
8
Representing CPT

Précis. There are many representations of time reversal symmetry, including PT,
CT, and CPT, but only the standard time reversal operator T is associated with an
arrow of time itself.

In an excited phone call, John Wheeler is reported to have told his then-
graduate student Richard Feynman at Princeton that he had discovered why
all electrons have the same charge and mass: “Because they are all the same
electron!”1 Wheeler proceeded to suggest that a single electron worldline
might be wriggling forwards and backwards in time in a great knot, and
that when moving backwards we would experience it like its antiparticle, a
positron. From the perspective of a future-directed observer like ourselves,
the backwards-turning points would appear as electron–positron anni-
hilation; the forwards-turning points would appear as electron–positron
creation; and, the appearance of distinct particles at a given instant would
be explained by the spacelike surface that is the instant cutting through the
knot, as in Figure 8.1.

Feynman reported his response:

I did not take the idea that all the electrons were the same one from him as seriously
as I took the observation that positrons could simply be represented as electrons
going from the future to the past in a back section of their world lines. That, I stole!
(Feynman 1972, p.163)

1 As reported by Feynman (1972, p.163). Wheeler appears to have been inspired by Stueckelberg
(1942), who had earlier arrived at a similar perspective.
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Figure 8.1 Wheeler’s knot. On the horizontal spacelike surface there is an
electron, a positron, another electron, and an electron–positron creation
event.

The idea was fruitful for Feynman: understanding time reversal as including
matter–antimatter exchange led him to the absorber theory of Wheeler and
Feynman (1945) as well as to the Feynman (1949) theory of positrons.

By inspecting Figure 8.1, one can immediately see that on Feynman’s view,
inverting the direction of time automatically converts each instantaneous
electron state into a positron, and vice versa. Of course, one would like to
make this precise in the language of quantum field theory, and many have
done so.2 The proposal has also been defended by philosophers Greaves
(2008, 2010) and Arntzenius and Greaves (2009). Writing ‘C’ to refer to
matter–antimatter exchange and ‘T’ to refer to time reversal, they write,

[T]he operation that ought to be called ‘time reversal’ – in the sense that it bears the
right relation to spatiotemporal structure to deserve that name – is the operation
that is usually called TC. (Arntzenius and Greaves 2009, p.584)

Unfortunately, as we have seen in Section 7.3, CT violation in electroweak
theory means that there is no representation of CT symmetry in the Standard
Model. However, there is a representation of CPT symmetry, which is to
say, symmetry under the combination of three transformations: matter–
antimatter exchange C, time reversal T, and parity P. This led to another
piece of physics lore, that the operation that ought to be called ‘time reversal’
is the CPT operator, as expressed by Wallace:3

2 Early versions appear in Stueckelberg (1942) and Watanabe (1951), and in the original Lüders (1954,
p.4) construction of a CPT operator, who refers to CT as time reversal “of the second kind”. This
phrase is dropped from most later formulations of the CPT theorem, except for that of Bell (1955).

3 D. Wallace (2011). “The logic of the past hypothesis”, Unpublished manuscript, http://philsci-
archive.pitt.edu/8894/
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194 Representing CPT

[I]n quantum field theory, it is the transformation called CPT, and not the one
usually called T, that deserves the name. (Wallace 2011, p.4)3

How are we to evaluate these proposals, that time reversal is ‘really’ CT
or CPT? Setting aside labelling conventions, the substantial proposal seems
to be that CT or CPT is more appropriate for evaluating whether time has an
arrow than T is. The thesis of this chapter is that they are not: the operator
that ought to be called ‘time reversal’, in the sense that it is relevant to
the question of whether time itself has an asymmetry, is the standard time
reversal operator T.

There are two parts to my argument. In the first, I will draw on the
arguments of Chapter 2 to make the case that time reversal must behave
appropriately with respect to translations in time and space, in order to
deserve the name. Using this behaviour to characterise what it means to
reverse ‘time alone’, I argue in Section 8.1 that only the standard time
reversal T is suitable for this purpose. In Section 8.2, I consider the defence
of Feynman’s proposal due to Greaves (2010), who argues that by fol-
lowing the meaning of classical time reversal through the quantisation
procedure, one finds that it is represented by CT. At least when a rigor-
ous approach to quantisation is adopted, I argue that classical time rever-
sal is transformed into an operator T that does not exchange matter and
antimatter.

