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Whirling instability of an eccentric coated fibre
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We study a gravity-driven viscous flow coating a vertical cylindrical fibre. The
destabilisation of a draining liquid column into a downward moving train of beads has
been linked to the conjunction of the Rayleigh–Plateau and Kapitza instabilities in the limit
of small Bond numbers Bo. Here, we focus on quasi-inertialess flows (large Ohnesorge
number Oh) and conduct a linear stability analysis on a unidirectional flow along a rigid
eccentric fibre for intermediate to large Bo. We show the existence of two unstable modes,
namely pearl and whirl modes. The pearl mode depicts asymmetric beads, similar to that
of the Rayleigh–Plateau instability, whereas a single helix forms along the axis in the whirl
mode instability. The geometric and hydrodynamic thresholds of the whirl mode instability
are investigated, and phase diagrams showing the transition thresholds between different
regimes are presented. Additionally, an energy analysis is carried out to elucidate the whirl
formation mechanism. This analysis reveals that despite the unfavourable capillary energy
cost, the asymmetric interface shear distribution, caused by the fibre eccentricity, has the
potential to sustain a whirling interface. In general, small fibre radius and large eccentricity
tend to foster the whirl mode instability, while reducing Bo tends to favour the dominance
of the pearl mode instability. Finally, we compare the predictions of our model with the
results of some illustrative experiments, using highly viscous silicone oils flowing down
fibres. Whirling structures are observed for the first time, and the measured wavenumbers
match our stability analysis prediction.
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1. Introduction

Initially long liquid columns always break apart into many droplets so as to minimise
their surface energy. This phenomenon, referred to as Rayleigh–Plateau instability, has
been well-known since the studies of Plateau (1873) and Rayleigh (1878). This instability,
originally described for liquid jets, can be observed under various conditions, such as
liquid film coating a fibre (Duprat 2009) or inside a tube (Duclaux, Clanet & Quéré 2006),
which gives rise to the formation of similar interfacial patterns and represents a class of
hydrodynamic instability under the same name, reviewed in further detail in the works
of Eggers & Villermaux (2008) and Gallaire & Brun (2017). One particularly interesting
variant of the Rayleigh–Plateau instability is the destabilisation of a viscous fluid draining
vertically down a rigid fibre under the influence of gravity, which leads to the formation
of moving beads along the fibre. This flow has been attracting attention for decades as
a result of its numerous applications and rich dynamics. Some direct applications are
seen in coating technologies, optical coating and drawing fibres into/from liquid baths
(Quéré 1999; Shen et al. 2002; Duprat et al. 2007). Furthermore, emerging patterns
are characterised mainly by a high surface area to volume ratio, which is appealing for
numerous applications that involve mass and heat transfer across the liquid–gas interfaces,
e.g. microfluidics (Gilet, Terwagne & Vandewalle 2009), heat exchangers (Zeng et al.
2017; Zeng, Sadeghpour & Ju 2018), vapour absorption (Chinju, Uchiyama & Mori
2000; Grünig et al. 2012; Hosseini et al. 2014) and desalination (Sadeghpour et al.
2019). Predictability and control of the destabilised patterns are crucial in many of these
applications.

Numerous theoretical and experimental studies have examined the flow down rigid
fibres. Remarkably, Kliakhandler, Davis & Bankoff (2001) reported experimentally three
distinct unstable regimes: (i) isolated beads, (ii) regularly distanced beads train, and
(iii) irregularly distanced beads train. Transition from the absolute to convective regimes
occurs when the film thickness exceeds a critical value, for which the corresponding
thresholds are discussed widely in the works of Chang & Demekhin (1999) and Duprat
et al. (2007). Besides secondary instabilities and nonlinear phenomena that may be
observed as beads grow, solitary waves may appear along the fibre in the non-zero inertia
limit, reminiscent of the capillary Kapitza waves (Kapitza 1965; Duprat 2009). Several
theoretical and numerical models have been proposed to elucidate the dynamics of the
growth and motion of the emergent unstable patterns in the linear and nonlinear regimes
in the limits of thin film (Frenkel 1992; Ruyer-Quil et al. 2008; Ruyer-Quil & Kalliadasis
2012; Yu & Hinch 2013) and thick film (Craster & Matar 2006; Liu & Ding 2021).
Each of these models captures some features of the destabilisation process and matches
the experimental data within some ranges. In addition, further studies concluded that
besides the liquid properties, the fibre properties such as porosity (Ding & Liu 2011),
slip properties (Haefner et al. 2015) and shape (Xie et al. 2021), as well as geometric
parameters like nozzle geometry (Sadeghpour, Zeng & Ju 2017), have significant impacts
on altering the dynamics and defining the range of occurrence of each unstable regime.
Changes to the dynamics may be related to changing the dominant wavelength, switching
between different regimes, and changing the spacing, velocity, shape and coalescence of
mobile beads.

In all of the studies in the literature, the fibre is concentric with the liquid column, and
the initial stage of any unstable regime exhibits an axisymmetric growth of the interface
undulations. The recent work of Gabbard & Bostwick (2021) addresses the evolution of
asymmetric beads when the film thickness is initially non-homogeneous around the fibre.
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In their case, they outlined the thresholds between the three regimes of isolated beads, and
regular and irregular beads trains. Yet a full understanding of the destabilisation processes
is missing for the stability of non-homogeneous film thickness in flows down a fibre. For
instance, it is not clear why the formation of asymmetric beads is not prevented by capillary
effects. Also, the effect of non-homogeneous film thickness on the linear instability of
other non-axisymmetric modes is not known. In the present study, we focus on the effect
of the fibre position with respect to the liquid column, and we investigate the stability
characteristics of the flow and the subsequent geometry of the emerging patterns.

This paper is structured as follows. The methodology is first presented in § 2. To
begin with, the problem formulation and the governing equations are presented in § 2.1,
from which the base flow is deduced and discussed in § 2.2. In § 2.3, the stability
analysis formulation and the linearised governing equations are elaborated. Corresponding
numerical methods are detailed in § 2.4. In § 3, the results of the stability analyses are
presented and discussed. First, in § 3.1, the effect of the fibre eccentricity on the stability
characteristics of the flow is given. Then a similar investigation is conducted for the other
dimensionless parameters in §3.2, followed by sketching the extensive stability maps in
§ 3.3. In addition, the physical mechanisms underlying the instability of the flow are
elucidated by the method of energy analysis in § 3.4. In § 3.5, a comparison between the
linear model and our illustrative experiments is provided. Finally, conclusions are drawn
in § 4.

2. Governing equations and methods

2.1. Problem formulation
A viscous liquid column flows under gravity along a vertical solid cylindrical fibre of
radius Rf placed with eccentricity rec from the centre of the column. The schematic
of the flow and the cross-sectional view are shown in figure 1. The standard Cartesian
coordinates (x, y, z) are considered, with the origin located at the centre of the liquid
column. In-plane coordinates are (x, y), and the positive direction of the axial/vertical
coordinate z points in the direction of the gravity acceleration g. The liquid is Newtonian,
of constant dynamic viscosity μ, surface tension γ and density ρ, and is surrounded by an
inviscid gas. Without loss of generality for sufficiently small interface deformations, the
interface can be parametrised in cylindrical coordinates (r, θ, z) as rint(t, θ, z), using the
same origin as the Cartesian one, and R denotes the reference value of rint in the absence
of any perturbation. The dimensionless state vector q = (u, p,Rint)

T defines the flow
where at time t, u(t, x, y, z) = (ux, uy, uz)

T denotes the three-dimensional velocity field,
p(t, x, y, z) denotes the pressure, and Rint = rint/R denotes the dimensionless interface
radius. As opposed to Craster & Matar (2006), the state vector and the governing equations
are rendered dimensionless by the intrinsic velocity and time scales presented by Duprat
(2009), associated with the viscous axisymmetric liquid ring of uniform thickness h0 =
R − Rf that coats a centred fibre. However, we choose different length and pressure scales,
as follows:

