ON FINITELY GENERATED SIMPLE COMPLEMENTED LATTICES

ΒY

WERNER POGUNTKE

Let L be a lattice, and let P and Q be partially ordered sets. We say that L is generated by P if there is an isotone mapping from P into L with its image generating L. P contains Q if there is a subset Q' of P which, with the partial ordering inherited from P, gives an isomorphic copy of Q. For an integer n > 0, the lattice of partitions of an n-element set will be denoted by $\Pi(n)$; it is well-known that $\Pi(n)$ is simple and complemented (cf. P. Crawley-R. P. Dilworth [1; p. 96]).

The purpose of this note is to prove:

THEOREM. For a finite partially ordered set P, the following conditions are equivalent:

- (i) each partition lattice $\Pi(n)$, with $n \ge 10$, is generated by P;
- (ii) there are infinitely many non-isomorphic simple complemented lattices generated by P;
- (iii) there is a simple complemented lattice generated by P which is not isomorphic to D_1 , D_2 , M_3 , or C (see Figure 1);
- (iv) *P* contains 1+1+1+1 or 1+1+2 (see Figure 2).

The projective plane over the rational numbers is an infinite simple complemented lattice generated by 1+1+1+1. An example of an infinite simple lattice generated by 1+1+2 was given in W. Poguntke [2], but it seems to be unknown whether there is one which is also complemented.

Some remarks and a Lemma. The above Theorem is analogous to the following result of R. Wille [4]: the finite partially ordered sets generating (up to isomorphism) only finitely many simple lattices are precisely those not containing 1+1+1+1, 1+1+2, or $1+K_2$ (cf. Figure 2); furthermore, if R is such a partially ordered set, then each simple lattice generated by R is isomorphic to D_1 , D_2 , or M_3 . It was shown in H. Strietz [3], and the proof of our Theorem makes heavy use of this fact, that isomorphic copies of each of the two "critical" partially ordered sets 1+1+1+1 and 1+1+2 are generating sets in

Received by the editors January 3, 1979.

This research was supported by the National Research Council of Canada, Grant A 2985, while the author was a visitor at McMaster University.

every partition lattice $\Pi(n)$, with $n \ge 10$. The question remained if $\Im + \mathbb{K}_2$ has the same property, but our Theorem shows that this is not the case.

The proof of the Theorem uses the following extended version of the D_2 -Lemma in R. Wille [4]:

LEMMA. Let $L \not\equiv D_2$ be a simple (or subdirectly irreducible and modular) complemented lattice generated by the union of two finite subsets E_0 and E_1 . Then sup $E_0 = 1$ or inf $E_1 = 0$.

Proof. It follows from the D_2 -Lemma that sup $E_0 \ge \inf E_1$. Assume sup $E_0 \le 1$, and let x be a complement of sup E_0 . Since L is the set union of the intervals $[0, \sup E_0]$ and $[\inf E_1, 1]$, and since $x \le \sup E_0$ is impossible, it follows that $x \ge \inf E_1$ which implies $0 = x \land \sup E_0 \ge \inf E_1$, hence $\inf E_1 = 0$.

Proof of the Theorem. The following notation will be used: if S is a partially ordered set and $x \in S$, then $(x] := \{y \in S \mid y \le x\}$; [x) is defined dually.

Trivially, (i) implies (ii) which implies (iii).

(iii) \rightarrow (iv):

Let us assume that P does not contain 1+1+1+1 or 1+1+2, and let $\psi: P \to L$ be an isotone mapping from P into a simple complemented lattice L such that ψP generates L. We first observe that ψP , too, does not contain 1+1+1+1 or 1+1+2. In view of the results in R. Wille [4] mentioned above, we may assume that ψP contains a subset $\{u, a, b, c, d\}$ isomorphic to $1+\mathbb{K}_2$, i.e. u is incomparable with each of a, b, c, d, and $a, b < a \lor b \leq c \land d < c, d$. Our aim is to show $L \cong C$.