The second part will consider whether there is a more systematic
way to view the relationship between matter–antimatter exchange and
spacetime symmetry. Both are related to a structure called the ‘cov-
ering group’ of the restricted Lorentz group. Thus, in Section 8.3, I
consider the possibility of viewing this structure as a spacetime sym-
metry group and point out a sense in which it is empirically ade-
quate as a spacetime symmetry group, although a bit eccentric. In
Section 8.4, I argue that, even given this spacetime symmetry group,
matter–antimatter exchange cannot be a spacetime symmetry on par with
parity and time reversal, although it can be viewed in a closely related
way, as a symmetry of representations. On this ‘spacetime symmetry
account’ of matter–antimatter exchange, I find there is an interesting
relationship between time reversal and matter–antimatter exchange – but
still no plausible sense in which T is ‘really’ CT or CPT. In particular,
there is no sense in which the arrow of time established by T violation is
erased.
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Figure 8.2 Time reversal is not a symmetry, but space-time reversal is.

8.1 Against Alternative Routes to Time Symmetry

In Chapter 7, I argued that experimental evidence of T violation from
electroweak theory shows that time has an arrow. But, might there be some
more liberal perspective on what ‘time reversal’ means, according to which
time is still symmetric? Consider the 2 × 2 chequered grid of Figure 8.2,
for which neither time reversal nor spatial reversal is a symmetry, but the
combination of both is. In this section, I will argue that ‘restoring’ temporal
symmetry in this way is, perhaps surprisingly, always possible – but that this
does not undermine the fact that time is asymmetric in the sense established
in Chapter 7.

Here is a toy example from Newtonian mechanics: consider a free par-
ticle, like a bead that threads a wire, which is constrained by some block-
ing mechanism to never move to the left, as shown in Figure 8.3. Time
translations ϕt take their ordinary force-free form on the state space of
positions and velocities, ϕt (x,ẋ) = (ẋt +x,ẋ), but with the constraint on state
space that the only possible states (x,ẋ) are those that satisfy ẋ ≥ 0. This
system is both T violating and P violating, because each would transform
a rightward-moving trajectory to an impossible leftward-moving one. In
fact, the transformations representing time reversal T (x,ẋ) := (x,−ẋ) and
parity P (x,ẋ) := (−x,−ẋ) cannot even be defined on this state space, which
includes only states with positive velocities. Nevertheless, one can still repre-
sent PT symmetry: if we both turn the string around and apply time reversal,
by applying T̃ (x,ẋ) := (−x,ẋ), then we do get a dynamical symmetry.4

4 To confirm this, observe that for all (x,ẋ) in the state space, we have, T̃ ϕt T̃
−1(x,ẋ) = T̃ ϕt (−x,ẋ) =

T̃ (−x + ẋt,ẋ) = (x−ẋt,ẋ) = ϕ−t (x,ẋ). Note that this ‘PT’ transformation, T̃ , is not the composition of
two transformations P and T, neither of which exist. So, it is better notation to introduce a new
symbol like T̃ . The same turns out to hold of the CPT transformation, as Swanson (2019, p.107) has
emphasised.
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Figure 8.3 Time translations for the asymmetric bead–string system.

Of the two classes of dynamical symmetry described in Section 4.1.3,
SϕtS

−1 = ϕt and SϕtS
−1 = ϕ−t , this PT transformation T̃ is an example of

the latter: it is a ‘time reversing’ symmetry,

T̃ ϕt T̃
−1 = ϕ−t . (8.1)

Since T̃ reverses all the curves in space, in the sense that x(t) �→ x(−t), one
might be tempted to call it ‘time reversal’, especially given the absence of
any other candidate. In fact, we have considered this possibility before in
Section 3.2.1, where I associated this transformation with a ‘folk’ view of
Newtonian time reversal.

