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THE UNIFORM CONTINUITY OF FUNCTIONS 
IN SOBOLEV SPACES 

BY 

R. A. ADAMS(1) 

ABSTRACT. Functions in Wm'p(H)n Wj'q(H), mp>dima, q > 1, 
may have to be uniformly continuous on Ù even if Ù is not a 
Lipschitz domain. 

1. Introduction. Let ft be a domain (an open set) in n-dimensional Eucli
dean space Rn. We denote the boundary of ft by dft. The Sobolev space 
Wm'p(ft) consists of (equivalence classes of) functions u in Lp(ft) whose 
distributional derivatives Dau also belong to Lp(ft) whenever | a | < m . (m is a 
positive integer; p is real, p > 1; a = (au • • •, oLn) is an n-tuple of nonnegative 
integers; \a\ = ax + • • • + an; D" = (d/dx^ • • • (d/dxn)

a\) Wm'p(ft) is a Banach 
space with respect to the norm 

N U , n = { S f \Dau(x)\pdx)1,P. 

Wo-p(ft) is the closure in Wm,p(H) of the space C£(ft) of infinitely differen-
tiable functions having compact support in 12. 

We denote by C((ï) the space of functions u bounded and uniformly 
continuous on H and having, therefore, unique continuous extensions to the 
closure ft of il, and by CB(n) the space of functions bounded and continuous 
on ft. Both are Banach spaces with respect to the norm supxen |w(x)|. 

The domain ft has the cone property if there exists an open, finite, right 
spherical cone C such that each point x e ft is the vertex of a finite cone Cx 

contained in ft and congruent to C. ft is a Lipschitz domain if each point x e dft 
has a neighbourhood Ux such that, for some rectangular coordinate system f in 
Ux, Ux flft is specified by an inequality of the form £n < / { £ i , . . . , Çn-i) where / 
is a Lipschitz continuous function. 

Many imbedding results for Wmp(ft) can be obtained under the fairly mild 
requirement that ft should have the cone property. For instance, for such ft, 
Wmp(ft) is imbedded in CB(ft) provided mp > n. (This is a part of the "Sobolev 
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Imbedding Theorem"—see e.g. [1], theorem 5.4.) Certain imbeddings, how
ever, require more regularity of H. One cannot in general expect to imbed 
Wmp(H) into C(ft) if £1 has only the cone property. Two obvious counterexam
ples are the split squares: 

fix = {x = (xi, x2) G R2 : - 1 < Xi < 1, 0 < \x2\ < 1} 

a 2 = n 1 U { j c G R 2 : - K x 1 < 0 , x2 = 0}. 

Both Hi and ft2 have the cone property and £l2 is connected. However the 
reader may readily construct a function u belonging to Wm,p(fl) (Cl = Ctl or (î2) 
for every m,p, but which satisfies lim^—o- w(x)^limX2_>0+ u(x) for Xi>0, and 
hence cannot be uniformly continuous on fî. 

If O is a bounded Lipschitz domain then the Sobolev imbedding theorem 
assures us that Wm'p(ft) is imbedded in C(Vt) provided mp>n. We examine 
circumstances under which the Lipschitz property can be weakened. It is clear, 
at least for bounded ft, that elements of CB(ft) which also happen to tend to 
zero on dft belong to C(ft). Since for any q the elements of Wj'q(ft) may be 
regarded as vanishing "in a generalized sense" on dft (see Lemma 2 below) one 
is led to the conjecture: 

wm'p((i)nwj'q((i)cc(â). 

There is good reason to suspect that this conjecture is true for arbitrary 
domains ft (see section 5 below) but this writer has been unable to discover a 
general proof. We can prove it for arbitrary domains with the cone property 
using a well-known theorem of E. Gagliardo [4] on the decomposition of such 
domains into unions of Lipschitz domains. 

THEOREM 1. Let £1 be a domain in Rn having the cone property. If mp > n 
and q^l then Wm'p(ft)fl Wo'q(ft)c: C(ft). More generally, for any nonnegative 
integer /, Wm+i'p(ft) H Wj+/'q(ft) <= C(Ô). 

Here, of course, C}(Ù) denotes the space of functions u for which Daue 
C(ft)( |a |</), normed by max|a|<j supxen |Dau(x)|. Theorem 1 need only be 
proved for / = 0 as it then follows for general / be application of the special 
case to derivatives Dau, | a | ^ / . We give a proof in sections 3 and 4 below. At 
this point we can make several remarks. 

(i) Theorem 1 is only of interest when q < n. If q > n it is a trivial consequ
ence of the Sobolev imbedding theorem that Wj+J',q(ft) is imbedded in CJ(Ô) 
for arbitrary domains Cl (since zero extension outside fl imbeds WS'q(H) into 
WM (R n ) ) . Several useful characterizations of WS'q(H) for q > n are known (see 
Burenkov [2, 3]) but these are of no avail in the context of our problem. 

