ON FINITELY GENERATED SIMPLE COMPLEMENTED LATTICES

BY
WERNER POGUNTKE

Let L be a lattice, and let P and Q be partially ordered sets. We say that L is generated by P if there is an isotone mapping from P into L with its image generating L. P contains Q if there is a subset Q^{\prime} of P which, with the partial ordering inherited from P, gives an isomorphic copy of Q. For an integer $n>0$, the lattice of partitions of an n-element set will be denoted by $\Pi(n)$; it is well-known that $\Pi(n)$ is simple and complemented (cf. P. Crawley-R. P. Dilworth [1; p. 96]).

The purpose of this note is to prove:
Theorem. For a finite partially ordered set P, the following conditions are equivalent:
(i) each partition lattice $\Pi(n)$, with $n \geq 10$, is generated by P;
(ii) there are infinitely many non-isomorphic simple complemented lattices generated by P;
(iii) there is a simple complemented lattice generated by P which is not isomorphic to D_{1}, D_{2}, M_{3}, or C (see Figure 1);

The projective plane over the rational numbers is an infinite simple complemented lattice generated by $\urcorner+\square+\square+ๆ$. An example of an infinite simple lattice generated by $\uparrow+\sqrt{2}+2$ was given in W. Poguntke [2], but it seems to be unknown whether there is one which is also complemented.

Some remarks and a Lemma. The above Theorem is analogous to the following result of \mathbf{R}. Wille [4]: the finite partially ordered sets generating (up to isomorphism) only finitely many simple lattices are precisely those not containing $\mathfrak{q}+\urcorner+\mathfrak{q}+\mathfrak{q} \downarrow+\mathfrak{q}+2$, or $\mathfrak{q}+\mathbb{K}_{2}$ (cf. Figure 2); furthermore, if R is such a partially ordered set, then each simple lattice generated by R is isomorphic to D_{1}, D_{2}, or M_{3}. It was shown in H. Strietz [3], and the proof of our Theorem makes heavy use of this fact, that isomorphic copies of each of the two "critical" partially ordered sets $\mathbb{q}+\square+\square+\square$ and $q+\square+2$ are generating sets in

[^0]

C
Figure 1.
every partition lattice $\Pi(n)$, with $n \geq 10$. The question remained if $ף+\mathbb{K}_{2}$ has the same property, but our Theorem shows that this is not the case.
The proof of the Theorem uses the following extended version of the D_{2}-Lemma in R. Wille [4]:

Lemma. Let $L \neq D_{2}$ be a simple (or subdirectly irreducible and modular) complemented lattice generated by the union of two finite subsets E_{0} and E_{1}. Then $\sup E_{0}=1$ or $\inf E_{1}=0$.

Figure 2.
Proof. It follows from the D_{2}-Lemma that sup $E_{0} \geq \inf E_{1}$. Assume sup $E_{0}<1$, and let x be a complement of $\sup E_{0}$. Since L is the set union of the intervals [0 , sup E_{0}] and $\left[\inf E_{1}, 1\right.$], and since $x \leq \sup E_{0}$ is impossible, it follows that $x \geq \inf E_{1}$ which implies $0=x \wedge \sup E_{0} \geq \inf E_{1}$, hence inf $E_{1}=0$.

Proof of the Theorem. The following notation will be used: if S is a partially ordered set and $x \in S$, then $(x] ;=\{y \in S \mid y \leq x\} ;[x)$ is defined dually.

Trivially, (i) implies (ii) which implies (iii).
(iii) \rightarrow (iv):

Let us assume that P does not contain $\mathfrak{\square}+\mathfrak{q}+\mathfrak{q}$ or $ๆ+ఇ+2$, and let $\psi: P \rightarrow L$ be an isotone mapping from P into a simple complemented lattice L such that ψP generates L. We first observe that ψP, too, does not contain
 we may assume that ψP contains a subset $\{u, a, b, c, d\}$ isomorphic to $\mathbb{T}+\mathbb{K}_{2}$, i.e. u is incomparable with each of a, b, c, d, and $a, b<a \vee b \leq c \wedge d<c, d$. Our aim is to show $L \cong C$.