One can make this concern more powerful from the perspective of the
Representation View of Section 2.3. On this view, a spacetime symmetry
gets its meaning on state space through the presence of a representation. As
a spacetime symmetry, time reversal τ satisfies τ tτ−1 =−t for all time trans-
lations t , as I argued in Chapter 2. So, since a representation ϕ of that group
is just a homomorphism, Eq. (8.1) says that T̃ provides a representation
of time translation reversal! Does this mean that the parity–time reversal
transformation T̃ can be understood as referring to the ‘true’ time reversal
operator for this system, or at least an adequate one? If the PT transformation
(or some other transformation like it) always restores temporal symmetry,
then one might be tempted to conclude that T violation is not enough to
establish an arrow of time.

I will make the case that this argument does not work. But, before I turn to
that, let me point out a sense in which this more general kind of symmetry
is really ubiquitous in any quantum theory, even without appeal to the CPT
theorem. If we are willing to do more than reverse ‘time alone’, then there are
always many different ways to obtain a dynamical symmetry that reverses
time. Here is the statement of that fact, followed by its interpretation.

Proposition 8.1 Let t �→ Ut be a strongly continuous unitary representation
of (R,+) on a separable Hilbert space H. Then this representation always extends
to a representation of time reversal symmetry, in the sense that there exists some
antiunitary T such that

TUtT−1 = U−t . (8.2)

Moreover, for every unitary U ′ such that [Ut,U
′] = 0, the operator T′ := U ′T is an

antiunitary representation of time reversal symmetry in this sense.
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Proof Our first statement is a corollary of Proposition 3.4. The fact that
T′ := U ′T satisfies Eq. (8.2) when [Ut,U

′] = 0 is thus immediate. �

Here is what this means. First, recall that dynamical systems in funda-
mental physics are generically associated with half-bounded energy.5 For
quantum systems, it is known that every representation T of time reversal
must be antiunitary, which is to say that T is antilinear, T(aψ + bφ) =
a∗Tψ + b∗Tφ, and that T∗T = I . This result was proved in the second
part of Proposition 3.4. So, if we are willing to accept a transformation
as ‘time reversal symmetry’ whenever it represents an automorphism that
reverses time translations, TUtT−1 = U−t , then time reversal symmetry is
always assured. This is true even in the electroweak theory, which is only
T violating in the sense that the ‘canonical’ time reversal transformation T

does not provide a representation of time reversal symmetry. In this more
general sense, virtually all quantum systems are temporally symmetric.

I find this result fascinating. But, I do not think it provides an argument
that time is symmetric after all. Although a representation of time reversal
symmetry must reverse time translations, it is also usually part of a larger
spacetime symmetry group or gauge group, and this fact constrains it in
other ways. For example, in both the Galilei and Lorentz groups, time
reversal preserves spatial translations and also reverses velocity boosts. In
this context, the meaning of time reversal is constrained by more than just the
time translations: it is constrained by its also having appropriate relations
to the other symmetry transformations.

For example, returning to the bead on a wire, the parity–time reversal
transformation T̃ does not preserve spatial translations; this was shown
in the discussion of Newtonian time reversal in Section 3.2.4. Nor does it
reverse velocity boosts. Neither of these features are plausible properties
of a transformation that reverses ‘time alone’. So, once the larger group of
spacetime symmetries is taken into consideration, it becomes implausible
to identify the parity–time reversal transformation T̃ or the general trans-
formation T in Proposition 3.4 with time reversal. If anything, the latter can
only be viewed as establishing ‘UT symmetry’, where T is time reversal and
U is some unitary symmetry.6

One can say more: if an irreducible representation of time reversal exists,
then it is quite generally unique. This was pointed out in Section 3.3.3 and in
particular in Proposition 3.2. For example, consider the case of the Standard

5 For a discussion of this, see Section 3.1.3.
6 This is always possible because both T and T are antiunitary: as a result, U = TT −1 is unitary, which

implies that UT = T.
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198 Representing CPT

Model, which has a representation of all the continuous symmetries of the
Poincaré group. Then time reversal must be defined so as to have the correct
relations to all those symmetries. And, in an irreducible representation of
the Poincaré group, those considerations constrain time reversal so strongly
as to make it unique, by Schur’s lemma. So, the ‘canonical’ time reversal
operator T is not arbitrary, despite the many available operators given
by Proposition 8.1: it is the only representation of time reversal available
that behaves appropriately with respect to the entire group of spacetime
symmetries. So, the fact that canonical time reversal symmetry is violated
in electroweak theory means that no other good options are available to
represent temporal symmetry.

