$$

Recall that $K_{n} \geqq 0$ and

$$
\left\|K_{n}\right\|_{1}=\int_{0}^{2 \pi} K_{n}(t) d t / 2 \pi=1
$$

for all n. For $n \in \mathbf{Z}$ let γ_{n} denote the function

$$
\gamma_{n}(t)=e^{i n t}
$$

Since the functions $\gamma_{n} K_{n}$ are in H^{1}, we may define functions g_{n} by

$$
g_{n}=\gamma_{-n} m *\left(\gamma_{n} K_{n}\right), \quad n=0,1, \ldots
$$

Then

$$
\left\|g_{n}\right\|_{1} \leqq\|m\|\left\|K_{n}\right\|_{1}=\|m\| \quad \text { for all } n
$$

hence the sequence $\left\{g_{n} d t / 2 \pi\right\}_{n=0}^{\infty}$ has a weak* limit point ν in $M(\mathbf{T})$. This implies that, for some increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ and for all $l \in \mathbf{Z}$,

$$
\lim _{k \rightarrow \infty} \hat{g}_{n_{k}}(l)=\hat{\nu}(l)
$$

Note that for $|l| \leqq n$ we have

$$
\hat{g}_{n}(l)=\hat{K}_{n}(l) \hat{m}(n+l)=\left(1-\frac{|l|}{n+1}\right) \hat{m}(n+l) .
$$

Now for fixed $l \in \mathbf{Z}$ we eventually have $|l| \leqq n_{k}$ so that

$$
\lim _{k \rightarrow \infty} \hat{g}_{n_{k}}(l)=\lim _{k \rightarrow \infty}\left(1-\frac{|l|}{n_{k}+1}\right) \hat{m}\left(n_{k}+l\right)=\lim _{k \rightarrow \infty} \hat{m}\left(n_{k}+l\right) .
$$

Since $\hat{m}\left(n_{k}+l\right) \in\{0,1\}$, this limit is 0 or 1 ; hence ν is idempotent. By 1.1, there exist $p \geqq 1$ and $l_{0} \geqq 0$ such that

$$
\hat{\nu}(l+p)=\hat{\nu}(l), \quad|l| \geqq l_{0} .
$$

Consider the remainders of $\left\{n_{k}\right\}$ modulo p. There must be some r, $0 \leqq r \leqq p-1$ such that $n_{k} \equiv r \bmod p$ for infinitely many n_{k}. Defining

$$
d \mu(t)=\gamma_{r} d \nu(t)
$$

satisfies 2.1, as will be verified:
Clearly

$$
\hat{\mu}(n)=\hat{\nu}(n-r) \quad \text { for all } n \in \mathbf{Z}
$$

and μ is idempotent. Let $y \geqq 0$ be given. For fixed $l, \hat{\nu}(l)=\hat{m}\left(n_{k}+l\right)$ eventually, and thus for all sufficiently large k we have

$$
\begin{equation*}
\hat{\nu}(l)=\hat{m}\left(n_{k}+l\right), \quad l=l_{0}, l_{0}+1, \ldots, l_{0}+y \tag{3}
\end{equation*}
$$

By the definition of r, there is also some $n_{k} \equiv r \bmod p, n_{k} \geqq r$ such that (3) holds. For this n_{k} we also have

$$
\hat{\nu}(l)=\hat{\nu}\left(l+n_{k}-r\right)=\hat{\mu}\left(n_{k}+l\right), \quad \text { for all } l \geqq l_{0} .
$$

Hence

$$
\hat{m}_{0}(n)=\hat{m}(n)-\hat{\mu}(n)=0 \quad \text { for all } n \in\left[n_{k}+l_{0}, n_{k}+l_{0}+y\right],
$$

so we can take $x=n_{k}+l_{0}$.
Now observe that by (2),

$$
\text { supp } \hat{m}=\left(\operatorname{supp} \hat{m}_{0}\right) \Delta(\{n \geqq 0\} \cap \operatorname{supp} \hat{\mu})
$$

where Δ denotes symmetric difference. So, to prove $1.2(\Rightarrow)$, it remains to show supp \hat{m}_{0} is a finite union of lacunary and finite sets. This follows by taking $m_{1}=m_{0}$ in 2.2 below.
2.2 Suppose the multiplier $m_{1}: H^{1} \rightarrow H^{1}$ has the gap property (see 2.1) and

$$
\left|\hat{m}_{1}(n)\right| \geqq 1 \text { for all } n \in \operatorname{supp} \hat{m}_{1} .
$$