Note that every $x \in \psi P$ with x < u satisfies x < a or x < b; dually, if y > u, then y > c or y > d. Let U be the set of all elements in ψP that are incomparable with u. Since $\mathfrak{I} + \mathfrak{I} + \mathfrak{I} + \mathfrak{I}$ and $\mathfrak{I} + \mathfrak{I} + \mathfrak{Z}$ are not contained in ψP , for each element $v \in U$ there is at most one $w \in U$ which is incomparable to v. In particular, U has at most two maximal (minimal) elements. Assume U has only one maximal element, \bar{u} . Since in this case, $\psi P = (\bar{u}] \cup [u]$, the Lemma yields $\bar{u} = 1$ or u = 0, each a contradiction.

Thus, U has precisely two maximal elements \bar{u}_1 , \bar{u}_2 , and two minimal elements \underline{u}_1 , \underline{u}_2 . Now, we have for each $z \in \psi P$ that

z < u if and only if $z < \underline{u}_1$ or $z < \underline{u}_2$

and

$$z > u$$
 if and only if $z > \bar{u}_1$ or $z > \bar{u}_2$.

It follows that $\psi P = (\bar{u}_2] \cup [u] \cup [\bar{u}_1)$, and the Lemma (with $E_0 := (\bar{u}_2]$, $E_1 := [u] \cup [\bar{u}_1)$) yields $u \wedge \bar{u}_1 = 0$ (since $\bar{u}_2 \neq 1$). From this, and by symmetry and duality, we get:

$$\{u\} \cup U \subseteq \psi P \subseteq \{u\} \cup U \cup \{0, 1\};$$
$$u \land \bar{u}_1 = u \land \bar{u}_2 = \underline{u}_1 \land u_2 = 0;$$
$$u \lor u_1 = u \lor \underline{u}_2 = \bar{u}_1 \lor \bar{u}_2 = 1.$$

It also follows that L consists of the sublattice generated by U plus the element u which covers 0 and is covered by 1.

But the properties of U obviously imply that the sublattice generated by U is a finite linear sum of four-element Boolean lattices and one-element lattices, with at least two copies of four-element Boolean lattices occurring. Now, Lcannot be simple unless

$$\{a, b, c, d\} = \{\underline{u}_1, \underline{u}_2, \overline{u}_1, \overline{u}_2\}, e := a \lor b = c \land d, \text{ and } U \subseteq \{a, b, c, d, e\},\$$

which means $L \cong C$.

 $(iv) \rightarrow (i)$:

This turns out to be an easy consequence of the results in H. Strietz [3] mentioned above. Let $P \supseteq \{a, b, c, d\} \cong \mathbb{1} + \mathbb{1} + \mathbb{2}$ (with c > d), and let $\{p_1, p_2, p_3, p_4\} \cong \mathbb{1} + \mathbb{1} + \mathbb{2}$ (with $p_3 > p_4$) be a generating set of the partition lattice $\Pi(k)$ ($k \ge 10$). As in *R*. Wille [4], we define an isotone mapping $\tau: P \to \Pi(k)$ by

$$\tau(a) := p_1, \quad \tau(b) := p_2, \quad \tau(c) := p_3$$

and

$$\tau(x) := \begin{cases} p_4 & \text{if } x < c, \ x \le a, b, d \\ 0 & \text{if } x < a, b, \text{ or } d \\ 1 & \text{if } x \le a, b, \text{ and } c. \end{cases}$$

thus showing that $\Pi(k)$ is generated by *P*.

Using a generating set $\{q_1, q_2, q_3, q_4\} \cong \mathbb{1} + \mathbb{1} + \mathbb{1} + \mathbb{1}$, the case that P contains $\mathbb{1} + \mathbb{1} + \mathbb{1} + \mathbb{1}$ can be treated in a similar way (see R. Wille [4]).

WERNER POGUNTKE

References

[1] P. Crawley-R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N.Y., 1973.

[2] W. Poguntke, On simple lattices of width three, to appear in Coll. Math. Soc. J. Bolyai, Preprint, Technische Hochschule Darmstadt (1977).

[3] H. Strietz, Über Erzeugendenmengen endlicher Partitionenverbände, Preprint, Technische Hochschule Darmstadt (1977).

[4] R. Wille, A note on simple lattices, Coll. Math. Soc. J. Bolyai, vol. 14 (1976), 455-462.

Fachbereich Mathematik der Technischen Hochschule FB4-AG1 6100 Darmstadt West Germany.