Matter–antimatter exchange, or charge conjugation, is no exception to this:
in particular, if it is not a spacetime symmetry, then it is not relevant to time
asymmetry as I have defined it. That said, some have argued that matter–
antimatter exchange actually can be viewed as a spacetime symmetry, with
the operator CT behaving the way time reversal should behave, even with
respect to the other symmetries. In the next section I will address one
such argument, which appeals to the nature of quantisation. In Sections 8.3
and 8.4, I will then propose a different way to try to connect time reversal and
charge conjugation, using the universal covering of the Poincaré group. In
both cases, I will argue that the standard time reversal operator T prevails
and that the argument for time asymmetry developed in Chapter 7 still
stands.

8.2 On Feynman’s View

One precise way to interpret Feynman’s proposal is as the claim that CT is
the ‘correct’ time reversal operator. This way of thinking appears to have
been smuggled into his famous diagrams, which represent contributions to
a scattering amplitude in a perturbative approximation. If the CT transfor-
mation exists, then reflecting a Feynman diagram about the vertical ‘time’
axis produces a CT transformation, in the sense that it both reverses time
and exchanges matter and antimatter, as in Figure 8.4.7

Even if we follow Feynman and refer to CT as ‘time reversal’, this does
not erase the arrow of time: electroweak theory is CT violating as well, as
a consequence of Wu’s parity-violating experiment. One can raise further
doubts as well: what reason is there to think that Feynman diagrams capture

7 This was pointed out by Ramakrishnan (1967) and by Feynman (1985, Chapter 3) himself.
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Figure 8.4 A Feynman diagram for an electron–positron decay (left), when
vertically reflected, produces a description that both reverses time and
exchanges matter and antimatter states (right).

the ‘true’ nature of time reversal? The fact that reversing a Feynman diagram
is similar to an application of CT might be viewed as an artefect of the
diagrams which does not adequately capture the symmetries of time itself. In
my view, that is exactly what it is. However, let me first review an important
argument to the contrary.

8.2.1 The Greaves Quantisation Argument

Arntzenius and Greaves have argued that the Feynman view is needed
to explain two puzzles about the CPT theorem.8 All known relativistic
quantum field theories are invariant under CPT, and the ‘CPT theorem’ is a
collection of results that explains this: it shows that a large class of relativistic
quantum theories are CPT invariant.9 However, there is still some room to be
puzzled about these results. Greaves (2008, 2010) has put it in the following
way.

[O]ne can identify two positive sources of puzzlement:

• How can it come about that one symmetry (e.g., Lorentz invariance) entails
another (e.g., CPT) at all?

• How can there be such an intimate relationship between spatiotemporal sym-
metries (Lorentz invariance, parity reversal, time reversal) on the one hand and
charge conjugation, not obviously a spatiotemporal notion at all, on the other?
(Greaves 2010, p.28)

8 See Greaves (2008, 2010), Arntzenius and Greaves (2009), and Arntzenius (2011, 2012).
9 See Bain (2016); Swanson (2018, 2019) for a summary and philosophical perspectives on these

results.
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200 Representing CPT

Her solution to the second puzzle, echoed by Arntzenius (2011, 2012), is
that we must adopt the Feynman view: the transformation normally called
CT is what deserves the name ‘time reversal’. Thus, both CT and CPT count
as ‘spatiotemporal’, solving the second puzzle. As for the first puzzle, on
how continuous relativistic symmetries can give rise to further discrete
symmetries, Greaves argues that a “classical PT theorem” shows how this
is forced by the geometry of relativistic spacetime.

This section will be concerned with Greaves’ solution to the second
puzzle.10 Why is it more ‘natural’ to say that time reversal is really CT?
Greaves (2010, §4) sketches an answer, which draws on her view of quantum
field theory as the “quantisation” of a classical field theory. She begins with
a classical field theory, making the standard choice for the classical time
reversal operator. Standard textbook practice then converts the classical
theory into a quantum theory, and Greaves draws on Bell (1955) to determine
how classical time reversal is transformed by this procedure. According to
Greaves, and perhaps also to Bell, quantisation automatically converts clas-
sical time reversal into what is normally called the CT transformation.11 In
this sense, she proposes, CT in quantum field theory is naturally interpreted
as time reversal:

[S]tart from a classical field theory, with assumptions about which classical trans-
formations deserve the names ‘time reversal’ and ‘parity reversal’ already in place
(never mind whence!); obtain a QFT by quantization; work out which transforma-
tions on QFT states and operators are induced by the already-named transforma-
tions on classical fields, and name the former accordingly. . . . when one carries
out this latter project, with standard names for the classical transformations, the
transformation that is usually called ‘TC’ receives the name ‘T’. (Greaves 2010, p.39)

If this is right, then the quantisation of classical time reversal is CT, and
so the quantisation of classical PT is CPT. That would be quite surprising:
time reversal in classical and quantum theory are generally quite similar,
in that both can be viewed as representations of time translation reversal.12

In contrast, Greaves proposes that they are quite different: time reversal in
classical theory becomes CT in quantum theory. In the remainder of this

10 Her solution to the first draws on an argument of Bell (1955), which was generalised by Greaves and
Thomas (2014) but which has some difficulties. For example, as Swanson (2019, p.120) points out,
her PT theorem is too restrictive for the Standard Model, since it holds only for polynomial
interactions of tensor fields and thus does not apply to non-polynomial interactions or to those
involving spinorial tensors.

11 Bell summarises the result of quantisation: “Thus the kind of reversal we have been considering
implies an automatic change of sign of charge. From the field point of view, such a sign change is no
more surprising than the sign change of a velocity, or an angular momentum, with time reversal in
particle mechanics” (Bell 1955, p.483).

12 See Chapter 3.

https://doi.org/10.1017/9781009122139.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122139.009


8.2 On Feynman’s View 201

section, I will argue that it does not: on a rigorous quantisation procedure,
classical time reversal does not induce a transformation that exchanges
matter and antimatter.

8.2.2 Quantisation of T Is Not CT

There are many approaches to ‘quantisation’, or the practice of converting a
classical description into a quantum one. This practice sometimes includes
‘eye balling it’, and when it does, it is called canonical quantisation. Unfortu-
nately, canonical quantisation suffers from a large number of impossibility
results.13 So, it will be helpful to adopt a rigorous alternative. I will argue
that, when quantisation is treated in a rigorous way, classical time reversal
is not converted into an operator that exchanges matter and antimatter. So,
the Greaves quantisation argument does not generally stand up to scrutiny.
To illustrate, I will adopt one well-known approach: the Segal quantisation of
a classical bosonic field.14

Begin with a general description of a complex classical field theory, such
as a free Klein–Gordon field. Its space of solutions forms a real manifold
S, which we will assume for simplicity is also a vector space: this holds,
for example, in the linear approximation of solutions to a field equation.
The manifold has a symplectic structure, which is to say a bilinear map
ω : S × S → R that is skew-symmetric and non-degenerate, arising from
the structure of the dynamics.15 It also has a Riemannian structure, which
is to say a bilinear positive symmetric map g : S × S → R, arising from the
structure of the state space of initial conditions. These will usually satisfy
a technical condition of being compatible, in the sense that 1

2 |ω(ψ,φ)| ≤
g(ψ,ψ)1/2g(φ,φ)1/2, which helps to guarantee that g provides an inner prod-
uct. In summary, I will refer to the triple (S,ω,g) as a classical field theory
whenever S is a linear manifold, ω is a symplectic structure, and g is a
Riemannian structure that is compatible with it.

The central result of Segal quantisation is that it is always possible to
convert a classical field theory of this kind into a quantum theory, called a
‘one particle structure’, in a way that preserves the essential structure of the

13 The canonical quantisation procedure of Dirac (1947), whereby classical observables are ‘hatted’ to
produce quantum observables, suffers from the impossibility results of Groenewold (1946) and of
the PhD thesis of Van Hove (1951). A class of similar results is referred to as the Groenewold–Van
Hove Theorem; for an introduction, see Gotay (2000).

14 For an introduction, see Kay (1979), Kay and Wald (1991, Appendix A), Segal and Mackey (1963), or
Wald (1994). For some alternative approaches see Landsman (1998) or Woodhouse (1991).

