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REMARKS TO THE UNIQUENESS PROBLEM OF
MEROMORPHIC MAPS INTO PN(C), 1

HIROTAKA FUJIMOTO

§1. Introduction

As generalizations of the results in [5] and [4], the author gave
some uniqueness theorems of meromorphic maps into P¥(C) in previous
papers [2] and [3]. He studied two meromorphic maps f and g of C”
into PY(C) such that v(f, H;) = (g, H;) for q hyperplanes H, located in
general position in PY(C), where v(f, H;) and u(g,H, denote the pull-
backs of divisors (H;) on P¥(C) by f and g respectively. In [2], he
showed that, if ¢ = 3N + 2 and either f or ¢ is non-degenerate, then
f=g9. And, in [3] (p. 140), he gave the following

THEOREM. If q = 2N + 3 and either f or g is algebraically non-
degenerate, i.e., the image is not included in any proper subvariety of
PY¥(C), then f = g.

Unfortunately, a gap was found in the proof of Lemma 6.5 in [3]
which is essentially used to prove the above theorem.

The purposes of this paper are to give a complete proof of the
above theorem and, simultaneously, to give some remarks to the unique-
ness problem of meromorphic maps of C* into P¥(C). Theorem 6.9 in
[8] will be improved and the results in the last section of [3] will be
generalized to the higher dimensional case.

§2. Main results

We recall some notations and terminologies given in [3]. Let f be
a meromorphic map of C” into the N-dimensional complex projective
space P¥(C) and H a hyperplane in P¥(C) such that f(C") & H. For
an arbitrarily fixed homogeneous coordinates w,: w,: - : wy,, on P¥(C),
we can take a representation f = f,:f,:---:fx, With holomorphic func-
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tions f,, fs -+, fx. On C™ satisfying the condition
codim{zeC"; fi(2) = f,(3) = - = fyu(®) =0} 22,
which we call an admissible representation of f. Let H be given as
H:adw, + ¢*w, + -+ + o 'wy,, =0

and define a holomorphic function
2.1 Fi:=adfi+af,+ - + " fy.

For each point z in C", we denote by v(f, H)(z) the zero multiplicity of
F% at z. The integer-valued function u(f, H) may be considered to be
the pull-back of the divisor (H) by f.

Let us consider two meromorphic maps f, g of C* into P¥(C) and
assume that there are 2N + 2 hyperplanes H; (1 <1 < 2N + 2) located
in general position in PY(C) such that f(C™ & H,, 9(C™) & H; and
w(f,H,) = v(g,H,;) for any 7. Then,

2.2) h:=F#/F&  (1<i<2N +2)

are nowhere zero holomorphic functions on C™ and the ratios h;/h;

(11,5 <2N + 2) are uniquely determined independently of any choices

of homogeneous coordinates and admissible representations of f and g.
In this situation, we shall prove

THEOREM 1. If either f or g is algebraically non-degenerate, then
after a suitable change of indices i of H; the functions h; are represented
as one of the following two types;

(@) hyihy: oo Boyys

=qpipitigigtt ety iyt 1 (=D
(B N + 1 is prime and
Ryihyt oot Ryyys
R T H O O i IS ETR R o
where n, 9y, - - -, Yy are algebraically independent nowhere zero holomorphic
functions on C* and ¢ denotes a primitive (N + 1)-th root of unity.

This is an improvement of Proposition 6.3 in [3], which is proved
without using Lemma 6.5 in it. Thus, we can prove the theorem stated
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in §1 correctly by the same argument as in [3], p. 141.
We shall give also the following theorem, which is an improvement
of Theorem 6.9 in [3].

THEOREM II. If f or ¢ is algebraically non-degenerate, then they
are reduced by o suitable change of indices to one of the following two
cases;

(@)’ there are relations between f and g such that
FHesi-1fia — FHu-a il 1<i<N
Flowes = e | Fiaves — (—1)NFin+s |
(BY N + 1lis prime and f and g are related as L-g = f with a projec-
tive linear transformation L: PY(C) — P¥(C) which fixes hyperplanes H,,
H, ---,Hy,, and maps Hy , Hy, 3 -+ s Hyy,y 0060 Hyyopy Hyopy -+ Hoy o
respectively.