Then supp \hat{m}_{1} is a finite union of lacunary and finite sets.
We need lower and upper bounds on certain 1-norms:
2.3 ([7]). There exists $c>0$ such that for any trigonometric polynomial f on \mathbf{T},

$$
\|f\|_{1} \geqq c \sum_{k=1}^{K}\left|\hat{f}\left(n_{k}\right)\right| / k
$$

where $\left\{n_{k}\right\}_{k=1}^{K}$ are the elements of supp \hat{f} in either strictly increasing or strictly decreasing order.
2.4 Suppose f is a trigonometric polynomial of the form

$$
f(t)=\sum_{k=1}^{N} c_{k} e^{i x_{k} t} K_{y-1}(t)
$$

where $y \in \mathbf{N}, K_{n}$ is the Fejér kernel, $\left\{c_{k}\right\}_{k=1}^{N} \subset \mathbf{C}$, and the integers $\left\{x_{k}\right\}_{k=1}^{N}$ satisfy

$$
x_{k+1} \geqq x_{k}+y, \quad k=1,2, \ldots, N-1
$$

Then

$$
\|f\|_{1} \leqq\left(\sum_{k=1}^{N}\left|c_{k}\right|^{2}\right)^{1 / 2}
$$

Proof of 2.4. Since $K_{y-1} \geqq 0$, the Cauchy-Schwartz inequality gives

$$
\begin{aligned}
& \left(\int_{0}^{2 \pi}\left|\sum_{k=1}^{N} c_{k} e^{i x_{k} t} K_{y-1}(t)\right| d t / 2 \pi\right)^{2} \\
& =\left(\int_{0}^{2 \pi}\left|\sum_{k=1}^{N} c_{k} e^{i x_{k} t}\right| \sqrt{K_{y-1}(t)} \sqrt{K_{y-1}(t)} d t / 2 \pi\right)^{2} \\
& \leqq \int_{0}^{2 \pi}\left(\sum_{k=1}^{N} c_{k} e^{i x_{k} t}\right)\left(\sum_{l=1}^{N} \bar{c}_{l} e^{-i x_{l} t}\right) K_{y-1}(t) d t / 2 \pi
\end{aligned}
$$

Since

$$
K_{y-1}(t)=\sum_{j=-y+1}^{y-1}\left(1-\frac{|j|}{y}\right) e^{i j t}
$$

and since $|j| \leqq y-1, \quad x_{k+1}-x_{k} \geqq y$ imply

$$
x_{k}-x_{l}+j=0 \Leftrightarrow k=l, j=0
$$

we see that the last integral equals

$$
\sum_{k=1}^{N}\left|c_{k}\right|^{2} .
$$

We will only make use of the case $c_{1}=c_{2} \ldots=c_{N}=1$ of 2.4 .
Proof of 2.2.
Lemma. There exists $c>0$ such that for any multiplier m: $H^{1} \rightarrow H^{1}$ satisfying

$$
|\hat{m}(n)| \geqq 1 \quad \text { for all } n \in \operatorname{supp} \hat{m},
$$

and for any pair of adjacent intervals in \mathbf{N} of the form

$$
I=[x, x+y), \quad I^{\prime}=[x+y, x+2 y)
$$

where $x, y \in \mathbf{N}, x \geqq y$, the cardinalities

$$
A=|I \cap \operatorname{supp} \hat{m}|, \quad A^{\prime}=\left|I^{\prime} \cap \operatorname{supp} \hat{m}\right|
$$

satisfy
(4) $\left|\log \left(\frac{1+A}{1+A^{\prime}}\right)\right| \leqq c\|m\|$.