L = R, U = ρgh2
0

μ
= ρgR2

μ
(1 − α)2,

P = ρgR, T = L
U = μ

ρgR
(1 − α)−2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)
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Figure 1. Schematic of the coating flow along an eccentric fibre and the geometrical parameters in
cross-sectional view. The outer dashed black line represents the perturbed interface of local radius rint and
axial wavelength Rλ, and the outer solid black line shows the cylinder with mean radius R, which is concentric
with the coordinate reference. The planar cut shows the cross-section of the liquid column and the geometrical
characteristics, where the grey region shows the solid fibre.

where α = Rf /R denotes the fibre to mean radius aspect ratio. The other geometric
parameter is Rec = rec/R, which denotes the dimensionless fibre eccentricity. The flow
is governed by the incompressible Navier–Stokes equations, which in dimensionless form
read

∇ · u = 0, (2.2)

Bo
Oh2 (1 − α)4(∂t + u · ∇)u = ∇ · τ + 1ez, (2.3)

where ∂j denotes the partial derivative with respect to quantity j, and the stress tensor τ
reads

τ = −pI + (1 − α)2
(∇u + ∇uT) . (2.4)

The two other dimensionless numbers that appear in the governing equations are the
Ohnesorge number Oh = μ/

√
ργR, and the Bond number Bo = ρgR2/γ . While Oh

compares the viscous forces to the inertial and surface tension forces, Bo compares the
gravitational and surface tension forces. Our study addresses the limit of inertialess flow
where (Bo/Oh2)(1 − α)4 � 1 without any further assumptions on α.

The no-slip boundary condition u = 0 is applied on the fibre ∂Σf . On the shear-free
fluid–gas interface, the kinematic and dynamic boundary conditions, respectively, are

∂tRint + u · ∇Rint = u · er on r = Rint, (2.5)

τ n = − κ

Bo
n on r = Rint, (2.6)

where er denotes the unit radial vector, n = ∇(r − Rint)/‖∇(r − Rint)‖ denotes the unit
normal vector pointing outwards from the liquid bulk, ‖ · ‖ denotes the Euclidean norm,
and κ = ∇ · n denotes the interface mean curvature.

952 A33-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.876


Whirling instability of an eccentric coated fibre

2.2. Base flow
The base flow q0 is the steady-state solution of the Navier–Stokes equations (2.2)–(2.6).
We recall the solution prevailing for an eccentric fibre. In the limit of a centred fibre, the
analytical solution exists whose axial velocity is composed of a logarithmic term and a
parabola as

u0
z = (1 − α)−2

2

(
ln

r
α

− r2 − α2

2

)
, p0 = 1

Bo
, (2.7a,b)

with a constant pressure in the liquid. This velocity field is shown in figure 2(a) and reveals
its maximal velocity at the liquid–gas interface, and an increasing drainage flux Q0 =∫∫
Ωxy

u0
z dAΩxy as the aspect ratio α decreases, i.e. for a thicker liquid film (figure 2b).

Inspired by the solution for the centred fibre, we seek a base flow that is parallel and
fully developed in the z direction with a cylindrical interface of radius R0

int = 1. Note
that R0

int = 1 is readily a solution to the nonlinear kinematic condition (2.5). Assuming a
constant pressure, the normal component of the dynamic condition (2.6) is also satisfied.
It remains to solve the Poisson equation for u0

z , with no-slip on the fibre and free shear on
the interface, driven by gravity. The solution is computed numerically in the present study
(see § 2.4 for details) for the flow coating an eccentric fibre, although it could be interesting
to try to extend to the present free-surface configuration the method proposed in Piercy,
Hooper & Winney (1933) for a pipe flow with a solid core. The fibre eccentricity breaks
the axisymmetry of the base flow, with a high-speed region on the thicker side of the liquid
film, and a low-speed region on the thinner side. On the thicker side, shear is decreased
near the interface while being increased in the vicinity of the fibre (solid lines in figure 2c);
on the thinner side, it evidences an increase near the interface while being decreased near
the fibre (dashed lines in figure 2c). The drainage flow rate increases substantially with Rec
(figure 2b).

2.3. Linear stability analysis
In order to perform the linear stability analysis on the base flow, presented in § 2.2, the
state vector q = (u, p,Rint)

T is decomposed into the sum of the steady-state base flow
solution q0, and the infinitesimal time-dependent perturbation q1 = (u1, p1, η1)T, i.e.

q = q0 + εq1 + O(ε2), ε � 1, (2.8)

where the amplitude ε is assumed to be small. We look for perturbations q1 under the
normal form

q1 = q̃(x, y) exp[σ t + ikz] + c.c., (2.9)

with k being the longitudinal wavenumber (associated with the wavelength λ = 2π/k), and
c.c. denoting the complex conjugate. It should be noted that the eccentricity of the fibre
breaks the axisymmetry of the problem, in spite of a cylindrical base interface. Therefore,
a normal mode of the form q̃(r) exp[σ t + imθ + ikz] + c.c., with m being the azimuthal
wavenumber, is not suitable in the eccentric configuration. In the asymptotic limit of large
times, a normal eigenmode perturbation with complex pulsation σ = σr + iσi is defined
as unstable and hence grows exponentially in time with the growth rate σr, if σr > 0, i.e.
if σ is in the unstable complex half-plane. (Unless otherwise noted, the subscripts r and
i denote the real and imaginary parts of a complex number, respectively.) By casting the
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Figure 2. Variation of the base flow as a result of the fibre eccentricity. (a) Axial velocity u0
z at the

cross-section for α = 0.1 and three different values of fibre eccentricities Rec = 0, 0.1, 0.5; same colour bar
applies for all plots. (b) Vertical flow rate Q0 for different values of α and Rec; solid black lines show the results
from our numerical study, and the red dots show the values computed from the analytical flow around a centred
fibre, (2.7a,b); for each value of α, the plot stops at α + Rec ≤ 0.95; (c) Shear rate across the thick (continuous)
and thin (dashed) sides of the liquid film along y = 0.

perturbed state of (2.8) into the governing equations (2.2)–(2.3), with the stationary base
flow q0 = (u0, 1/Bo, 1)T, and keeping the first-order terms, the linearised equations are
obtained as

∇ · u1 = 0, (2.10)

Bo
Oh2 (1 − α)4(∂tu1 + (u0 · ∇)u1 + (u1 · ∇)u0) = ∇ · τ 1. (2.11)

The no-slip condition implies ũ = 0 on the fibre. The perturbed interface boundary
conditions (2.5)–(2.6), applied on the perturbed liquid interface, can be projected radially
onto the base interface and ultimately linearised, a process called flattening (see (A1) in
Appendix A). The linearised kinematic condition can be expressed as

(σ + iku0
z )η̃ = ũ · er on r = 1. (2.12)

Introducing an eigenstate vector of the form (2.9) into (2.10)–(2.11), combined with (2.12),
leads to a generalised eigenvalue problem for σ and q̃:

Lq̃ + c.c. = σBq̃ + c.c., (2.13)
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where the linear operators L and B are defined as

L =

⎡⎢⎣(1 − α)2
(
∇̃ · (∇̃ + ∇̃T

)
)

−∇̃ 0

∇̃· 0 0
er 0 −iku0

z

⎤⎥⎦ , B =

⎡⎢⎣ Bo
Oh2 (1 − α)4I 0 0

0 0 0
0 0 1

⎤⎥⎦ ,
(2.14a,b)

and the gradient operator and the velocity gradient tensor in Cartesian coordinates are

∇̃ = (∂x, ∂y, ik)T, ∇̃ũ =
⎡⎣∂xũx ∂yũx ikũx
∂xũy ∂yũy ikũy
∂xũz ∂yũz ikũz

⎤⎦ . (2.15a,b)

The operators L and B are then modified to enforce the dynamic condition, which can be
expressed as

τ̃n0 = − κ̃

Bo
er

+ (1 − α)2 ∂θu0
z ikη̃eθ

+ (1 − α)2(∂θu0
z ∂θ η̃ − ∂rru0

z η̃)ez on r = 1, (2.16)

where κ̃ denotes the dimensionless curvature perturbation expressed as

κ̃ = (k2 − 1)η̃ − ∂2η̃

∂θ2 , (2.17)

and (er, eθ , ez) denote the unit vectors of directions in the cylindrical coordinates
(r, θ, z) used for parametrising the interface; see figure 1. (For further details on the
interface boundary conditions’ derivation and implementation, see Appendix A and § B.2,
respectively.)