15 For example, if the field theory is formulated with a symplectic manifold as its state space (see
Section 3.3), then the solutions’ Hamiltonian evolution preserves the symplectic form on state space,
which allows one to define a symplectic structure on solutions as well.
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original field theory. This structure then forms the basis for a Fock space
representation of a quantum field theory. The result is summarised by Kay
and Wald (1991, Proposition 3.1):

Proposition 8.2 (Segal Quantisation) For every classical field theory (S,ω,g)
there is a Hilbert spaceH and a ‘Segal quantisation’ map K : S → H such that:

1. (adequacy) The range of K is dense inH.
2. (Riemannian preservation) Re〈Kψ,Kφ〉 = g(ψ,φ) for all ψ,φ ∈ S.
3. (symplectic preservation) 2 Im〈Kψ,Kφ〉 = ω(ψ,φ) for all ψ,φ ∈ S.

The pair (K,H) is unique up to unitary equivalence, in the sense that if (K ′,H′)
satisfies (1)–(3), then there is some unitary U : H→ H′ such that UK = K ′.

The Hilbert space H built by Segal quantisation can be used to define a
symmetric Fock space,

F = C ⊕H⊕ S(H⊗H) ⊕ · · · , (8.3)

whereS is the projection onto the symmetric subspace. One can then follow
a standard procedure to define creation, annihilation, and particle number
operators of a bosonic quantum field system.16 Proposition 8.2 ensures that
each one-particle structureH is the unique quantum system capturing the
essential properties of the classical bosonic field (S,g,ω): adequacy ensures
that every state in the Hilbert space is ‘reasonably close’ to representing a
state in the original classical field theory. And, Riemannian preservation and
symplectic preservation ensure that the metrical and dynamical information
are preserved, respectively. In this sense, the resulting Fock space represen-
tation is an adequate representation of a bosonic quantum field theory.

The Segal construction moreover guarantees that each one-particle struc-
ture can be written asH = H′ ⊕H′ in a canonical way, with the summands
interpreted as ‘positive frequency’ and ‘negative frequency’ subspaces. The
exchange of these subspaces (ψ+ ⊕ ψ−) �→ (ψ− ⊕ ψ+) is called matter–
antimatter exchange. So, to see whether the quantisation of classical time
reversal exchanges matter and antimatter, as Greaves proposes it does, we
can check whether the Segal quantisation of classical time reversal has this
property. As I have suggested, the resulting quantum time reversal operator
does not exchange matter and antimatter. However, confirming this requires
introducing a few details of the Segal construction, which I will now sketch;
the remaining details can be found in Kay and Wald (1991, Appendix A).

16 This Fock space construction can be shown to be essentially unique (see Baez, Segal, and Zhou 1992,
Theorem 1.10). For an introduction, see Araki (1999, §3.5).
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The results of Chapter 3 help to identify the key properties of a time
reversal map TS : S → S for a classical field theory (S,ω,g). In summary,
time reversal must reverse the symplectic structure, ω(TSφ,TSψ) = −ω(φ,ψ),
and it must preserve the Riemannian structure, g(TSφ,TSψ) for all φ,ψ ∈ S.
The former follows from the fact that classical time reversal must be antisym-
plectic (Proposition 3.1). The latter can be motivated from the assumption
that time reversal does not alter classical metrical structure. It also follows
directly from the fact that any quantum time reversal operator that we end
up with must be antiunitary (Proposition 3.4).17

How does Segal quantisation convert classical time reversal into a quan-
tum time reversal operator? Given any TS : S → S, the Segal quantisation
map K induces a quantum operator TH defined by,

TH(Kφ) := K(TSφ), (8.4)

for all Kφ ∈ H. This definition of TH uniquely extends to all ofH, because
the range of K is dense. Since classical time reversal TS reverses ω and
preserves g, one can show that this TH must be antiunitary operator, as we
will see shortly.