Proof of the lemma. Since $x \geqq y$, the function V defined by

$$
V(t)=\left(e^{i x t}+e^{i(x+y) t}\right) K_{y-1}(t), \quad t \in \mathbf{T}
$$

is in H^{1}. Also $\|V\|_{1} \leqq 2$ and

$$
\hat{V}(j)=\left\{\begin{array}{l}
1 \text { for } j \in[x, x+y] \\
0 \text { for } j \in[x+2 y, \infty)
\end{array}\right.
$$

Therefore

$$
\begin{align*}
& |\widehat{m * V}(j)|=|\hat{m}(j) \| \hat{V}(j)| \tag{5}\\
& =\left\{\begin{array}{cl}
|\hat{m}(j)| \geqq & \text { for } j \in[x, x+y] \cap \operatorname{supp} \hat{m} \\
0 & \text { for } j \in[x+2 y, \infty) .
\end{array}\right.
\end{align*}
$$

To apply 2.3 to $m * V$, write

$$
\widehat{\sup } \widehat{m * V}=\left\{n_{1}>n_{2}>\ldots>n_{K}\right\}
$$

and observe that $n_{k} \in[x, x+y)$ for $A^{\prime}<k \leqq A^{\prime}+A$. Then 2.3 gives

$$
\begin{aligned}
\|m * V\|_{1} & \geqq c \sum_{k=1}^{K}\left|\overparen{m * V}\left(n_{k}\right)\right| / k \\
& \geqq c \sum_{k=A^{\prime}+1}^{A^{\prime}+A}\left|\widehat{m * V}\left(n_{k}\right)\right| / k \\
& =c \sum_{k=A^{\prime}+1}^{A^{\prime}+A}\left|\hat{m}\left(n_{k}\right)\right| / k \quad(\text { by }(5)) \\
& \geqq c \sum_{k=A^{\prime}+1}^{A^{\prime}+A} 1 / k \\
& \geqq c \log \left(\frac{1+A^{\prime}+A}{1+A^{\prime}}\right) \\
& \geqq c \log \left(\frac{1+A}{1+A^{\prime}}\right)
\end{aligned}
$$

Therefore

$$
\|m\| \geqq\|m * V\|_{1} /\|V\|_{1} \geqq(c / 2) \log \left(\frac{1+A}{1+A^{\prime}}\right) .
$$

For the case $A<A^{\prime}$ there is a similar argument using, instead of V, the function $W \in H^{1}$ defined by

$$
W(t)=\left(e^{i(x+y) t}+e^{i(x+2 y) t}\right) K_{y-1}(t), \quad t \in \mathbf{T} .
$$

The only change is that we enumerate supp $\widehat{m * W}$ from left to right;

$$
\operatorname{supp} \widehat{m * W}=\left\{n_{1}<n_{2}<\ldots<n_{K}\right\}
$$

when applying 2.3.

Now, from the conclusion (4) of the lemma, we can deduce that there is an integer $p \geqq 2$, depending only on $\|m\|$, such that
(6) $\frac{1}{p} A^{\prime} \leqq A \leqq p A^{\prime} \quad$ provided $\max \left(A, A^{\prime}\right) \geqq p$.

We let p be this constant for the multiplier $m=m_{1}$ in what follows. The conclusion of 2.2 is clearly equivalent to the estimate
(7) $\sup _{y \in \mathbb{N}}\left|[3 y, 6 y) \cap \operatorname{supp} \hat{m}_{1}\right|<\infty$.

To obtain (7), fix, if possible, some $y \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|[3 y, 6 y) \cap \operatorname{supp} \hat{m}_{1}\right| \geqq 3 p \tag{8}
\end{equation*}
$$

and let

$$
S=\left|[3 y, 6 y) \cap \operatorname{supp} \hat{m}_{1}\right| .
$$

Define $N \in \mathbf{N}$ by

$$
3 p^{N} \leqq S<3 p^{N+1}
$$

We claim that there is a sequence

$$
\left\{x_{k}\right\}_{k=1}^{N} \subset \mathbf{N}, \quad \text { with } 3 y \leqq x_{1}<x_{2}<\ldots<x_{N}
$$

satisfying

$$
\begin{align*}
& x_{k+1} \geqq x_{k}+3 y, \quad k=1,2, \ldots, N-1, \quad \text { and } \tag{9}\\
& \left|\left[x_{k}, x_{k}+3 y\right) \cap \operatorname{supp} \hat{m}_{1}\right|=3 p^{N-k+1}, \quad k=1,2, \ldots, N . \tag{10}
\end{align*}
$$