(ii) It is not difficult to find examples of domains IÎ not having the cone 
property for which, at least for some of the appropriate values of m, p and q 
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the conclusion of Theorem 1 holds. (See section 5.) It is for this reason that we 
conjecture that Theorem 1 may hold for arbitrary domains, but a different sort 
of proof will be necessary to show this. 

(iii) The (generalized) vanishing of functions is not really required on the 
whole of the boundary of (I for Theorem 1 to hold. One might consider 
replacing W^ù) by the larger space W£'q(a*), the closure in WUq(il) of the 
space of infinitely differentiate functions of compact support in Rn which 
vanish near d£l~dÙ. It is clear, for instance, that such is the case for the two 
examples Hi and ù2 given above, where for each we have dQ,~dÙ = 
{xedQ,:x2 = 0 and - 1 < J C I < 1 } . 

(iv) Weak solutions of null Dirichlet problems for elliptic partial differential 
equations on 1Î are known a priori to belong to spaces of the form Wo,q(Q) 
(usually with q = 2). Theorem l thus enables us to obtain "up to the boundary" 
regularity of solutions in Wm,p(Ù) for suitably large mp even if fî has only the 
cone property. 

2. A preliminary lemma. Before proving Theorem l we prepare the follow
ing lemma. It is well-known, at least for smoothly bounded domains, and 
asserts that continuous functions in Wj'^ft) do in fact vanish on sufficiently 
well-behaved parts of dfl. 

LEMMA 2. Let Q, be a domain in Rn and G a bounded Lipschitz domain 
contained in IÎ. Let ue Wj'^ftjn C(G) and let xedG. If there exists a 
neighbourhood N of x such that NDdG^dfl then u(x) = 0. 

Proof. Suppose u(x) ^ 0. We may select the neighbourhood N small enough 
that \u(x)\>8>0 for xeNHG. By virtue of the Lipschitz property of G we 
may, again contracting N if necessary, find a nonzero vector y such that for all 
zeNDdG and all s, 0 < s r < l , we have z + syeG. Without loss of generality 
y = fc(0, 0, . . . , 0 , 1 ) . Let V = {z + s y : z e N r i d G , 0 < s < l } . Writing z = {z\zn) 
where z'= (zl9..., zn-i), setting P = {z':(z\ zn)eN(ldG for some zn}, and 
denoting by z* the unique number which, for given z'eP, satisfies (z\ zf)e 
NHdG, we have 

V = {z = (z',zn):z'eP,z*n<zn<z*n+k}. 

Let 4> e Co(ft) and set v = u - </>. Then \v(z\ z*n)\ = \u(z', z*n)\ > 8 for all z'e P. If 
z = (z', zn)e V then 

* [Zn d 
v(z\ zn) = v(z\ zn) + — v(z\ s) ds 

Jzt dS 
whence 

fz«*+kh I 
ds. J 'z*+k I ~ 

\—v(z',s) 
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Integrating z over V we obtain 

(volV)S< |t;(z)|dz + k — v ( z ) 
Jv Jv I dzn 

dz 

^ ( l + k)IH| i f i ,v^( l + k ) | | M - * | | M ^ 

Since u e Wj4(ft) the right side of the last inequality can be made arbitrarily 
small for suitable choice of <j> and we have a contradiction. Thus u(x) = 0. 

We remark that the above lemma extends with no change in proof to more 
general domains G than bounded Lipschitz ones. For instance, it is sufficient 
that G have the segment property. (See [1], section 4.2.) 

In view of Lemma 2 the proof of Theorem 1 for domains (like fti above) 
which are unions of finitely many pairwise disjoint bounded Lipschitz domains 
is trivial. Similar ad hoc techniques will yield the result for somewhat more 
complicated domains (e.g. ft2) as well, but for the general case we require the 
following theorem of E. Gagliardo [4]. (See also, [1], theorem 4.8) 

THEOREM 3. (Gagliardo) (a) If CI is a bounded domain with the cone property 
then Q, is a finite union of bounded Lipschitz domains. 

(b) Any domain ft (bounded or not) having the cone property is a union of 
finitely many subdomains each of which is a union of parallel translates of some 
open parallelepiped. 

3. Proof of Theorem 1 for bounded domains. For the time being we assume 
that ft is bounded. Thus Wj'q(fl)c WlA(Q) and we may also assume that q = 1. 

As noted above, we may write ft = (J Vesr V where 9 is a finite family of 
bounded Lipschitz subdomains of ft. Given ue Wm 'p(ft)n Wj'^ft) we have 
u e CB(ft) and ueC(V) for every Ve 9. We must show that u e C(ft). 