These theorems will be proved in § 5 completely after giving some
preparations in §3 and §4.

§3. Some known results

Let f, 9 and H; (1 <1 < 2N + 2) satisfy the conditions stated in the
previous section and assume that g is algebraically non-degenerate.

As in [3], we consider the multiplicative group H* of all nowhere
zero holomorphic functions on C™ and the factor group G: = H*/C*,
where C*:=C — {0}. For an element k¢ H*, we denote by [k] the
class in G containing h and, for the functions hy, ---,h,y,, defined as
2.2), by tdhl, ---,[hn.,]) the rank of the subgroup of G generated by
[R], -, [hyy,ol. We shall restate here Proposition 6.3 in [3] revised as
follows.

ProOPOSITION 3.1. There exist elements B, ---, B, in H*|/C* such
that, after a suitable change of indices,
[hl] : [hz] N [kzzv‘+z]
:‘31;‘32; :‘Bt:(‘Bl""Bth)_‘: :(ﬁak_”l ...‘Bak)"l;l;]_; 1 y

where t = t([h], -+, [oy..D)s 1 appears 2N — k — t + 2 times repeatedly
and a, —a,_, <t —k+ 1 (let a, = 0).

3.2)

For the proof, see [3], pp. 138-140. In that place, Lemma 6.5 in
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[3] whose proof contains a gap is used only to prove the assertion a,
=t in Proposition 6.8 in [3] which is missed in the above Proposition
3.1.

We shall recall here another result in [3]. To state it, we choose
28 (1 £ s £ N + 1) hyperplanes among H,H,, ---,H,,,, arbitrarily and
change indices so that they are H,,---,H,,Hy,, -y Hy,c1ie We can
take homogeneous coordinates w,: w,: --- : wy,, such that

H¢:’LU¢=0 1§i§N+1

3.3) .
Hy,jmiahw, + -+ +af'wy,, =0 1</jEN+1,

where (a%) is a square matrix of order N 4 1 whose minors do not
vanish.

PROPOSITION 3.4. If s> t:=t(h,], ---,[Rhy,s)), then
det (af(h; — hy,ji); 154,79 =0.

Proof. This is essentially the same as Corollary 5.4 in [3] and
proved by the same argument as in its proof. In fact, if

det (@i(h; — by, )31 54,1 <89)#0,
we have obviously
det (@j(H:i(w) — Hy,ju(W);1 =4, <8) #0,
where H;(u) are rational functions of # = (u,, ---,u,) defined as
H(w) = cauius™ - - - ugugisi 1<i<2N +2
when h; has representations
he = eapionie - - - it

with algebraically independent g, ---,5, e H* and 4;,, = —y + 45
+ -+ + 4;). Let V,, be the smallest algebraic set in P¥(C) X P¥(C)
which includes the set (f X g)(C™. This implies that

dmV,, < N—s+t<N

as in the proof of Theorem 5.3 in [3]. On the other hand, V,, is of
dimension N by (6.2) in [3]. This is a contradiction and gives Proposi-
tion 3.4.
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Now, we change indices 7 of H, (1 <7 < 2N + 2) so that (3.2) is
rewritten as

AR LA HERRIES /2 H [Aydeee: [P s2)
(3.5) = (.81 Ce ‘Bal)‘lz - :(Bak_”_1 e ‘3% -i.
| RIS B TEERES 75 SRR
N+1-Fk times N+1-t times

And, we choose homogeneous coordinates w,: w,: ---:wy,, S0 that H,’s
with this arrangement are represented as in (8.3). We put anew y;:
= h; for each ¢t A £¢<t). By a suitable choice of an admissible
representation of f, we may assume hy,;,, = 1. For convenience’ sake,
we put 7;,1 = Ay, (= 1). The relation (3.5) can be written as

hi =g 151 )"0 121k
3.6) h;=ux, kE+1<i<N-+1 or N+t+3<i1<2N + 2
hN+1+j=77,1 1575t +1,

where z; are some constants. Then, by Proposition 3.4,
3.7 det (@i(uip; —2); 14,7/ <t+ 1D =0,

where 7; =9, 401 - 9, ALt k) and =1k +1<i< ¢+ 1), Since
71, -+ +,7, are algebraically independent, i.e., have no non-trivial alge-
braic relation by (2.9) in [3], this is regarded as an identity of poly-
nomials with indeterminates 7, -, 7,

§4. An algebraic lemma
For the proof of Theorems I and II, we have to investigate the
relation (3.7) more precisely. We shall give the following.