To prove this, let x_{1} be the first integer $\geqq 3 y$ satisfying (10) with $k=1$. It clearly exists, since on the one hand, by the gap property, there exists $x \geqq 3 y$ with

$$
\left|[x, x+3 y) \cap \operatorname{supp} \hat{m}_{1}\right|=0
$$

and on the other hand

$$
|[3 y, 6 y) \cap \operatorname{supp} \hat{m}|=S \geqq 3 p^{N}
$$

by definition. Inductively, suppose that $1 \leqq n \leqq N-1$ and that $x_{1}<\ldots<x_{n}$ have been defined and satisfy (9) for $1 \leqq k \leqq n-1$ and (10) for $1 \leqq k \leqq n$. Consider the adjacent intervals

$$
I=\left[x_{n}, x_{n}+3 y\right), \quad I^{\prime}=\left[x_{n}+3 y, x_{n}+6 y\right),
$$

and note that by (10) we have

$$
\mid I \cap \text { supp } \hat{m}_{1} \mid=3 p^{N-n+1} \geqq 3 p^{2} \geqq p
$$

Thus (6) applies and gives

$$
\begin{align*}
\left|I^{\prime} \cap \operatorname{supp} \hat{m}_{1}\right| & =A^{\prime} \geqq \frac{1}{p} A=\frac{1}{p}\left|I \cap \operatorname{supp} \hat{m}_{1}\right| \tag{11}\\
& =3 p^{N-(n+1)+1} .
\end{align*}
$$

So define x_{n+1} to be the first integer $\geqq x_{n}+3 y$ satisfying (10) with $k=n+1$. The gap property and (11) again show that x_{n+1} exists, and, by definition we now have (9) for $1 \leqq k \leqq n$ and (10) for $1 \leqq k \leqq n+1$. By induction, the claim is true.

One more property of the $\left\{x_{k}\right\}$ will be needed. Fix $k, 1 \leqq k \leqq N$, and consider the 3 adjacent intervals

$$
\begin{aligned}
& I=\left[x_{k}, x_{k}+y\right), \quad I^{\prime}=\left[x_{k}+y, x_{k}+2 y\right) \\
& I^{\prime \prime}=\left[x_{k}+2 y, x_{k}+3 y\right),
\end{aligned}
$$

whose union is $\left[x_{k}, x_{k}+3 y\right.$). By (10), we have

$$
A+A^{\prime}+A^{\prime \prime}=3 p^{N-k+1}
$$

Suppose $A^{\prime}<p^{N-k+1}$. Then either

$$
A \geqq p^{N-k+1} \quad \text { or } \quad A^{\prime \prime} \geqq p^{N-k+1},
$$

so by (6) applied to either the pair A, A^{\prime} or the pair $A^{\prime}, A^{\prime \prime}$ we get

$$
A^{\prime} \geqq \frac{1}{p} p^{N-k+1}=p^{N-k}
$$

Therefore
(12) $\left|\left[x_{k}+y, x_{k}+2 y\right) \cap \operatorname{supp} \hat{m}_{1}\right| \geqq p^{N-k}, \quad k=1,2, \ldots, N$.

To finish the proof of (7), define $f \in H^{1}$ by

$$
f(t)=\sum_{l=1}^{N}\left(e^{i\left(x_{l}+y\right) t}+e^{i\left(x_{l}+2 y\right) t}\right) K_{y-1}(t), \quad t \in \mathbf{T} .
$$

By (9) and 2.4 , we have $\|f\|_{1} \leqq \sqrt{2 N}$. As in the proof of the lemma, write

$$
\begin{aligned}
\operatorname{supp} \widehat{m_{1} * f} & =\left\{n_{1}>n_{2}>\ldots>n_{K}\right\} \\
& =\bigcup_{I=1}^{N}\left(x_{l}, x_{l}+3 y\right) \cap \operatorname{supp} \hat{m}_{1}
\end{aligned}
$$

and observe that if $n_{k} \in\left(x_{l}, x_{l}+3 y\right)$ then

$$
k \leqq \sum_{n=1}^{N}\left|\left(x_{n}, x_{n}+3 y\right) \cap \operatorname{supp} \hat{m}_{1}\right|
$$

$$
\begin{aligned}
& \leqq \sum_{n=1}^{N} 3 p^{N-n+1} \quad(\text { by }(10)) \\
& \leqq 3 p^{N-1+2} \quad(\text { since } p \geqq 2) .
\end{aligned}
$$