2.4. Numerical method
The base flow and linear stability analysis are solved numerically with the finite
element method. We use the software COMSOL Multiphysics. A triangular mesh of the
two-dimensional domain, shown in figure 3, is generated with the Delaunay–Voronoi
algorithm. The grid size is controlled by the vertex densities on the boundaries ∂Σf
and ∂Σint. The variational formulation of the base flow equations (2.2)–(2.6) and the
linear stability equation (2.13) are discretised spatially using quadratic (P2) Lagrange
elements for u0, ũ and η̃, and linear (P1) Lagrange elements for p̃, yielding approximately
200 000 and 700 000 degrees of freedom for the base flow and the linear stability analysis,
respectively. The base flow, the solution of a linear Poisson equation, is computed first with
a linear solver. Then this base flow is used to solve the generalised eigenvalue problem
associated with the linear stability analysis using a shift-invert Arnoldi method. (See
Appendix B for details about the variational formulations and corresponding boundary
conditions, and their implementation.)

The computation time associated with one given set of variables, followed by the
stability analysis for ∼20 values of k, is of the order of tens of minutes on a single Intel
core at 3.6 GHz. The model is validated with the analytical solutions in the literature for
the coating flow over a centred fibre. (For more details about the series of validation tests,
see Appendix C.)

952 A33-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.876


S. Eghbali, L. Keiser, E. Boujo and F. Gallaire

αRec

∂Σf

∂Σint

Ωxy

1

Figure 3. The numerical domain used for computing the base flow and linear stability analysis; the outer
radius of the domain is set to unity, the same as that of the base interface. Here, Ωxy denotes the liquid
bulk. The boundaries of the numerical domain are denoted by ∂Ωxy = ∂Σf ∪ ∂Σint, where ∂Σf represents
the liquid–fibre contact boundary, and ∂Σint represents the gas–liquid interface.

3. Results

3.1. Effect of the fibre eccentricity (Rec)
The results of the linear stability analysis are presented hereafter. Figure 4 shows the
effect of Rec on the stability of the flow. The dispersion curve, σr versus k, is plotted
in figure 4(a) for the two least linearly stable eigenmodes, which can be characterised
by the shapes of their eigeninterfaces in figures 4(b,c). In the limit of the concentric
fibre, Rec = 0, only one unstable mode exists in the range 0 < k ≤ 1, which undulates
axisymmetrically in the axial direction. This instability is known as a variant of the
Rayleigh–Plateau instability (Rayleigh 1878). The second mode is stable over the whole
range of wavenumbers, and its interface forms a single helix that whirls along the axial
direction. Accordingly, hereafter, we will refer to these two modes as the pearl (P) and
whirl (W) modes, respectively. We emphasise that this instability is not to be confused
with the classical whirl instability observed in liquid/gas-lubricated journal bearings, that
is, a self-excited rotor whirl caused by lubricating film forces when the rotation frequency
of the shaft exceeds a threshold, approaching the lowest natural frequency of the system
(Harrison 1912; Larson & Richardson 1962).

By increasing Rec, the general trend observed in the stability of these two modes is as
follows. The eigeninterfaces of both modes are deformed as the flow symmetry breaks,
but their general layout remains similar to that of the concentric fibre. In addition, the P
mode remains unstable, although its dispersion curve exhibits an alteration of the range
of unstable wavenumbers. Moreover, increasing Rec over a certain threshold destabilises
the W mode, and by increasing Rec further, the W mode eventually dominates over the P
mode in a range of wavenumbers.

3.2. Bo and α effects
In this subsection, the effects of Bo and α on the stability characteristics of the flow
are illustrated via dispersion curves. Figure 5(a) highlights the main changes induced
by decreasing α. The instability range of the P mode extends. Additionally, although
the maximal growth rate of the P mode exhibits a minor change, its maximal
wavenumber – i.e. the wavenumber at which the maximal growth rate occurs –
increases. Moreover, reducing α to less than a certain threshold destabilises the W mode.
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Rec = 0 Rec = 0.1 Rec = 0.5
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θ
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θ
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1

π–π 0

θ

η̃r

(×10–3)

Figure 4. Evolution of the two least stable eigenmodes, P (black) and W (blue), with increasing fibre
eccentricity, plotted for Rec = 0, 0.1, 0.5. (a) The dispersion curve. (b) A three-dimensional render of the
perturbed interface obtained by superposition of the real part of the corresponding eigeninterfaces with
amplitude 20% onto the base interface over an axial span of double wavelength r(θ, z) = 1 + 0.2η̃r cos(kz).
(c) Real part of the eigeninterface, η̃r, as a function of θ . All of the plots correspond to Oh → ∞, Bo = 50 and
α = 0.1, and the eigeninterfaces are plotted at k = 0.1. All of the eigenstates are normalised and presented in
the same complex phase, such that at the maximal positive interface perturbation, η̃ = 1.

By further reducing α, the maximal wavenumber of the W mode and its growth rate
increase, and eventually its growth rate dominates that of the P mode in some range of
wavenumbers. Similar to decreasing α, figure 5(b) demonstrates the effects of increasing
Bo as destabilising the W mode until its dominance over the P mode. Besides, larger Bo
increases the instability range of both P and W modes. Unlike the W mode, the maximal
growth rate of the P mode decreases by increasing Bo.

So far, three principal unstable regimes are identified in the parameter space: (i) only
the P mode is unstable; (ii) both P and W modes are unstable, and the P mode dominates;
(iii) both P and W modes are unstable, and the W mode dominates. A detailed study of the
parameter space is conducted, and the results are presented in § 3.3.

3.3. Phase diagrams
The {Bo, α,Rec} space is investigated extensively to determine the threshold of the
unstable regimes. Figures 6(a,b) present the phase diagrams that are obtained by holding
α and Bo fixed, respectively, while varying the other parameters. For any set in the
investigated range of parameters, the P mode destabilises. Furthermore, in accordance

952 A33-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.876


S. Eghbali, L. Keiser, E. Boujo and F. Gallaire

σr

(×10–3)

0

–0.05

–0.10

0.05

0.10

α

0 0.2 0.4

k

Bo

0.6 0.8 1.0

0

–1

–2

1

2

0 0.2

0.3

0.15

0.1

4

5
6

10

0.4

k
0.6 0.8 1.0

(b)(a)

Figure 5. Variation of dispersion curve for the P (black) and W (blue) modes. (a) The α effect, plotted for
Oh → ∞, Bo = 50, Rec = 0.3 and α = 0.1, 0.15, 0.3; each arrow shows the direction of increasing α for the P
mode dispersion curve. (b) The Bo effect, plotted for Oh → ∞, Rec = 0.7, α = 0.1 and Bo = 4, 5, 6, 10; each
arrow shows the direction of increasing Bo for the P mode dispersion curve.

with the results presented in §§ 3.1 and 3.2, these diagrams show that exceeding a certain
threshold, increasing Bo for a fixed {α,Rec}, or decreasing α for a fixed {Bo,Rec}, leads to
the coexistence of unstable P and W modes, first with the dominance of the P mode,
and later the dominance of the W mode. For instance, figure 6(b) reveals that at a
constant Bo = 50, there are two cut-off values of Rec: first, below Rec ≈ 0.28, the W
mode never dominates the P mode for a finite fibre size; second, below Rec ≈ 0.2, only
the P mode destabilises. Figure 6(b) is limited to α ≥ 0.075 for numerical reasons, that is,
the appearance of spurious eigenmodes with discontinuities in the interface perturbation η̃
for α ≤ 0.05. Mesh refinement on the fibre boundary, on the interface boundary and inside
the domain did not resolve this numerical issue.

