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ON THE LEVITZKI RADICAL 

BY 

TIM ANDERSON 

1. Introduction. The Levitzki radical, which is fundamental in the study of 
algebras satisfying a polynomial identity, has been shown to exist in the varieties 
of alternative and Jordan algebras (see Zhevlakov [8], Zwier [9], and Tsai [7]— 
for an important application of this radical to alternative algebras satisfying a 
polynomial identity, see Slater [6]). In fact, Hartley [4] even investigated local 
nilpotence for Lie algebras, though this property can not be radical in the sense 
of Kurosh-Amitsur [3] for these algebras. 

Naturally, the existence or non-existence of a satisfactory theory of local nil­
potence in a variety of algebras will depend on the particular identities denning the 
variety. Zwier [9], by looking at the general form of each of a set / of identities, 
was able to give a sufficiency condition for the existence of the Levitzki radical in 
the variety ^(1) of algebras denned by the set /. Recently the author [2] gave 
conditions on the existence of this radical by studying for each A e ^(I) its uni­
versal enveloping algebra U(A). 

In this paper we sharpen the main result of [2] to derive a very simple sufficiency 
condition for the existence of the Levitzki radical in what Zwier [9] calls 2-varieties. 
For such a variety of algebras, over an operator ring <D, our condition is just that 
the associative algebra U(A) be nilpotent for A=$x, x2=0. This result allows us 
to describe explicitly, in terms of denning identities, which 2-varieties of power-
associative algebras carry a satisfactory theory of the Levitzki radical. 

It is pointed out that a 2-variety is similar to what Albert [1] previously called a 
variety of almost alternative algebras, and these include Lie, associative, and 
alternative algebras. We determine the denning identities of the largest 2-variety of 
power-associative algebras in which local nilpotence is not a Kurosh-Amitsur 
radical. This variety is in a sense a generalization of Lie algebras. Following: A 
structure theory for the finite dimensional algebras of this class will be given 
elsewhere. 

With this paper and the previous one [2], we hope to have shown that universal 
enveloping algebras are useful for reasons other than the historical one of studying 
irreducible representations of algebras. In the present context we feel a general 
theory of algebras satisfying a polynomial identity could be developed for a variety 
whose universal enveloping algebras satisfy a condition such as the one above. 

2. Main results. Throughout this paper O is a fixed commutative associative 
ring with unity and i^{I) is a variety of non-associative O-algebras that satisfy 
a set / of identities (which are homogeneous in the sense of [2]). 
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If A e i^{ï) and M is a O-space which admits bilinear compositions ma and 
am(eM) for a e A, me M then A ©M can be made into an algebra by defining 
(a+m)(b+n)=ab+mb+an for a, b eA, m, neM. If A®Mei^fj) then M is 
called a bimodule for A, Such a bimodule defines a pair of linear maps S9 T.A-+ 
Horn(M9M), where Sa:m->ma and Ta:m->am for # G . 4 and meM. The pair 
p=(S, T) is called the representation defined by the bimodule M. As in the case of 
associative algebras, the notions of representation and bimodule, are equivalent 
(see [5]). 

For A G i^{I)9 11(̂ 4) will denote the universal enveloping algebra for the repre­
sentations of A. The associative algebra U(A) is characterised by the fact that there 
is a (canonical) representation £* = (£*, T7*) of A in U(A) such that for any 
representation p=(S9 T) of A in an associative algebra X there is a unique homo-
morphism ip:U(A)-*XTor which p=p*y, in the sense that S=S*tp and T=T*y. 

It is important to realize that U(̂ 4) is an extrinsic object—it depends not only 
on the algebra A but also on the variety i^(I) which contains A. For example, if 
^4=Ox, x 2 =0, then A belongs to the variety of associative algebras, as well as the 
variety of Lie algebras. Thinking of A as an associative algebra, U(^4)3=0. How­
ever, if A is regarded as a member of the variety of Lie algebras, then U(A)=<S>[t]9 

the ring of polynomials in t with zero constant term. 
A 2-variety is defined to have the property that whenever A e ^(1) and / is an 

ideal of A, so is J2 an ideal of A. By using the homogeneity of / it was shown in 
[2, p. 30] that a 2-variety ^(1) satisfies two identities of degree three, namely 

and 

(2) ^3V^l*2/ = = P l ( ^ 3 ^ l ) ^ 2 + P2V^1^3)^2 " r3^2(^3^l)"iP4^2V-^1^3) 

~T P5\XSX2JX1 + PQ\^2XB)X1 1 P 7*1(^3*2) ~\~ P 8*1V*2*3) ? 

where a l 5 . . . , a8, fil9. . . , /?8 are scalars from O and independent of xl9 x29 and xz. 
It follows from these relations that a 2-variety is a generalization of almost 

alternative algebras in the sense of Albert [1]. 
For representations we have the following 

LEMMA. Let ^if) be a 2-variety and A G *f~{f). Then for a representation p=(S9 T) 
of A and a, b e A, the product YaYb9 where Y is ambiguously S or T9 can be written 
as a linear combination of terms of the form YbYa and Yu9 where u=ab or ba and 
Y=SorT. 