To determine whether quantum time reversal exchanges matter and anti-
matter, one can check whether TH exchanges the canonical positive and
negative frequency subspaces in H = H′ ⊕H′. In the Segal construction,
the quantisation map K is defined so as to transform each classical solution
φ ∈ S to a quantum state ψ+ ⊕ ψ− ∈ H of the form

K(φ) = ψ+ ⊕ ψ− := Eφ ⊕ FCφ, (8.5)

where E and F are positive operators, and C is an antilinear map defined
onH′, which is a ‘complexified copy’ of S. Omitting some details, here is the
main fact about these operators that we will need: whenever TS preserves g

and reverses ω, it commutes with all three of these operators, E, F , and C.
This immediately implies our main conclusion, that for any quantum state
ψ+ ⊕ ψ− = Kφ,

TH(ψ+ ⊕ ψ−) := K(TSφ) = E(TSφ) ⊕ FC(TSφ)

= TS(Eφ) ⊕ TS(FCφ) = (THψ+) ⊕ (THψ−).
(8.6)

Since the positive and negative frequency states are not exchanged, the
quantised time reversal operator is not associated with matter–antimatter
exchange.

17 Antiunitarity implies that 〈THψ,THψ ′〉 = 〈ψ,ψ ′〉∗. On the Segal construction of the inner product
in Eq. (8.7), this is only possible if g is preserved.
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Here are a few more details, which might help to avoid one possible
confusion. Segal quantisation begins by constructing a ‘complex structure’
J : S → S on the classical solution space, which is a linear map J : S → S

satisfying J 2 = −I and which turns g into a ‘Kähler form’: 1
2ω(ψ,φ) =

g(ψ,Jφ) and ω(Jψ,Jφ) = ω(ψ,φ) for all φ,ψ ∈ S. One then converts S

into the ‘positive frequency’ Hilbert space H′, by defining iψ := −Jψ and
adopting the inner product,

〈ψ,φ〉 := g(ψ,φ) + i
2ω(ψ,φ). (8.7)

Classical time reversal preserves g and reverses ω, which guarantees it is
antiunitary with respect to this inner product,

〈TSψ,TSφ〉 = g(TSψ,TSφ) + i
2ω(TSψ,TSφ)

= g(ψ,φ) − i
2ω(ψ,φ) = 〈ψ,φ〉∗.

(8.8)

Using these facts, a short calculation shows18 that any such TS must also
reverse the complex structure, in that TSJ = −JTS . Since this J intuitively
captures ‘multiplication by i’ in the classical field theory, the fact that
TSJT −1

S = −J does capture a sense in which TS ‘conjugates’ classical fields.
But, this kind of conjugation is not what captures matter–antimatter

exchange in quantum theory and should not be conflated with the con-
jugation operator C appearing in the Segal quantisation map of Eq. (8.5).
The latter is relevant to the exchange of positive and negative frequency
subspaces of the quantised field theory, whereas the former is not. On the
contrary, the fact that TS reverses J helps to establish that TS commutes with
E, F , and C and thus that it does not exchange these subspaces.19

Classical time reversal is not converted into a CT transformation by
quantisation. However, one might still wonder about Greaves’ two puzzles.
How can assuming continuous symmetries give rise to more symmetries?
And, wouldn’t CPT symmetry be a lot easier to explain if charge conjugation
were somehow associated with spacetime?

The first puzzle is in fact not so surprising considering the account
of discrete symmetries that I have given in Chapter 2. By viewing these
symmetries as automorphisms of the continuous symmetries, they arise nat-
urally as further ‘higher-order’ symmetries, through the semidirect product

18 Irreducibility considerations generally guarantee that T JT −1 = ±J (cf. Wallace 2009, p.218).
Moreover, our compatibility assumption for the case that φ = ψ implies that g(φ,φ) ≥ 0 and hence
that −g(φ,φ) = 1

2 ω(φ,Jφ) ≤ 0 for all φ ∈ S. But this makes T JT −1 = J impossible, for then we
would have 0 ≥ ω(φ,Jφ) = −ω(T φ,T Jφ) = −ω(T φ,JT φ) ≥ 0 and hence that ω(φ,Jφ) = g(φ,φ) = 0
for all φ, ∈ S.

19 Similar remarks have been made by Baker and Halvorson (2010); Wallace (2009).
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construction that I have given in Section 2.6. I will discuss this in more detail
in Section 8.4. What is more puzzling is how the structure of a given state
space can possibly prevent them from being symmetries. My perspective on
how this can happen is given in the discussion of T violation in Chapter 7.