Formerly, extensive studies addressed the shapes of the pearls in contact with a fibre
(Carroll 1984; Brochard-Wyart, Di Meglio & Quéré 1990; McHale et al. 1999; McHale,
Newton & Carroll 2001; Duprat 2009). However, instability of the W mode is not expected,
as Rayleigh (1878) states that any non-axisymmetric perturbation should be linearly stable.
The reason is that the surface energy of a liquid column is proportional to its surface area,
which increases with the formation of whirling structures. Hence, such patterns are not
in favour of the surface energy minimisation and should not destabilise (Cardoso & Dias
2006; Duprat 2009; Gallaire & Brun 2017). Moreover, even though some studies have
addressed the linear instability of the helical mode in the context of interfacial columnar
flows, in each case an extra physical mechanism causes helical instability. For instance,
aerodynamic interactions at the interface of inertial jets (Yang 1992), elasticity and electric
stresses at the interface of electrified jets (Li, Yin & Yin 2011), and the solid–liquid–gas
contact line at the interface of static rivulets (Bostwick & Steen 2018) are at play to
counteract capillarity, promoting helical instabilities. In our study, i.e. in the absence of
these extra triggering mechanisms, capillarity is known to stabilise non-axisymmetric
interface perturbations. This apparent paradox gives the motivation to § 3.4, where we
perform an energy analysis on the flow.
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Figure 6. Phase diagrams of the unstable modes associated with the gravity-driven coating flow along an
eccentric fibre: (a) for α = 0.1, Oh → ∞; (b) for Bo = 50, Oh → ∞. The dotted curves mark the interpolated
thresholds obtained from numerical eigenvalue calculations. The grey region in the right-hand corner excludes
the infeasible geometrical limit α + Rec ≥ 1 where the fibre touches the base interface. The coloured regions
indicate the instabilities and dominance in terms of the growth rate as follows: white means only the P mode
destabilises; red means both P and W modes destabilise, and P dominates; blue means both P and W modes
destabilise, and W dominates.

3.4. Energy analysis
In this subsection, in an attempt to clarify the competition between capillary, potential
and viscous effects, and to quantify their respective contributions to the base flow and
the stability of modes P and W, we study the flow from an energy perspective. The base
flow presented in § 2.2, and the perturbed flow resulting from the linear stability analysis
and presented in §§ 3.1–3.2, are investigated by means of the method of energy analysis
to explain the underlying physics of the flow instability. Previously, Boomkamp & Miesen
(1996), Hooper & Boyd (1983), Kataoka & Troian (1997) and Li et al. (2011) employed
this method to determine and compare the roles of different physical mechanisms on the
temporal instability of various interfacial flows.

In the following sections, the area increment in the bulk cross-section is denoted by
dAΩxy . On the boundary j, the increment of surface area is denoted by dAΣj , and the
increment of arc length is denoted by ds. What is commonly referred to as the energy
analysis is in fact the study of the energy conservation in a flow, in different scales, from
the base flow to the perturbations. More precisely, this analysis sheds light on the rate
of energy balance equation, hereafter referred to as the energy equation, which for the
inertialess gravity-driven flow along a fibre can be expressed as∫∫∫

Ωxy

(1 − α)2 tr
(
(∇u + ∇Tu)∇u

)
︸ ︷︷ ︸

DIS

+
∫∫

∂Σint

−
(
τn0

)
· u︸ ︷︷ ︸

BND

+
∫∫∫

Ωxy

−uz︸ ︷︷ ︸
POT

= 0, (3.1)

where the bulk integrals are defined on the volume increment dV = dAΩxy dz, the surface
integral is defined on the cylindrical surface with cross-section ∂Σint and axis in the z
direction (see figure 3), DIS denotes the rate of viscous dissipation in the bulk fluid, BND
denotes the rate of work done by the fluid through the interface, and POT denotes the
rate of change of gravitational potential energy. (For more details about the derivation
of the energy equation and its non-simplified and dimensional form, see Appendix D.)
The energy equation implies that the energy is released and consumed in the flow at
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the same rates, whereas multiple physical mechanisms may contribute to its release and
consumption. In this regard, the sign of each term in (3.1) indicates whether the energy is
removed from (+) or released into (−) the flow by the respective mechanism.

3.4.1. Energy analysis of the base flow
The energy equation for the base flow presented in § 2.2, computed per unit length in z,
can be expressed by∫∫

Ωxy

(1 − α)2 tr
(
(∇u0 + ∇Tu0)∇u0

)
︸ ︷︷ ︸

DIS0

+
∫∫

Ωxy

−u0
z︸ ︷︷ ︸

POT0=−Q0

= 0, (3.2)

which demonstrates that the potential energy released in the flow by drainage of the liquid
is steadily dissipated in the bulk liquid. We recall that Q0 > 0 (see figure 2) and the rate of
potential energy release increases by increasing Rec. Furthermore, recalling the dynamic
condition (2.6), BND0 = 0, which means that no energy is exchanged with the base flow
from the cylindrical interface.

3.4.2. Energy analysis of the perturbed flow
The energy equation at the scale of the linear perturbations, i.e. ε2, computed along one
wavelength, implies⎛⎜⎜⎜⎜⎝

∫∫
Ωxy

(1 − α)2 tr
(
(∇̃ũ + ∇̃Tũ)∇̃ũ�

)
︸ ︷︷ ︸

DIS1

⎞⎟⎟⎟⎟⎠
r

+

⎛⎜⎜⎜⎜⎜⎝
∫
∂Σint

σ�

Bo
κ̃ η̃�︸ ︷︷ ︸

BND1
c,1=σ�SUR1

+
∫
∂Σint

−iku0
z

Bo
κ̃ η̃�︸ ︷︷ ︸

BND1
c,2

+
∫
∂Σint

−
(
τ̃vn0

)
· ũ�︸ ︷︷ ︸

BND1
v

⎞⎟⎟⎟⎟⎟⎠
r

= 0, (3.3)

where � denotes the complex conjugate, BND1
c,1 and BND1

c,2 denote the capillary
contributions to the rate of the work done by the fluid at the perturbed interface, SUR1

denotes the surface energy stored in the perturbed interface, τ̃v denotes the viscous

contribution of the stress tensor, and BND1
v denotes the viscous (shear) contribution to

the rate of the work done by the fluid at the perturbed interface, which can be expressed as

BND1
v =

∫
∂Σint

(1 − α)2ũ�z ∂rru0
z η̃

+
∫
∂Σint

−(1 − α)2ũ�θ ∂θu0
z ikη̃ +

∫
∂Σint

−(1 − α)2ũ�z ∂θu0
z ∂θ η̃. (3.4)

We recall that the subscript r denotes the real part of a complex number. Equation (3.3)
unravels that the work exchanged at the perturbed interface is partially dissipated in the
bulk liquid, whereas the remainder (or deficit) is stored at (or released from) the free
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Rec σ�r (SUR1)r (σ �SUR1)r (BND1
c,2)r (BND1

v)r (DIS1)r

0 0.0007110 −0.0079790 −0.0000057 0 −0.9999943 1
0.1 0.0007098 −0.0079499 −0.0000056 0.0000000 −0.9999943 1
0.5 0.0026527 −0.0069362 −0.0000184 0.0000064 −0.9999822 1

Table 1. The effect of Rec on different terms in energy equation (3.3) for the perturbed flow associated with
the P mode: Oh → ∞, Bo = 50, α = 0.1, k = 0.325, Rec = 0, 0.1, 0.5. The corresponding dispersion curves
and their eigeninterfaces are shown in figure 4. As the maximal growth rate of the W mode for Rec = 0.5 occurs
at k = 0.325, it is particularly chosen as the representative for demonstrating the effect of Rec on the variation
of each term. All of the energy terms are normalised with DIS. Recall that the sign of each term in (3.3)
indicates whether the energy is removed from (+) or released into (−) the flow by the respective mechanism.
Here, (SUR1)r is also presented as its sign determines if the energy is stored in (+) or released from (−) the
interface.

surface as interfacial energy. Equations (3.3)–(3.4) also evidence that the principal source
of the work exchanged at the interface is the base flow itself, as the viscous contribution
BND1

v and the capillary contribution BND1
c,2 are proportional to the base flow’s shear and

drainage velocity, respectively. Note that BND1
c,1 also has an implicit contribution from

the base flow through κ̃ and the assumption of a cylindrical interface for the base flow.
(For further details on the derivation of (3.3) and its different terms, see § D.2.)