So 2.3 gives

$$
\begin{aligned}
\left\|m_{1} * f\right\|_{1} & \geqq c \sum_{k=1}^{K} \mid \widehat{m_{1} * f\left(n_{k}\right) \mid / k} \\
& \geqq c \sum_{l=1}^{N} \sum_{n_{k} \in\left[x_{l}+y, x_{l}+2 y^{\prime}\right)} \mid \widehat{m_{1} * f\left(n_{k}\right) \mid / k} \\
& =c \sum_{l=1}^{N} \sum_{n_{k} \in\left[x_{l}+y, x_{l}+2 y\right)}\left|\hat{m}_{1}\left(n_{k}\right)\right| / k
\end{aligned}
$$

(since $\hat{f}=1$ on $\left[x_{l}+y, x_{l}+2 y\right]$)

$$
\geqq c \sum_{l=1}^{N}\left|\left[x_{l}+y, x_{l}+2 y\right) \cap \operatorname{supp} \hat{m}_{l}\right| / 3 p^{N-l+2}
$$

$\left(\left|\hat{m}_{1}\left(n_{k}\right)\right| \geqq 1, k \leqq 3 p^{N-1+2}\right)$

$$
\begin{aligned}
& \geqq c \sum_{l=1}^{N} p^{N-1 / 3 p^{N-l+2} \quad(\text { by }(12))} \\
& =c N / 3 p^{2}
\end{aligned}
$$

Therefore
(13) $\left\|m_{1}\right\| \geqq\left\|m_{1} * f\right\|_{1} /\|f\|_{1} \geqq\left(c N / 3 p^{2}\right) / \sqrt{2 N}$

$$
=\left(c / 3 \sqrt{2} p^{2}\right) \sqrt{N} \geqq c(p)(\log S)^{1 / 2}
$$

In particular, S is bounded independently of y and this proves (7). Thus the proofs of 2.2 and $1.2(\Rightarrow)$ are complete.

The sequence (10) was motivated to an extent by a certain "geometric gap theorem" for measures, and by its proof [1, Theorem 6]. Since the average length of a gap in $\left[x_{k}, x_{k}+3 y\right.$) is $\approx 3 y / 3 p^{N-k+1}=y p^{k-N-1}$, the gaps grow geometrically in this sense.

3. Some refinements. Let

$$
\bar{H}_{0}^{1}=\left\{\bar{f}: f \in H^{1}, \hat{f}(0)=0\right\}
$$

The result 1.2 also holds for idempotent multipliers

$$
m: H^{1} \rightarrow L^{1} / \bar{H}_{0}^{1} .
$$

In fact all the steps in the proof of $1.2(\Rightarrow)$ can be adapted to this weaker assumption on m : In the proof of 2.1 , change g_{n} to

$$
g_{n}=\gamma_{-n}\left(m *\left(\gamma_{n} K_{n}\right)+h_{n}\right),
$$

where $h_{n} \in \bar{H}_{0}^{1}$ is such that

$$
\left\|m *\left(\gamma_{n} K_{n}\right)+h_{n}\right\|_{1} \leqq 1+\|m\|_{\left(H^{1}, L^{\prime} / \bar{I}_{0}^{\prime}\right)} .
$$

This does not affect μ since for each $l \in \mathbf{Z}$,

$$
\lim _{n \rightarrow \infty} \widehat{\gamma_{-n} h_{n}}(l)=0
$$

In the lemma and the proof of 2.2 , we only need to check that the lower bounds for $\|m * V\|_{1},\|m * W\|_{1}$, and $\left\|m_{1} * f\right\|_{1}$ also hold for the norm $\left\|\|_{L^{1} / \bar{H}_{0}^{\prime}}\right.$. This is clear for $m * V$ and $m_{1} * f$, since the $\left\{n_{k}\right\}$ were taken from right to left when applying 2.3. For $\|m * W\|_{L^{\prime} / \bar{H}_{0}^{1}}$ we use a well-known trick: for any $h \in \bar{H}_{0}^{\text {l }}$ we can write

$$
m * W=V_{0} *(m * W+h)
$$

where

$$
V_{0}=\left(\gamma_{x}+\gamma_{x+y}+\gamma_{x+2 y}+\gamma_{x+3 y}\right) K_{y-1} .
$$

Therefore,

$$
\|m * W\|_{1} \leqq\left\|V_{0}\right\|_{1}\|m * W\|_{L^{1} / \bar{H}_{0}^{\prime}} \leqq 4\|m * W\|_{L^{\prime} / \bar{H}_{0}^{\prime}} .
$$