Proof. Suppose M is the O-space providing the representation p. Then 
A® M e y (J) and the identities above hold for A®M. If we put x2=a> x3=b and 
choose *x G M then (x1x2)xz=(x1)SaSb9 and by (1), SaSb is a linear combination of 
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the terms Yb Ya and Yu. Equally, by choosing x2 G M, xx=a and x3=b we find from 
(1) that TaSb can be put in the form required. From similar substitutions in (2) we 
find in all four cases YaYb to be a linear combination of Yb7a's and Fw's. 

An algebra A of a 2-variety is called prime if whenever / and K are ideals of A 
such that JK=0, either / = 0 or £ = 0 . 

Now we may state the main result of this paper. 

THEOREM. Let i^(I) be a 2-variety with the property that VL(A) is nilpotent for 
each \-dimensional trivial algebra A G'fQT), that is, for A=$x, x2=0. Then the 
property of being locally nilpotent is a Kurosh-Amitsur radical property in ^(1) 
and each semi-simple algebra in ^(1) is a subdirect sum of prime semi-simple 
algebras. 

Proof. We shall show by induction on n that if B e V(I) is generated by 
xl9... , xn and 2?2=0 then VL(B) is nilpotent; the theorem will then follow because 
of [2, Theorem 2.7]. For n=l there is nothing to prove. Assuming « > 1 , let 
/=(J)x1+ • • • +Oxn_x. Evidently/is an ideal of B and 11(2?//) is nilpotent because 
of our assumption. Moreover, if />* = (£*, T*) is the canonical representation of 
B in U(B) and / * is the ideal of U(B) generated by the elements S*, T*9 xeJ, 
then U(5/ / )^H(£)/ /* because of [5, page 88]. Hence U(B)m^J* for some integer 
m. 

Let /** be the subalgebra of U(B) generated by the elements S*, T*, xeJ. 
Certainly the maps x-+S*, x-+T* define a representation of / in /**; hence if 
p' = (S', T) is the canonical representation o f / i n XI(/) then p * = p ' ^ for a homo-
morphism ^:XI(/)-^/**. However, U(J) is nilpotent by induction and as tp is 
clearly onto, /** is nilpotent. 

We claim 

(3) /**«(£) ç U(£)/**. 

Indeed, if a G J, b GB and Y=S* or T* then YaYb is a linear combination of 
Yb 7a's because of the lemma and the fact that J92=0. Since U(B) is generated by the 
elements S*9 T*, XGB (see [5, page 88]), we have now (3). 

An immediate consequence of (3) is that J**+U(B)J** is an ideal of U(B). 
Clearly / *= /**+U(5 ) /** , and U(5) w ç/**+U(£) /**. Therefore U(£)m+1Ç 
HOB)/**. From this relation and (3) it follows easily that Ql(B)m+1f^U(B)J*^k. 
Since /** is nilpotent, U(B) is nilpotent. 

With the above theorem we can determine explicitly, in terms of the general 
identities (1) and (2), which 2-varieties of power-associative algebras have a 
satisfactory theory of local nilpotence. Recall that in a power-associative algebra 
each element generates an associative subalgebra. 

THEOREM. Let i^(I) be a variety of power-associative algebras over a field O 
satisfying the identities (1) and (2). Then local nilpotence is a Kurosh-Amitsur 
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radical property for i^ij) unless 

1+ax—a2—a3+a4 = — l + a 5 - a 6 - a 7 + a 8 = — l+ft.—/?2—/?3+/?4 

= 1 + ^ - ^ - ^ + ^3 = 0, 

Proof. We must show VL(A) nilpotent for A=(S>x, x 2 =0. Let p=(S, T) be the 
canonical representation of A in U(A) and M be the bimodule associated with the 
representation p. As in the proof of the Lemma, we apply the identities (1) and (2) 
to the algebra A®M. For example, in (1) choose x1eM and x2=x3=x. Then 

(4) Si = c^TxSx+a.2Sl+x3Tl+<x.tSxTx 

Also in (1) choose x2 e M and X-^— XQ — X, SO that 

(5) TttSx = K5TJX+CC6S
2

X+X7TI+K8SXTX. 

In (2) choose x± e M, and x2=xz=x. Then 

(6) SXTZ = PiTJS.+ptSl+PsTl+^S.T,,. 

Finally, letting x2e M and Xi=x 3 =x in (2), we have 

(7) Tl = P6TJSx+p6S*x+p7Tl+psSxTx. 