For the P and W modes, the effect of increasing Rec on each term of (3.3) is shown in
tables 1 and 2, respectively. For both of these modes, the majority of energy exchange to
the perturbations is due to the viscosity: energy enters the system through the shear at the
interface, and it is mostly dissipated in the bulk. In the case of the P mode, σ�r > 0 and
(SUR1)r < 0, meaning that over the course of time, by growth of the P perturbations, the
surface energy is also released to the system. Recalling (2.17), for some value of k ≥ 1,
the sign of κ̃ (and subsequently the sign of (SUR1)r) changes,meaning that surface energy
can be released only in small values of k, and it should be stored in large values of k,
which in principle sets a cut-off wavenumber kcr for the instability of the P mode. In other
words, in some range 0 < k < kcr, the P mode is destabilised by both capillary and viscous
mechanisms, which justifies its presence for all sets of {Oh → ∞,Bo, α,Rec}. On the
other hand, in the case of the W mode, (SUR1)r > 0, which indicates that with the growth
of the whirling interface, a part of the energy released into the system is stored as surface
energy. For small Rec, the energy added to the system by the shear at the interface is not
sufficient to destabilise the W mode; however, as Rec increases, more energy is released
to the perturbations by interfacial shear, which eventually suffices to destabilise the W
mode. In other words, interfacial shear (in favour) and capillary (against) mechanisms
exhibit opposite effects on the instability of the W mode; and for sufficiently large Rec, the
interfacial shear dominates over some range of k, thus originating the instability of the W
mode.

3.5. Experimental observations
A set-up was designed a posteriori to observe experimentally the newly discovered
unstable modes, as depicted in figure 7. Highly viscous silicone oil (47 V 100 000
BluesilTM , with the following properties at 25 ◦C: ρ = 973 kg m−3, μ = 89 Pa s,
γ = 21.1 × 10−3 N m−1) is pumped by peristalsis to an upper tank with a moving bottom
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Rec σ�r (SUR1)r (σ �SUR1)r (BND1
c,2)r (BND1

v)r (DIS1)r

0 −0.0011307 0.0017903 −0.0000020 0 −0.9999980 1
0.1 −0.0014484 0.0016131 −0.0000023 0.0003023 −1.0003000 1
0.5 0.0406023 0.0075478 0.0003065 0.000829 −1.0011355 1

Table 2. Same as table 1 for the W mode.

Fibre

Moving plate

Front

Side
150 cm

Pump

g

Figure 7. Schematic of the experimental set-up.

plate. The liquid discharges from a modular hole 8–10 mm in diameter, located on the
moving plate through which a solid nylon fibre 0.7 mm in diameter passes vertically. From
the upper tank, the liquid flows along the fibre over a distance ∼150 cm. The draining
liquid is collected in a lower tank connected to the suction side of the pump. When the
moving plate is at one extreme, the position of each fibre end is calibrated under high
tension by means of two micrometric screws such that the fibre is vertical and concentric
with the hole and liquid column (this step is repeated every time the moving plate is
replaced to change the discharge hole diameter). Afterwards, the fibre eccentricity is
varied by displacing the moving plate continuously (within ∼5 s), without touching the
fibre. After displacement of the moving plate, flow takes ∼15–40 min (depending on the
discharge hole diameter and magnitude of the plate displacement) to redevelop along the
fibre, and readjusts the liquid column position and fibre eccentricity. Afterwards, it takes
∼5–10 min for the first evidence of the instabilities to appear. Evolution of the base flow,
from a concentric flow to the eccentric one, and the occurrence of the instabilities, are
photographed from two orthogonal directions: in the direction of the plate displacement
(hereafter front view), and orthogonal to the plate displacement (hereafter side view). After
each experiment run, the moving plate is brought back to its initial position, leading to a
fully developed concentric flow down the fibre. We repeat the same procedure multiple
times for different values of moving plate displacement.

Figure 8 presents examples of the pearling and whirling interfaces captured over time,
observed from side and front views. When the fibre eccentricity is small (figure 8a),
pearls start to form. While advected downwards, pearls preserve the planar symmetry of
the system (front view) and grow predominantly on the thick side (side view). As they
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Pearl mode

Bo = 3.65, α = 0.120, Rec = 0.87

Whirl mode

Bo = 7.30, α = 0.087, Rec = 0.9
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Figure 8. Experimental observation of the unstable modes: (a) pearls, data no. 1 in table 3; (b) whirling
interface, data no. 7 in table 3. The front and side views are not synchronous.

grow more, their velocity and spacing alter from the early stage of their emergence under
the effect of nonlinearities (see supplementary movie 1 available at https://doi.org/10.
1017/jfm.2022.876). By increasing the fibre eccentricity far enough (figure 8b), whirling
structures appear. Initially small, the perturbations grow and finally merge under nonlinear
effects. The merged structures are advected by the flow, and soon after, new whirling
structures emerge and similar sequences repeat (see supplementary movie 2). Table 3
shows, for different conditions, which mode is observed experimentally (P or W) and
the unstable eigenmode(s) predicted by linear stability analysis (P only, P dominant, or W
dominant). In all our experiments, the mode observed experimentally corresponds to the
dominant unstable eigenmode. The wavelengths of the emerging structures were measured
by means of a Mathematica image analysis script over multiple formation periods of
the unstable structures (see Appendix E for more details about the image analyses).
Table 3 presents the measured wavenumbers (dimensionless) from the experimental
observations, kexp, and the maximal wavenumber predicted by the stability analysis,
kLSA. The comparison confirms a firm agreement between the experiments and the linear
stability analysis. We can confirm that the flow is inertialess, as Bo(1 − α)4/Oh2 ≤
6.2 × 10−5 for all of our experiments in table 3.
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Data no. Oh Bo α Rec kexp kLSA Modeexp ModeLSA

1 369 3.65 0.120 0.87 0.40 ± 0.06 0.44 P P
2 344 4.83 0.107 0.64 0.43 ± 0.06 0.45 P P
3 339 5.03 0.104 0.46 0.41 ± 0.07 0.43 P P
4 331 5.34 0.101 0.87 0.32 ± 0.05 0.30 W W∗
5 327 5.86 0.097 0.69 0.40 ± 0.07 0.44 P P∗
6 321 6.32 0.094 0.95 0.28 ± 0.08 0.28 W W∗
7 310 7.30 0.087 0.90 0.34 ± 0.08 0.28 W W∗
8 308 7.47 0.086 0.87 0.28 ± 0.06 0.28 W W∗
9 306 7.65 0.085 0.85 0.35 ± 0.06 0.29 W W∗
10 303 7.99 0.083 0.84 0.24 ± 0.06 0.28 W W∗

Table 3. Dimensionless parameters associated with the experimental points, reported along with the
comparison between the measured experimental wavenumber (comprising the standard deviation) kexp, and
the maximal wavenumber predicted by the linear stability analysis kLSA. Here, Modeexp indicates the mode
observed experimentally, and ModeLSA indicates the dominant unstable mode obtained from the stability
analysis, where the superscript ∗ indicates that both P and W modes are unstable. The linear predictions
confirm the dominant modes observed in all of the experiments. Data no. 1 and 7 are illustrated in figure 8(a,b),
respectively.

The main difficulty of the experiments is the observation of the pearl modes at high Bo.
Indeed, increasing Bo leads to faster convection, which delays the appearance of the pearls
further down the liquid column. With a total length of 1.5 m, pearl modes are difficult to
observe above Bo ≈ 10, and this difficulty increases as Bo is increased further (similarly
when Rec is decreased). Furthermore, the hole at the exit of the tank hosts a complex
three-dimensional flow induced by a sudden change of boundary conditions. It leads to the
selection of values for the eccentricity that are difficult to control and very sensitive to the
position of the fibre within the hole.

Altogether, we believe that this is the first experimental observation of the whirling
patterns in flows down a fibre. We hope that this work will foster further experimental
investigations, including fluids with complex rheological properties, or non-circular
sections for the liquid column.