LEMMA 4.1. Let (a%) be a square matriz of order t + 1 whose minors
do not vanish and (3.7) holds as an identity of polynomials with indeter-
minates p, -+, and 5,.,.. Then, after a suitable change of indices,
one of the following two cases occurs;

(C()” k:t,a,—af,‘_lzl fOT any/c(lélcgk)
ond ¢, =0, = - =2, =1,2,,, = (=D
(‘8)” k: 1,(1'1 =t and 2, = 1’ x2=C’ x3=CZ,“';wt+l =C"

where ¢ denotes a primitive (t + 1)-th root of unity.
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Proof. Changing indices if necessary, we may assume

2= = =2,=1, Ty #F 1,2 # 1

xk+l=xk+2="'=xk+m=1, xk+m+1¢19""wt+l¢1,

where 0 </<kand0=m<t—k+ 1. We divide the proof of Lemma
4.1 into several steps.

1°) 4z=zm + 1.

We note first m <t — 1. In fact, if m = ¢, we have easily an
absurd identity

aiadet (@51 <4,7 < OG — 2)p — D@ — 1D - (. — 1D =0.

Assume that ¢ < m. Then, we can choose ¢ — m 7.’S, SAY, Veys Deas * * * s Desems
in the set {7, -+, 2} — {Dais Pass - - *»%4,}. Substitute », =9, =--- =2,_,
=1 in (8.7. We see 7p; — #; =0 when and only when i =%k 41, .-,
kE+mand j =1,75 s 7m,t + 1. So, (8.7) is in this case reduced to

det(ai.;i.qkar1""’k+m)det(a§;i.=k+1’”"k+m)
F=1y 5 Temt+1 J# s Temt+ 1
I1 (¥ — z) X I1 (p;—D=0,
m j

FT1ye ey Te—myt+1

where 7} (£ x;) are quantities obtained from 7; by substitutions of 7,
=9,=-+- =1y, =1 Thisis a contradiction. We conclude ¢ = m + 1.

2°) Put r:=[¢—m + 1)/2] (= 1), where [a] denotes the largest
integer not larger than a real number a. And, assume

-

for a,: =a, —a._., A < £ < ¥£) by a suitable change of indices, where we
put a, = 0. We have then one of the followings;

(i) a,+m+r<t,

(ii) ¢=t,

(iii) m =0 and r = 1.

To see this, we assume a, + m + r > ¢t. Then, for any chosen 1%,
iz""’ir (1§7'1<'¢2< <’l:7§5),
ail-l—ai,-i-'-‘- +af¢,2t—m—’r+1.

Therefore,
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“—-1n!

lsu§<z,se(““+"'+““)=(“‘+"'+“‘)(r—1)!(4—r)!
/!
>t —m—7r+1_ 2
=@ —m—7+ D

and so
rtzra, =7, + - +a) =4t —m—1r+1).
Since ¢ — m + 1 = 2r in any case, we have
m+r—-—0Dzt¢—-nrztm+7r—-1.

If m+r—1>0, then t < £ and so the case (ii) occurs. If m +r —1
= 0, then we have the case (iii).

3°) The case (i) of 2°) is impossible.

In fact, if it occurs, we can choose distinct indices oy, - -+, 0;_(mar
such that {1,2, - -, a,} C {0y, 05 - +» Oromar} aNA {0y, Go +* ) To_men}
n {a’r+1, (V2T ',aq} = &, because

a,<t—m—r=<t—CU—71).

Substitute 7,, = -+ =79,,_msny =1 in B.7). Then, 7»; — 2, =0 when
and only when ¢ =1,2,---,7,k+1,.--,k+mand j =ag,05 +++,0;_msrs
t + 1. And, as is easily seen, the relation (3.7) contradicts the assump-
tion that any minor of (a¢)) does not vanish. Therefore the case (i) of
2°) does not occur.

4°) The case (ii) of 2°) is reduced to the case («)” of Lemma 4.1.