Let v be the number of elements of 9 and let B be an open ball in Rn. Let 
V, We 9 be such that V n B* 0 and WD B* 0 . By a (B, 9)-chain linking V 
and W we mean any (finite) sequence { l / i , . . . , Uk}c:9, ( k < v ) , such that 
U1=V, Uk = W and L^fl L 7 J + 1 n f t n B # 0 , l < / < f c - l . Given Ve9 let 
s&(V) denote the collection of elements We 9 linked to V by a (£, ^)-chain. 
Evidently Wes£(V) if and only if Ver f (W) . 

Let s > 0 be given. For each Ve9 there exists ô v > 0 such that if x, y e V 
and |x —y |<S v then \u(x) — u(y)\<e/v. (In this context we regard u as its 
unique continuous extension to V.) Let 8 = minV €^ 8v Let x, y e ft satisfy 
|x —y|<8. We show that \u(x) — u(y)\<e and hence complete the proof. 

Let B be an open ball in Rn having diameter 8 and containing x and y. 
There exist elements V, We9 such that xeV and yeW. 

Case I. Wesd(V). In this case there exists a (B, 9) -chain {Uu...,Uk} 
linking V= Ux and W= Uk. Select points zu • • •, ^k-i with z7 e 
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Uj fl Uj+t n ft n B. Evidently 

k-2 

\u(x)-u(y)\<\u(x)-u(z1) + £ |w(Zi)-M(zy+i)| + |ii(Zfc-i)-M(y)|<e. 

Case II. Wést(V). Then M(W)OM(V)=0. Let A, /u be the numbers of 
elements in s&ÇV) and si(W) respectively, so that A + /U,<K Let S = 
ULTG^(V) U,T= UI/G^(W) U. We show that there exist points zeBHS, pe 
B(lf such that u(z) = u(p) = 0. Granted this, for the moment, we have 
z € B fl 0 for some Ue sd( V). Hence there exists a (JB, ̂ )-chain { U i , . . . , Uk} 
(k<A) linking ( 7 i = V and Uk = U. Selecting zu..., zk_i as in case I we 
conclude that 

\u(x)\ = \u(x)- u(z)\< \e/v. 

A similar argument yields \u(y)\<jjLe/v whence \u(x)-u(y)\<e as required 
It is sufficient, therefore, to show the existence of zeBOS with w(z) = 0. 

Let Gesd(V) and let G = \JU^(V),U^G U. Thus S = G U G . Suppose that 
t e B H (dG ~ G). Then t e G c ft so that either t e aft or reft . Since G is open 
t£G\ thus téS. If ref t then teU for some l / e # Thus teÙCiGnùnB 
whence U e si(V) and U c S, a contradiction. Thus f e aft and we have proved 

B fl (aG - G) c aft for every G e jtf( V). 

Now aS = U GG^(V) (dG ~ G) so that 

BnaScaft. 
Let fc be the largest integer such that every point of B 0 dS belongs to the 

boundaries of at least fc distinct elements of M(V). Clearly l < k < A . Then 
there exists zedSHB and elements Gu . . . , Gk e s£( V) such that z € 
a d f l - ' - n a G k but. z£G for any Gesi(V), G ^ G i , . . . , G k . Since B~ 
UG€^(v),G^G1I...,Gk G is open, there exists a neighbourhood N of z with NaB 
such that N n a S = N n a G 1 n - - - n a G k and N n S = N n ( G 1 U ' " U G k ) . We 
show that Nr\dS = NndG1. 

Suppose that aeNDdGx but a&dS. Evidently aeS (since otherwise 
a e ext S so a would have a neighbourhood contained in N, containing a point 
of Gi but disjoint from S). It follows that k > 2 and a e Gj for some /, 2 < / < fc. 
We may assume that N has been chosen so small that N f l G i lies on one side 
of a Lipschitz graph in N. Let seN~S. We may find a continuous path in N 
going from s to a which meets Gi for the first time at a. The path meets S for 
the first time at a point of dSONczôGid- • -fiaGk so this point must be a. 
Since a é a S we have a contradiction. Hence 

NndG^Nnscdn. 
It follows from Lemma 2 that w(z) = 0 and the proof of Theorem 3 for 
bounded domains is complete. 
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4. Extension to unbounded domains. By Theorem 3(b) even an unbounded 
domain ft can be written as a union of finitely many subdomains ft7(l < / < k) 
each of which is a union of parallel translates of a fixed open parallelepiped Pf 

having one vertex at the origin; say 

" / = U (x + P,), l < j < k . 
xeAj 

The dimensions of P, depend only on the cone C determining the cone 
property for ft. 