4. Summary and conclusion

In this work, we studied the stability of a gravity-driven flow along an eccentric solid
fibre in the absence of inertia. To begin with, the base flow was computed numerically for
different values of the fibre size and eccentricity under the assumption of a fully developed
parallel flow with a cylindrical interface. The results exhibit a substantial increase in the
drainage, up to more than twofold, when the fibre eccentricity is increased.

Next, the stability of the base flow was investigated by means of linear stability analysis,
where an extensive study was conducted on the space of dimensionless parameters
{Oh → ∞,Bo, α,Rec}. Two main unstable modes were identified in the parameters space.
First, the pearl mode evidences the characteristics of the Rayleigh–Plateau instability,
but with a distorted interface caused by the broken symmetry of the flow, due to the
fibre eccentricity. This mode destabilises for any set of parameters over some range
of wavenumbers 0 < k < kcr, where kcr may differ from unity depending on the flow
parameters. Second, we identified for the first time the instability of the whirl mode that
forms a single helix whirling around the fibre along its axial direction in some region
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of the parameters space. While in such a flow a whirling interface is well known from
the literature to be stable for defying the surface energy minimisation (the main driving
force of the Rayleigh–Plateau instability), the present linear analysis depicts that a small
fibre radius, large fibre eccentricity and high Bo promote instability of the whirl mode.
Additionally, for a fixed Bo, a cut-off value was observed for the fibre eccentricity below
which no unstable whirl mode was found, even by further decreasing the fibre radius.

In order to elucidate the origin of the whirling instability, an energy analysis was
formulated to delve into the physical mechanisms underlying the flow at the scales of the
base flow and linear perturbations. This analysis, at the scale of the base flow, demonstrates
the drainage as the means for the liquid to release its gravitational potential energy. This
released energy ultimately dissipates in the bulk fluid, which sustains a fully developed
drainage. By increasing the fibre eccentricity, drainage increases, hence the potential
energy release is also boosted. In the presence of infinitesimal perturbations in the flow, a
part of the dissipated energy is injected into the perturbations through the interface shear.
On top of that, the energy analysis of the perturbed flow unravels the instability of the whirl
mode as a direct consequence of the increased rate of shear work at the interface, which
is dissipated mainly in the bulk fluid, and its remainder is stored at the liquid surface to
promote the growth of the whirling structure over time. In the case of the pearl mode, both
surface energy release and interface shear work support the growth of pearls for small
wavenumbers. In contrast, for higher wavenumbers, surface tension acts oppositely and
stabilises the perturbations, thus establishing a cut-off wavenumber kcr for the instability
of the pearl mode, different from that of the Rayleigh–Plateau instability (Rayleigh 1878).

Finally, we compared the results of our stability analysis with a set of experiments
carried out with a highly viscous silicone oil. We reported the experimental observation
of the whirling perturbed interface in the flow down a rigid eccentric fibre. In addition, the
dominant mode and the maximal wavenumbers predicted by the linear stability analysis
agree very well with the experimental observations.

The formation of a liquid helix has been reported previously for the drainage of liquid
jets along vertical fibres (Jambon-Puillet et al. 2019). However, those peculiar patterns have
a very different origin, and emerge from an initially azimuthal flow, where surface tension
keeps the liquid attached to the fibre, and inertia enables it to temporarily maintain the
azimuthal velocity component downstream. In our study, the shifted pearls and whirling
patterns remarkably emerge from an inertialess flow, initially fully parallel to the fibre.

Possible experimental directions for future works include exploring fluids with complex
rheological properties, insofar as whirling patterns emerge from a competition between
interfacial shear and surface tension. In our study, the liquid column is initially cylindrical,
as the hole in the bottom of the reservoir is circular. Modifications of the hole geometry
(e.g. ellipsoids or polygons) are expected to lead to a rich variety of patterns. Furthermore,
the flow can be studied from the absolute/convective perspective in order to better elucidate
the competition between pearling and whirling modes.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.876.
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Appendix A. Derivation of the interface boundary conditions

In this section, the derivation of the interface boundary conditions for the perturbed flow is
elaborated. These conditions should be imposed on the perturbed interface, i.e. on r = 1 +
εη1, while η1 is already a part of the problem unknowns. By using the Taylor expansion,
that is, projecting radially on the base interface, i.e. on r = 1, any flow quantity at the
perturbed interface can be approximated readily. This projection is referred to as flattening,
and for an arbitrary function f (r, θ, z) it can be expressed as

f |(r=1+εη1,θ,z) = f |(r=1,θ,z) + εη1 ∂rf |(r=1,θ,z) + O(ε2). (A1)

By substituting the decomposed state vector of (2.8) into the interface conditions
(2.5)–(2.6), then using the ansatz of (2.9), and applying the aforementioned flattening,
we can formulate these conditions as a set of equivalent constraints on the boundary of the
base interface. The linearised kinematic condition readily gives (2.12), and the linearised
dynamic condition gives

τ 0ñ + η̃ ∂rτ
0n0 + τ̃n0 = − 1

Bo
(κ0ñ + κ̃n0) on r = 1, (A2)

where κ0 = 1, n0 = 1er and ñ = −∂θ η̃eθ − ikη̃ez, hence (2.16). In order to express this
constraint in Cartesian coordinates, some of its terms should be transformed by employing
the Jacobian transformations as

er = cos θ ex + sin θ ey, eθ = − sin θ ex + cos θ ey,

∂r = cos θ ∂x + sin θ ∂y, ∂θ = t0 · ∇s

t0 · ∇sθ
,

⎫⎪⎬⎪⎭ (A3)

where t0 denotes the unit tangent vector, and ∇s = ∇ − n0(n0 · ∇) is the tangential
derivative on the base interface. For further details concerning the numerical
implementation of boundary conditions, see § B.2.

Appendix B. Variational formulation of problem and implementation of boundary
conditions

Implementation of the numerical scheme and development of the variational formulation
associated with the governing equations presented in § 2 are elaborated in this appendix,
recalling that the numerical domain is shown in figure 3.
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B.1. Base flow
The stationary limit of the Navier–Stokes equations (2.2)–(2.3), for a fully developed axial
flow field q0 = (u0

z , p0, 1)T, implies

(1 − α)2 ∇2
xyu0

z + 1 = 0, p0 = const., on Ωxy, (B1a,b)

where ∇2
xy = ∇xy · ∇xy = ∂xx + ∂yy denotes the Laplacian in the cross-section. As

explained in § 2.2, the kinematic condition (2.5) is trivial. The interface dynamic condition
(2.6) readily implies

∇xyu0
z · n0 = 0, p0 = 1

Bo
, on ∂Σint. (B2a,b)

To obtain the variational form of (B1a,b), it should be multiplied by a test function ψz,
and be integrated on Ωxy as∫∫

Ωxy

((1 − α)2 ∇2
xyu0

z + 1)ψz dAΩxy = 0. (B3)

After integrating the first term by parts, ψz ∇2
xyu0

z = ∇xy · (ψzu0
z )− ∇xyu0

z · ∇xyψz, and
then applying Gauss’s theorem to it,

∫∫
Ωxy

∇xy · (ψz ∇xyu0
z ) dAΩxy = ∫

∂Ωxy
(ψz ∇xyu0

z ) ·
n0 ds, we can impose (B2a,b) on ∂Σint and no-slip condition on ∂Σf . The final variational
form of the base flow equations is∫∫

Ωxy

(−(1 − α)2 ∇xyu0
z · ∇xyψz + ψz)dAΩxy = 0. (B4)

It should be noted that ψz|∂Σf = 0 due to the Dirichlet nature of the no-slip boundary
condition. Variational equation (B4) can be implemented readily and solved in COMSOL
Multiphysics.