Let 4 =1t. We see easily k=t and o, —a,_, =11 =k <t). The
identity (3.7) can be rewritten as

det (ai(pgp — D), -+ -, aipenpe — D, @i (s — 2,31 215t + 1) =0,

where 7,,, = 1. Put s=[(¢ + 1)/2]. And, substitute 5, =7,=--- =,
= (—1)!. We can conclude easily z,,, = (—1)®. This gives the case (a)”.

5°) The case (iii) of 2°) is reduced to the case (p)”.

Assume that m =0 and r=1. If @, <t — 1, we substitute 5 = 7,
= ... =y_,=1in (3.7, where £ =1 or = 2. This leads to a contra-
diction. Let @, =t. We have then ¢ =1 and
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det (ai(p -+ 9y — D, @iy — @), -+, 08 (1 — )3 1 S0 <64+ 1) =0,

For each u(1 £ u <£t), substitute », =7, = ... =y, = (¥, where { denotes
a primitive (¢ + 1)-th root of unity. Since ¢* %1 for any s(1<s<0),
some 2, (2<1<t+ 1) is equal to ¢*. By a suitable change of indices,
we have

=, x:i:Cz’"':xtH:ct’

because ¢, % ---,¢* are mutually distinct. This is the case (B)” of
Lemma 4.1. Lemma 4.1 is completely proved.

§5. Proofs of Theorems I and II

We shall prove first Theorem I. By the results in §3 and Lemma
4.1, we may put

(hl, hz: Tty h2N+2)

5.1) 1 1
= (ﬂn AT/ YRR Y/ I 1, (=1 Coesss * = *5 Cowvsa)

or

(5.2) (hn h29 ] h2N+2)

= (771» R/ (01 tee 77;)_‘1’ L,g, -, 0 Copysy o0y CzN+2)

after a suitable change of indices, where ¢ = t([h], - - -, [h.w..]) and ¢;
are some constants. In this place, we shall show ¢ = N. Since Prop-
osition 3.4 remains valid even if the indices of H,’s are changed in any
given order, it is easily seen that any chosen 2¢{ + 2 elements hy, ky,,
<+, hyy,,, among Ry, Ry, - - -, hyy,, ought to be of the type similar to &, h,,
<oy hyy, in (5.1) or (5.2) up to changes of the order and multiplication
of a common factor. If ¢t < N, for example, %, ks, -+, hy,s cannot be
of such types, because there exist three distinct indices i, 7, ¥ among 2,
3--,2t+3 (et i=2t+1,5 =2t + 2,k =2t + 3) such that h;/h; and
h;/h; are both constants, but not for h,--.,h,,, in (6.1) and (5.2).
This concludes ¢ = N.

To complete the proof of Theorem I, we have only to prove that
N + 1 is prime for the case { =N of (§)” of Lemma 4.1. For con-
venience’ sake, we change again indices of H,; so that

(hu hz; . ‘ah2N+2) = (C’Czy o ‘,QN: 1’7719 HRRER /) (7]1 tee 77N)—1)
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and let H,/s with these labels be given as (3.3), where ¢ denotes a
primitive (N 4+ 1)-th root of unity. For admissible representations

f=fitfor ifyanand g=g,:9,: -+ gy, We have
5.3) Ji=Cg 1<i=N+1

and

5.9 ot ahfe =0 elg)  1=<J=N

Dot S = (o - - <)~ I(ZN+1 %190 -

Substitute (5.3) into (5.4) and multiply all relations in (5.4) together.
We get a relation

(5'5) nzvu ZN-{»la’iC‘lgi) — HN+1 ZN+1az

Since g is algebraically non-degenerate by the assumption, this is re-
garded as an identity of polynomials with indeterminates g, 9, - -+, v 41
By the unique factorization theorem for polynomials, each factor in one
side of (5.5) coincides with a factor in the other up to a constant
multiplication. We may assume here ¢} =1if i=N+1lorj=N + 1.
Under this condition, we can conclude easily o} =¢¥ 1=, j<N+1)
by a suitable change of indices. If N + 1 is not prime and so N + 1
= k¢ for some k, ¢ (1 < k < £ £ N), then

ak ay*+?

= »

@ ayil
which contradicts the assumption that any minor of (a%) does not vanish.
Therefore, N + 1 is prime.