The algebras in i^(I) are power-associative, hence satisfy the identities a2a=aa2, 
(a2a)a=a2a2, and a(aa2)=a2a2. Linearizing the first of these identities yields 
ya - a+ay • a+a2y=a • ay+a • ya-\-ya2. If we choose y G M and a=x, then we 
obtain from this relation 

(8) S ^ + T ^ = TX+SXTX. 

Similarly, from a linearization of (a2a)a=a2a2, 

(9) S , 3 + T ^ = 0, 

while from a(aa2)=a2a2 we get 

(10) Tl+SxTt = 0. 

Since U(A) is generated by ^ and Tx, to show it is nilpotent it is sufficient to 
show U(A)=N, where N is the Levitzki radical of 11(̂ 4). Now, from (9), 
(S2

x+TxSx)Sx=0 while (Sl+TxSx)Tx=(T2
x+SxTx)Tx=Tl+SxT

2
x=0 because of (8) 

and (10). Therefore <S>(Sl+TJSJ is a right ideal of VL(A) whose square is zero. 
However, N contains all the nilpotent right ideals of U(A), hence 

(11) S2
x+TxSxeN. 

Now it follows that N+0(Sx+ TJ/Nis a trivial right ideal of U(A)lN. Indeed, the 
product of the cosets N+®(SX+TX) and N+Sx is N+®(Sl+TxSx), which=0 
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because of (11), while 

because of (8) and (11). Since U(A)jN is Levitzki semi-simple and contains no non­
zero nilpotent right ideals it follows that Sx+Txe N, or 

(12) T . s - S a ( m o d i V ) . 

Then from (4)-(7) we have 

( l + a 1 - a 2 - a 3 + a 4 ) 5 ^ = ( - l + a 5 - a 6 - a 7 + a 8 ) S ^ 

= (l+p5-Pt-p7+fosl = 0 (mod N). 

If one of the above coefficients is non-zero, we have 5^=0 (mod N) and SXTX= 
Tl=0(modN) as well because of (12). However, then [U(A)/N]2=0. whence 
N=U(A), as claimed. Q.E.D. 

The result above is the best possible, as the following will show. 

SCHOLIUM. Let i^{I) be the 2-variety defined by a2a=aa2, (a2d)a=a2a2, a(aa2) = 
a2a2, and the relations (1) and (2). Suppose further that 

1+%—a2—a3+a4 = —l+a5—ag—a7+a8 = — l+/5i—jS2—/?3+jS4 

= 1+fc-ft-ft+fc = 0. 
Then local nilpotence is not a Kurosh-Amitsur radical property for ^ (7 ) . 

Proof. To prove the non-existence of the Levitzki radical in ^ (7) , it is sufficient 
to show 11(̂ 4) is not nilpotent for A=<^x, x2=0 because of [2, Theorem 2.7]. 

Let Of/] be the ring of polynomials in t with constant term zero. Define linear 
maps S, T:A-+$[t] by Sax=at and Tax=-(xt for a e O . Then (8), (9), and (10) 
hold by inspection, while (4)-(7) are valid because of the assumed conditions on 
the a's and /?'s. Therefore p=(S, T) is a representation of A in 0[t] and there is a 
homomorphism ip:U(A)->0[t] for which the diagram 

A—r-^m 
commutes, where />* is the canonical representation of A in U(A). Obviously ip 
maps U(A) onto <D[f]. Since, then, Off] is not nilpotent, neither is U(A) nilpotent. 

REFERENCES 

1. A. A. Albert, Almost alternative algebras, Port. Math. 8 (1949), 23-36. 
2. T. Anderson, The Levitzki radical in varieties of algebras, Math. Annalen 194 (1971), 27-35. 

https://doi.org/10.4153/CMB-1974-002-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-002-6


10 T. ANDERSON 

3. N. Divinsky, Rings and radicals, University of Toronto Press (1965). 
4. B. Hartley, Locally nilpotent ideals of a Lie algebra, Proc. Cambridge Philos. Soc. 63 (1967), 

257-272. 
5. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. 

Publ. 34, Providence (1969). 
6. M. Slater, Structure of alternative rings, and applications, Notices Amer. Math. Soc. 17 

(1970), 561. 
7. C. Tsai, Levitzki radical for Jordan rings, Proc. Amer. Math. Soc. 24 (1970), 119-123. 
8. Zhevlakov, Solvability and nilpotence of Jordan rings, Algebra i Logika Sem. 5 (1966), 

37-58. 
9. P. Zwier, Prime ideals in a large class of nonassodative rings, Trans. Amer. Math. Soc. 158 

(1971), 257-273. 

UNIVERSITY OF BRITISH COLUMBIA 

https://doi.org/10.4153/CMB-1974-002-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-002-6