B.2. Linear stability analysis
To develop the variational form of (2.13), the procedure is similar to that for the base
flow (see § B.1). First, the normal mode of (2.9) is applied to the system of equations
(2.10)–(2.12). Then it is multiplied internally by the vector of the test functions ψ =
(ψp, ψu, ψη)

T, where ψu = (ψux, ψuy, ψuz)
T. The resulting scalar product is integrated

on Ωxy, which in the linear order gives{∫∫
Ωxy

ψ�p (∇̃ · ũ) dAΩxy

+
∫∫

Ωxy

ψ�u ·
(

Bo
Oh2 (1 − α)4

(
σ ũ + (u0 · ∇̃)̃u + (̃u · ∇)u0

)
− ∇̃ · τ̃

)
dAΩxy

+
∫
∂Σint

ψ�η((σ + iku0
z )η̃ − ũ · er)ds

}
+ c.c. = 0. (B5)

It should be noted that in a complex system, applied scalar product is Hermitian, defined
as 〈a, b〉 = a� · b where the superscript � denotes the complex conjugate. In the last line
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of this system of equations, kinematic condition (2.12) is used to define η̃ only on ∂Σint.
After integrating by parts, ψ�u · (∇̃ · τ̃ ) = ∇̃ · (τ̃ψ�u)− tr(τ̃T(∇̃ψu)

�), and then applying
the Gauss’s theorem,

∫∫
Ωxy

∇̃ · (τ̃ψ�u) dAΩxy = ∫
∂Ωxy

(τ̃ψ�u) · n0 ds, (B5) implies{∫∫
Ωxy

ψ�p (∇̃ · ũ) dAΩxy

+
∫∫

Ωxy

ψ�u ·
(

Bo
Oh2 (1 − α)4(σ ũ + (u0 · ∇̃)̃u + (̃u · ∇)u0)

)
dAΩxy

+
∫∫

Ωxy

tr
(
τ̃T(∇̃ψu)

�
)

dAΩxy

+
∫
∂Ωxy

−
(
τ̃ψ�u

)
· n0 ds

+
∫
∂Σint

ψ�η((σ + iku0
z )η̃ − ũ · er)ds

}
+ c.c. = 0. (B6)

Here, τ̃ is symmetric, thus (τ̃ψ�u) · n0 = (τ̃n0) · ψ�u. Using the dynamic condition (A2)
and the fact that ψu|∂Σf = 0 (because of the no-slip condition on fibre), the variational
form of (2.13) implies{∫∫

Ωxy

ψ�p (∇̃ · ũ) dAΩxy (B7)

+
∫∫

Ωxy

ψ�u ·
(

Bo
Oh2 (1 − α)4σ ũ

)
dAΩxy (B8)

+
∫∫

Ωxy

ψ�u ·
(

Bo
Oh2 (1 − α)4((u0 · ∇̃)̃u + (̃u · ∇)u0)

)
dAΩxy (B9)

+
∫∫

Ωxy

tr
(
τ̃T(∇̃ψu)

�
)

dAΩxy (B10)

+
∫
∂Σint

(
τ 0ñ + η̃ ∂rτ

0n0 + 1
Bo
(κ0ñ + κ̃n0)

)
· ψ�u ds (B11)

+
∫
∂Σint

ψ�η(σ η̃) ds (B12)

+
∫
∂Σint

ψ�η(iku0
z η̃ − ũ · er) ds

}
(B13)

+ c.c. = 0. (B14)

This variational equation can be implemented readily and solved in COMSOL
Multiphysics. It is sufficient to solve the first part (in { }), and the c.c. is known
consequently. The matrix representation of (B7)–(B14) is shown in figure 9.
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(B7)

0 0 00

0 00
0 00

0
0

(B7)

= –σ

(B11)

(B13)

0

0

00
0 00

0 0
00 0 0

0 00 0 0

0 00 0 0

0 00 0 0
0 0(B8) 0 0

0 (B12)

(B7)

(B9) + (B10)

p̃
ũ

p̃

p̃

η̃

ũ

ũ

∂Σf

∂Σint

Ωxy

p̃
ũ

p̃

p̃

η̃

ũ

ũ

∂Σf

∂Σint

Ωxy

I

Figure 9. Matrix representation of the variational system (B7)–(B14), solved in COMSOL Multiphysics. Blue
represents the implementation of (2.10)–(2.11); white represents the implementation of the no-slip boundary
condition on the fibre; green represents the implementation of the dynamic boundary condition (2.16); and
beige represents the implementation of the kinematic condition (2.12).

σr

0

–0.1

–0.2

σi

0

–0.5

–1.0

k

(×10–3)

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

m = 0

m = 0

|m| = 1

|m| = 1

10

5

0

0

–0.5

–1.0

k
0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

(b)(a)

Figure 10. Comparison between the present numerical model (circles) and analytical dispersion relation
(lines) for a centred fibre, Rec = 0. (a) Thick film, α = 0.6, |m| = 0, 1. (b) Thin film, α = 0.9, m = 0. Both
cases correspond to Oh → ∞, Bo = 1. Black and blue colours refer to the P and W modes, respectively.
Craster & Matar (2006), Duprat (2009) and Gallaire & Brun (2017) considered a perturbation similar to (2.8)
with the Fourier ansatz exponent exp[σ t + ikz + imθ ], a typical choice for the axisymmetric configurations.
For a centred fibre, the P and W modes are identical to the m = 0 and |m| = 1 modes, respectively.

Appendix C. Validation of numerical model

The developed numerical scheme is validated hereafter. Several measures are taken to
ensure the correspondence of the model, based on the asymptotic limits.

C.1. Linear stability analysis model
Linear stability analysis is validated with the analytical solutions that Craster & Matar
(2006), Duprat (2009) and Gallaire & Brun (2017) presented for the coating flow over
a long centred fibre. All of these references employed an approximation of the Stokes
equations for long jets, referred to as the long-wavelength approximation (Reynolds 1886).
Craster & Matar (2006) express the growth rate of the linearly unstable axisymmetric
modes in terms of the Bessel function of the first type for the full range of α. Duprat (2009)
and Gallaire & Brun (2017) employed also the lubrication approximation and represented
the growth rate as σ = ((1 − α)/3Bo)(k2 − k4)− ik in the limit of thin film, i.e. α → 1.
Figures 10(a) and 10(b) present the validity of our model for any α, evidenced by the
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σr

σi

Ndofs Ndofs

(×10–3)

(×105)(×105)

(×105)(×105)

(b)(a)

0

2

4

3 4 5 6 73 4 5 6 7

3 4 5 6 73 4 5 6 7

–0.15

0

–1

0

–1

0

Figure 11. Mesh convergence proof of the P (black) and W (blue) eigenvalues as a function of Ndofs.
Eigenvalues are rescaled with the modulus of the eigenvalue from the most refined mesh, and Oh → ∞,
Bo = 50, Rec = 0.3, α = 0.4, k = 0.3.

firm agreement between our numerical model and the analytical solutions for the arbitrary
values α = 0.6 and α = 0.9, representing the thick and thin liquid film limits, respectively.

C.2. Grid independency
A convergence study for the P and W modes’ eigenvalues is presented in figure 11, for an
arbitrary set of parameters as an example. Mesh convergence is already attained for ∼3500
degrees of freedom, Ndofs, in this case. The threshold of mesh convergence may vary
slightly with Rec and Bo. In the case of large Rec, fibre vicinity requires more refinement
due to the large gradients of the fluid fields originated from the asymmetric base flow.
Furthermore, as the capillary length scales as lc ∝ Bo−1/2, interface mesh resolution plays
a crucial role in Ndofs required for mesh convergence. The number of divisions on the
interface should be such that an element’s edge stays shorter than lc – the reason why our
study is restricted up to Bo = 50.