Note that every $x \in \psi P$ with $x<u$ satisfies $x<a$ or $x<b$; dually, if $y>u$, then $y>c$ or $y>d$. Let U be the set of all elements in ψP that are incomparable with u. Since $\downarrow+\square+\square+\square$ and $\downarrow+\downarrow+2$ are not contained in ψP, for each element $v \in U$ there is at most one $w \in U$ which is incomparable to v. In
particular, U has at most two maximal (minimal) elements. Assume U has only one maximal element, \bar{u}. Since in this case, $\psi P=(\bar{u}] \cup[u)$, the Lemma yields $\bar{u}=1$ or $u=0$, each a contradiction.

Thus, U has precisely two maximal elements \bar{u}_{1}, \bar{u}_{2}, and two minimal elements $\underline{u}_{1}, \underline{u}_{2}$. Now, we have for each $z \in \psi P$ that

$$
z<u \text { if and only if } z<\underline{u}_{1} \text { or } z<\underline{u}_{2}
$$

and

$$
z>u \text { if and only if } z>\bar{u}_{1} \text { or } z>\bar{u}_{2} .
$$

It follows that $\psi P=\left(\bar{u}_{2}\right] \cup[u) \cup\left[\bar{u}_{1}\right)$, and the Lemma (with $E_{0}:=\left(\bar{u}_{2}\right]$, $E_{1}:=[u) \cup\left[\bar{u}_{1}\right)$) yields $u \wedge \bar{u}_{1}=0$ (since $\bar{u}_{2} \neq 1$). From this, and by symmetry and duality, we get:

$$
\begin{gathered}
\{u\} \cup U \subseteq \psi P \subseteq\{u\} \cup U \cup\{0,1\} ; \\
u \wedge \bar{u}_{1}=u \wedge \bar{u}_{2}=\underline{u}_{1} \wedge u_{2}=0 ; \\
u \vee \underline{u}_{1}=u \vee \underline{u}_{2}=\bar{u}_{1} \vee \bar{u}_{2}=1 .
\end{gathered}
$$

It also follows that L consists of the sublattice generated by U plus the element u which covers 0 and is covered by 1 .

But the properties of U obviously imply that the sublattice generated by U is a finite linear sum of four-element Boolean lattices and one-element lattices, with at least two copies of four-element Boolean lattices occurring. Now, L cannot be simple unless

$$
\{a, b, c, d\}=\left\{\underline{u}_{1}, \underline{u}_{2}, \bar{u}_{1}, \bar{u}_{2}\right\}, \quad e:=a \vee b=c \wedge d, \quad \text { and } \quad U \subseteq\{a, b, c, d, e\}
$$

which means $L \cong C$.
(iv) \rightarrow (i):

This turns out to be an easy consequence of the results in H. Strietz [3] mentioned above. Let $P \supseteq\{a, b, c, d\} \cong \uparrow+\uparrow+2$ (with $c>d$), and let $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \cong \uparrow+\square+2$ (with $p_{3}>p_{4}$) be a generating set of the partition lattice $\Pi(k)(k \geq 10)$. As in R. Wille [4], we define an isotone mapping $\tau: P \rightarrow \Pi(k)$ by

$$
\tau(a):=p_{1}, \quad \tau(b):=p_{2}, \quad \tau(c):=p_{3},
$$

and

$$
\tau(x):=\left\{\begin{array}{lll}
p_{4} & \text { if } & x<c, x \nless a, b, d \\
0 & \text { if } & x<a, b, \text { or } d \\
1 & \text { if } & x \not \approx a, b, \text { and } c .
\end{array}\right.
$$

thus showing that $\Pi(k)$ is generated by P.
Using a generating set $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \cong ף+ף+ף+ף$, the case that P contains $\square+\square+\square+\square$ can be treated in a similar way (see R. Wille [4]).

References

[1] P. Crawley-R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N.Y., 1973.
[2] W. Poguntke, On simple lattices of width three, to appear in Coll. Math. Soc. J. Bolyai, Preprint, Technische Hochschule Darmstadt (1977).
[3] H. Strietz, Über Erzeugendenmengen endlicher Partitionenverbände, Preprint, Technische Hochschule Darmstadt (1977).
[4] R. Wille, A note on simple lattices, Coll. Math. Soc. J. Bolyai, vol. 14 (1976), 455-462.

Fachbereich Mathematik
der Technischen Hochschule
FB4-AG1
6100 Darmstadt
West Germany.

[^0]: Received by the editors January 3, 1979.
 This research was supported by the National Research Council of Canada, Grant A 2985, while the author was a visitor at McMaster University.