It may be of interest to remark that 1.1 has a similar refinement: the so-called semi-idempotent theorem [4]. One way to state this theorem is that if

$$
m: L^{1} \rightarrow L^{1} / \bar{H}_{0}^{1}
$$

is an idempotent multiplier, then

$$
\text { supp } \hat{m}=\{n \geqq 0\} \cap E
$$

where E is of the form (1).
Our final point is this: To obtain a sequence with properties similar to (9), (10) and (12), one does not really need the lemma or (6). A purely combinatorial argument exists [6] for the following fact:

Given any $E \subset \mathbf{N}$, and any pair of intervals of the form

$$
I=[x, x+y), \quad I^{*}=\left[x^{*}, x^{*}+y\right)
$$

where $x, x^{*}, y \in \mathbf{N}, x \geqq 2 y, x^{*} \geqq x+y$, let

$$
A=|I \cap E|, \quad A^{*}=\left|I^{*} \cap E\right|,
$$

and suppose $A>A^{*}$. Then there is a sequence of integers $x-y \leqq x_{1}<$ $x_{2}<\ldots<x_{N} \leqq x^{*}-y$ such that:

$$
\begin{aligned}
& x_{l+1} \geqq x_{l}+y \quad l=1,2, \ldots, N-1, \\
& N \leqq c_{1} \log \left(\frac{1+A}{1+A^{*}}\right)+c_{2},
\end{aligned}
$$

and such that, if

$$
\begin{aligned}
& F=\bigcup_{l=1}^{N}\left(x_{l}-y, x_{l}+2 y\right) \text { and } \\
& F \cap E=\left\{n_{1}>n_{2}>\ldots>n_{K}\right\},
\end{aligned}
$$

then

$$
\sum_{l=1}^{N} \sum_{n_{k} \in\left[x_{l}, x_{l}+y\right)} 1 / k \geqq c_{3} \log \left(\frac{1+A}{1+A^{*}}\right)+c_{4}
$$

where $c_{1}>0, c_{3}>0, c_{2}, c_{4}$ are absolute constants.
Applying this with $E=\operatorname{supp} \hat{m}$, where the multiplier $m: H^{1} \rightarrow H^{1}$ satisfies $|\hat{m}(n)| \geqq 1, n \in \operatorname{supp} \hat{m}$, and then considering a test function

$$
f=\sum_{l=1}^{N}\left(\gamma_{x_{l}}+\gamma_{x_{l}+y}\right) K_{y-1}
$$

as before, one gets
$(13)^{*}\|m\| \geqq c_{5}\left(\log \left(\frac{1+A}{1+A^{*}}\right)\right)^{1 / 2}$.
If m has the gap property, one can choose I^{*} such that $A^{*}=0$ and thus retrieve (13), with the improvement that c_{5} is an absolute constant, whereas $c(p)$ depends on $\|m\|$ (via the lemma and (6)). In view of the Littlewood conjecture, one may ask whether the $1 / 2$ can be removed or improved when $A^{*}=0$; this is left open.

Acknowledgement. I wish to thank my advisor, T. H. Wolff. The results here were obtained as part of a thesis under his direction at the California Institute of Technology, were previously announced in [5], and presented at the Conference on Banach Spaces and Classical Analysis, Kent State University, July to August, 1985.

References

1. J. J. F. Fournier, On a theorem of Paley and the Littlewood conjecture, Arkiv för Mathematik 17 (1979), 199-216.
2. C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis (Springer Verlag, New York, 1979).
3. H. Helson, Note on harmonic functions, Proc. Amer. Math. Soc. 4 (1953), 686-691.
4. -On a theorem of Szegö, Proc. Amer. Math. Soc. 6 (1955), 235-242.
5. I. Klemes, The idempotent multipliers of $H^{1}(T)$, Abstracts of Amer. Math. Soc. 5 (1984), 379.
6. -I. Idempotent multipliers of H^{1} on the circle, II. A mean oscillation inequality for rearrangements, Ph.D. thesis, California Institute of Technology (1985).
7. O. C. McGehee, L. Pigno and B. Smith, Hardy's inequality and the L' norm of exponential sums, Ann. of Math. 113 (1981), 613-618.
8. R. E. A. C. Paley, On the lacunary coefficients of power series, Ann. of Math. 34 (1933), 615-616.

McGill University, Montréal, Québec