Appendix D. Derivation of the energy equation

D.1. Energy equation
In this appendix, the derivation of the energy equation is elaborated. We recall the
momentum equation (2.3), which in the dimensional form reads

ρ
(
∂t + (u′ · ∇))u′ = ∇ · τ ′ + ρg, (D1)

where the superscript ′ denotes dimensional quantities, and the dimensional stress tensor
reads

τ ′ = −p′I + μ
(∇u′ + ∇u′T) . (D2)
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To obtain the energy equation, we begin with computing the scalar product of (D1) and
the velocity vector u′, then we integrate the product across the liquid bulk, which gives

∫∫∫
Ωxy

ρu′ · (∂tu′ + (u′ · ∇)u′) dV =
∫∫∫

Ωxy

u′ · (∇ · τ ′ + ρg) dV. (D3)

Each term in this equation has the dimension of power, J s−1. After integrating the first
term in the right-hand side by parts, i.e. u′ · (∇ · τ ′) = ∇ · (τ ′Tu′)− tr(τ ′∇u′), and then
applying Gauss’s theorem to it,

∫∫∫
Ωxy

∇ · (τ ′Tu′) dV = ∫∫
∂Ωxy

(τ ′Tu′) · n0 dA∂Ωxy , (D3)
implies∫∫∫

Ωxy

ρu′ · (∂tu′ + (u′ · ∇)u′) =
∫∫

∂Ωxy

(
τ ′Tu′

)
· n0 −

∫∫∫
Ωxy

tr
(
τ ′ ∇u′

)
+
∫∫∫

Ωxy

ρgu′
z. (D4)

In this equation, and hereafter, for the ease of notation, we omit dV from volumetric
integrals, dA∂Ωxy from boundary surface integrals, and ds from one-dimensional
boundary integrals. Further simplification can be made as tr(τ ′ ∇u′) = −p′ ∇ · u′ +
μ tr

(
(∇u′ + ∇Tu′)∇u′), where ∇ · u′ = 0 due to the incompressibility. Symmetry of

the stress tensor implies (τ ′Tu′) · n0 = (τ ′n0) · u′. Hence the general form of the energy
equation can be expressed as∫∫∫

Ωxy

ρu′ · ∂tu′

︸ ︷︷ ︸
KIN

+
∫∫∫

Ωxy

ρu′ · ((u′ · ∇)u′)
︸ ︷︷ ︸

REY

+
∫∫∫

Ωxy

μ tr
(
(∇u′ + ∇Tu′)∇u′)

︸ ︷︷ ︸
DIS

+
∫∫

∂Ωxy

−
(
τ ′n0

)
· u′

︸ ︷︷ ︸
BND

+
∫∫∫

Ωxy

−ρgu′
z︸ ︷︷ ︸

POT

= 0. (D5)

Each underbrace denotes the physical mechanism associated with the respective term, as
follows:

(i) KIN, the temporal rate of kinetic energy in the bulk fluid;
(ii) REY, the rate of energy transmission between fluid layers due to the Reynolds

stresses;
(iii) DIS, the rate of viscous dissipation in the bulk fluid;
(iv) BND, the rate of work done by the fluid through the moving boundaries;
(v) POT, the rate of change of gravitational potential energy.

Now that the physical mechanism behind each term in the energy equation is
demonstrated, following the scaling presented in § 2, the dimensionless form of the energy
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equation can be expressed as∫∫∫
Ωxy

Bo
Oh2 (1 − α)4u · ∂tu︸ ︷︷ ︸

KIN

+
∫∫∫

Ωxy

Bo
Oh2 (1 − α)4u · ((u · ∇)u)︸ ︷︷ ︸

REY

+
∫∫∫

Ωxy

(1 − α)2 tr
(
(∇u + ∇Tu)∇u

)
︸ ︷︷ ︸

DIS

+
∫∫

∂Ωxy

−
(
τn0

)
· u︸ ︷︷ ︸

BND

+
∫∫∫

Ωxy

−uz︸ ︷︷ ︸
POT

= 0.

(D6)

In the limit of inertialess coating flow along a fibre, Bo (1 − α)4/Oh2 � 1, KIN and REY
are negligible. Furthermore, u = 0 on ∂Σf , thus yielding (3.1).

D.2. Energy equation for the perturbed flow
The energy equation for the perturbed flow is obtained by substituting the perturbed state
vector (2.8) with the ansatz of (2.9) into (3.1) and integrating it over one wavelength Δz =
λ = 2π/k. The resulting integral in ε2 order determines the energy equation for the linear
perturbations, which implies

2π

k
exp(2σrt)

⎡⎢⎢⎢⎢⎣
∫∫

Ωxy

(1 − α)2 tr
(
(∇̃ũ + ∇̃Tũ)∇̃ũ�

)
︸ ︷︷ ︸

DIS1

+
∫
∂Σint

−
(
τ̃n0

)
· ũ�︸ ︷︷ ︸

BND1

⎤⎥⎥⎥⎥⎦
+ c.c. = 0. (D7)

Recall that the ansatz of (2.9) is complex, hence the integral of terms in ε1 order vanishes
due to the periodicity of the perturbations over λ. As (2π/k) exp(2σrt) > 0, it can be
factorised and simplified. We hereafter focus on only the real part of (D7), which gives

(DIS1 + BND1)r = 0. (D8)

Recalling (2.12) and (2.16), BND can be decomposed as

BND1 = BND1
v + BND1

c, (D9)

where subscripts v and c denote the viscous and capillary contributions to the rate of work
at the perturbed interface, respectively, expressed as

BND1
v =

∫
∂Σint

(1 − α)2ũ�z ∂rru0
z η̃

+
∫
∂Σint

−(1 − α)2ũ�θ ∂θu0
z ikη̃ +

∫
∂Σint

−(1 − α)2ũ�z ∂θu0
z ∂θ η̃, (D10)

BND1
c =

∫
∂Σint

σ�

Bo
κ̃ η̃�︸ ︷︷ ︸

BND1
c,1

+
∫
∂Σint

−iku0
z

Bo
κ̃ η̃�︸ ︷︷ ︸

BND1
c,2

. (D11)

Different terms of (3.4) correspond to the rate of shear stress work on the perturbed
interface. Moreover, BND1

c,1 determines the temporal rate of surface energy release
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(or storage) at the perturbed interface, which can be rewritten as

BND1
c,1 = σ�

∫
∂Σint

κ̃ η̃�

Bo︸ ︷︷ ︸
SUR1

, (D12)

where SUR1 denotes the surface energy stored in the perturbed interface, thus giving (3.3).

Appendix E. Image analysis of the experiments

In this appendix, we detail the step-by-step procedure to quantify our experiments by
means of the image analysis of the images taken from the side and front views. All images
are saved in binarised format, including only black and white pixels. This procedure is
implemented in a Mathematica image analysis script. The steps are as follows.

(i) When the fibre is concentric with the liquid column, the edges of the liquid column
are extracted from the images of the side and front views. Each edge appears as a
line of black pixels and marks the extremity of the liquid column interface.

(ii) Angle correction is applied on the images, to obtain vertical column edges.
(iii) The rotation angle of each camera is saved. These angles are applied to correct all of

the images from their corresponding cameras.
(iv) For each camera, the length scale of the images is calculated from the concentric

liquid column, by counting the number of pixels per unit length of a ruler placed
next to the column. These scales are saved and used for the rest of the measurements.

(v) The liquid column diameter and the radial position of its mid-line axis are calculated
from each camera. The mid-line axis is a vertical line whose radial coordinate is
obtained by averaging the radial position of the liquid column edges along the axis.

(vi) After the moving plate is displaced and flow develops, step (v) is repeated. It is
important to measure the column diameter close to the nozzle, where the liquid
column remains circular.

(vii) The in-plane displacement of the liquid column is calculated by subtracting the
mid-line axis positions measured from the side view camera in steps (vi) and (v).
(It is verified that there is no axis displacement in the front view.)

(viii) The moving plate displacement is measured visually from the displacement of the
ruler engraved on the plate with respect to a reference mark.

(ix) We calculate Rec by subtracting the side view axis displacement, measured in step
(vii), from the moving plate displacement measured in step (viii).

(x) We calculate α as the ratio of the fibre-to-column diameter, calculated in step (vi).
(xi) Dimensionless numbers Oh,Bo are computed by knowing the physical properties of

the working fluid, α, and the column diameter.
(xii) For each angle-corrected image taken from the front view, the edges of the liquid

column are extracted. Each interface edge for the perturbed flow appears as a curve
of black pixels (we note that at the early stage of interface destabilisation, the
interface perturbations are more visible in the front view). Then the peak-to-peak
and crest-to-crest axial distances on the interface are extracted.

(xiii) The perturbation wavelength is computed by averaging the distances computed in
step (xii), reported along with their standard deviations during multiple formation
periods of the unstable structures.
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