We shall prove next Theorem II. We know that the case («) or ()
of Theorem I occurs. It is obvious that the case («) implies the case
(o)) of Theorem II. Assume that the case (f) occurs. We choose
homogeneous coordinates satisfying the above conditions. Meromorphic
maps f and g are related as (5.3) and (5.4). The relation (5.3) is re-
written as L.g = f if we take a projective linear transformation

L:w, = Cw, 1<i<N+1.

We have shown in the above that a! = (. It follows that L fixes H,,
-yHy,, and maps Hy,, Hy,s -+, Hyyy, O0to Hyyypy Hyyy « ooy Hoys
respectively. Thus, Theorem II is completely proved.
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§6. An additional remark

In the previous paper [3], pp. 141-142, the author gave an example
of mutually distinct algebraically non-degenerate meromorphic maps f
and g of C* into P¥(C) such that v(f, H,) = v(g, H;) for 2N + 2 hyper-
planes H, in general position. This is a special case of ()’ of Theorem
II and the case that f and g are related as L-g = f with a projective
linear transformation L : P¥(C) — P¥(C) which maps H,,H,, ---, N, onto
H, ., Hy.- -, H,y,, respectively and fixes Hy,, and H,y,, after a suit-
able change of indices. As is shown in [3], we have always a relation
of this type between f and g for the case N=1 or =2 of (a) of
Theorem II, but not for the case N = 3. We shall remark here the fol-
lowing fact, which implies that the case ()’ occurs actually.

PROPOSITION 6.1. Let A =((¥;1<54,j <N + 1), where { denotes
o primitive (N + 1)-th root of unity. If N 4+ 1 is prime, then any minor
of A does not vanish.

For the proof, we give

LEMMA 6.2. Let F(x) be a polynomial with integral coefficients. If
F© =0, then F1) =0 (mod N + 1).

Proof. We can find easily a polynomial g(x) with integral coefficients
such that

Fx)y=Q+z+2*+ --- + zM)g@) .
Therefore,
F) =W+ Dg) =0 (mod N +1).

LEMMA 6.8. Let fi(x),---,f. () be polynomials and define a poly-
nomial U, -+ +,&,) with indeterminates &, ---,, so that it satisfies the

condition
det (fj(Ci); 1<4,i=n=0&, &) il;lj & —¢p.
Then,
. - JE Q@A) -
6.4) U1, -, 1) = det (————(j —ilsiis r).

where f~V denotes the (j — 1)-th derivative of f;.
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Proof. We expand each f,(x) as

Jil@) =2 e — 1y

v

with constants «f and put

95,4 = 2. aj(w — 1y~

v2j-1
Then,
9;,4(x) — gj,i(l) =@ — 1g;..,:(0) .

As is easily seen by the induction on %, it holds that

w(l’ ct 1’ Ck-u’ ¢ ”Cr) H (Cz - Cj)
k<j<isr
= det (gl,i(l)’ Tty glc,i(l)’ gk+1,i(Ck+1), B gk+1,i(€r); 1 é i é 7’) .
For the case k = r, we get (6.4) because
95,1 = fE PG —-D!.

Proof of Proposition 6.1. Obviously, a minor of A of degree N + 1
does not equal to zero. Take a minor

d=det (*:1<4,7<7)

of A arbitrarily, where 1<k < ..- <k, <N+1and 154, <4,---
<4, <N+1AQA=Zr=N). Apply Lemma 6.3 to the polynomials f,(x)
=224 ..., f. (@) = 2. For the polynomial ¥(&, ---,Z,) as in Lemma 6.3,
putting ¢, = &k, ...,&, = {*, we see

4= Z]J (CF = (L, oy -, 0

Let g(x) = U (x*, a%, - .., x*). This is a polynomial with integral coeffi-
cients. If 4 =0, then ¢g(¢) = 0. By Lemma 6.2,

g =0 (modN +1).

Therefore, according to Lemma 6.3, we can conclude an absurd identity

det (Wb Do =T D iy <45 <)
G —-D!
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1 1 R |

_ 1 4, 4 -4,
112! ... (r = D!

g;—l z;-—l e Z:_l
=0 (modN +1).

Thus, 4 #+ 0. Proposition 6.1 is completely proved.
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