Let Rn = U^ 0/3 be a tesselation of Rn into closed cubes of edge length p and 
set 

Am = AinQf>; (lm= U (x + P,). 
xeA i (3 

Evidently ft = U /,£ && ( n o longer necessarily a finite union) and for any 8 > 0 
there exists an integer R = R(n, p, 8, C) such that any ball of diameter 8 
intersects at most R of the sets ftJ/3. It is also shown in the proof of Gagliardo's 
theorem that for p sufficiently small (depending only on the dimensions of the 
parallelepipeds P; and thus on C) each ilm is a bounded Lipschitz domain; in 
fact (JC + Pj) n (y + Pj) j* 0 for every JC, y e Am. 

For given ue Wm'p(ft), mp>n, and given E > 0 it is shown in the proof of 
the imbedding theorem (see, for example, [1] lemma 5.17) that there exists 
8>0 depending only on e, ||w||m,p,ft, and the cone C, such that if JC, yeftj73 for 
some /, ]8 and |x —y|<8 then \u(x) — u(y)\<e. 

With these observations the proof of Theorem 1 for bounded domains 
extends to arbitrary domains—one uses in place of v the number R = 
jR(n, p, 1, C); in place of 9* the collection {ftj73 :ft^ C\B17* 0} where Bx is a ball 
of unit diameter containing B. (We assume 6<1 . ) The remaining details are 
left to the reader. 

5. An example. We conclude by showing that Theorem 1 may hold, at least 
in part, for domains not having the cone property. Specifically, we consider 
2-dimensional domains of the following type: 

ft = {JC = (JCI, JC2) e R2 :0 < xx < a, 0 < x2 < /(xi)} 

where the positive, increasing function / satisfies 

hm = 0, 

so that ft has a cusp at the origin. 
Given X, 0 < X < a , we set ftx = {xef t : jc>X}. Then ftx is a bounded 

Lipschitz domain, and if we are given u e Wmp(ft) H Wj'^ft) where mp >2 we 
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may conclude at once that for any X we have ueC((lx) and u(x) = 0 for 
x e dflx fl dû. In order to conclude that u e C(Ù) it is evidently sufficient to show 
that limxea>x_^o u(x) = 0. 

First suppose that p > 2 . Let x = (xu x2) e H be given. For Xi sufficiently small 
the open triangle T with vertices at (xu x2), (xu 0) and (xi + x2, 0) lies in O. Let 
(r, 0) denote polar coordinates of an arbitrary point of ft with respect to x as 
pole. The bottom edge of T has equation r=g(d), -7r/'2<d<-7r/4, where 
O<g(0)<V2*2<>/2/(xi) . Denoting by v the function u expressed in terms of 
these polar coordinates, and applying Holder's inequality to the identity 

f8(e) d 
u(x) = v(0, 6) = -\ — v(t, 6) dt 

Jo dt 

we obtain 

f8(0)l d \P f f8(0) I?"1 

| W ( J C ) | P < J P t ) ( f , a ) tdt-\\ rllip-^dt\ 

Çë(0)\d | P 

Jo \dt I 

where Xp depends only on p. Integration of 6 from — 7r/2 to — 7r/4 leads to the 
estimate 

AK f 
|M(jt)|p^—Z[f(Xl)y-* |grad «(y)|pdy 

TT JT 

Hence limxen,x-»o u(x) = 0 in this case. 

The case mp > 2 , p < 2 remains to be considered; we may assume m = 2. The 
technique used above cannot be generalized to involve a repeated integral of 
the second derivative of v since grad u is not known to vanish on the lower 
edge of T. The following ad hoc argument will yield the desired result 
providing p > 4 / 3 . Let R be a rectangle of breadth b and height J i < l . A 
change of variable mapping R onto a rectangle of breadth b and unit height 
yields the following form of the norm inequality for the imbedding of W1,P(.R) 
into Lq(R), q = 2pl(2-p) (q finite if p = 2). 

llwllo^R^Kh-^llwlk^ 

where K may depend on b but is independent of h. Note that q>2 if p > l . 
For Xi sufficiently small the open rectangle R having vertices at (xi, 0), 
(xi, /(xi)), (xi + (a/2), /(xi)) and (xi + (a/2), 0) is contained in il and contains T. 
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Since b = a/2 and h = f(x1) for this rectangle we obtain 

iiu(x)ir<x;[/(xx)r-2iiuii?,q,R 

<K'qK[/(x1)r-2[/(x1)r /2i|M|iiP,R 
^K^f(x1)r-4)l2\\u\\lP,n. 

We may conclude that u(x)->0 as x —> 0, xeft provided q > 4 , that is, 
provided p > 4 / 3 . 

The method of this example can, of course, be extended to more general 
cusp domains but it remains uncertain whether the conclusion of Theorem 1 is 
valid in its entirety for arbitrary domains. 
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