On the other hand, I find the second question to be tantalising. The ubiq-
uitous symmetry of relativistic quantum field theory under CPT certainly
would be a lot less puzzling if C could be viewed as a spacetime symmetry.
Quantisation theory is unlikely to make the connection, as we have seen
above. But, might there be another way? As Swanson (2019) has pointed
out, such a link does exist in algebraic formulations of charge conjugation
in quantum field theory. In the next two sections, I will rather consider
a somewhat non-standard proposal about how this link can be made. In
particular, there is a structure called the ‘covering group’ of the restricted
Poincaré group, which makes a central appearance in the foundations of
both spacetime symmetries and matter–antimatter exchange. Section 8.3
proposes a sense in which the spacetime symmetries might be ‘enlarged’ in
a way that goes beyond the Poincaré group, while still remaining empirically
adequate. Section 8.4 then considers a possible account of matter–antimatter
exchange that makes use of this structure. Even based on this unusual
account, I find that time reversal is still just T.

8.3 Local Symmetries beyond the Poincaré Group

A ‘local’ spacetime symmetry is one defined on scales for which gravitation
and Planck-scale phenomena can be ignored. These are the scales on which
relativistic quantum field theory is formulated. What are the local spacetime
symmetries? The success of special relativity provides strong evidence that
they consist of at least three things:20

1. Lorentz boosts describing a change of inertial reference frame;
2. spatial rotations describing rigid rotations of the spatial surfaces orthogo-

nal to a timelike line; and
3. the spacetime translations, describing rigid translations along a timelike

line.

The first two categories can be collected to form a Lie group called the
restricted Lorentz group L

↑
+, written with ‘↑’ and ‘+’ to indicate that they

do not reverse temporal or total orientation, respectively. The inclusion of

20 For an introduction, see Landsman (1998, esp. §2.2 and Part IV) or Varadarajan (2007, §IX.2).
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translations through a semidirect product21 produces the restricted Poincaré
group P↑

+ = R4
� L↑. They are all isometries of Minkowski spacetime,

sometimes referred to as the ‘continuous symmetries’, since as elements of a
Lie group they are all continuously connected to the identity. The ‘discrete’
symmetries are isometries too, consisting of a continuous symmetry com-
posed with either time reversal, parity, or both. Including these produces
what is called the complete Poincaré group P.

Of course, the discovery of P, T, and PT violation in electroweak theory
indicates that these are not actually spacetime symmetries, as I have argued
in Chapter 7. So, the structure of spacetime is not quite Minkowski. Instead,
common wisdom has it that the local spacetime symmetries are described
by the restricted Poincaré group P↑

+.
Let me take a little inspiration from the proposal of Greaves (2010)

discussed above. Is it possible that the spacetime symmetries might include
something like matter–antimatter exchange as well? Perhaps common wis-
dom is not the whole story – the local spacetime symmetries might not
be correctly described by the restricted Poincaré group! – if there is an
alternative structure that could do the same job and offer a little more.

In this section, I will consider a proposal of this kind, which identifies
the spacetime symmetries with the ‘universal covering’ of the restricted
Poincaré group. The elements of the universal covering can all be interpreted
as falling into one of the three categories above: boosts, rotations, and
translations. But, this group is only locally (and not globally) isomorphic to
the restricted Poincaré group. To some extent, this is an example of what
philosophers call, ‘underdetermination of theory by evidence’: two different
spacetime symmetry groups are compatible with existing evidence. How-
ever, in Section 8.4, I will illustrate a sense in which the universal covering
might offer some advantages, through an account of matter–antimatter
exchange as a spacetime symmetry.

I will begin in the next section with an example to motivate how the
spacetime symmetries might be ‘extended’ in this way. I will then review
the universal covering of the restricted Lorentz group in Section 8.3.2, before
suggesting how one might construct a notion of matter–antimatter exchange
in Section 8.4. The result might be viewed as a ‘spacetime account’ of matter–
antimatter exchange, or at least the beginning of one. However, even based
on this account, I can find no sense in which time reversal requires matter–
antimatter exchange.

21 Semidirect products were introduced in Section 2.6. The group multiplication rule for two elements
(x,�),(x′,�′) ∈ R4

� L↑ is given by (x,�)(x′,�′) = (x + �x′,��′).
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8.3.1 What Is the Group of Spatial Rotations?

Let me begin with an example that is easy to visualise. The continuous
symmetries of Euclidean space at a point can be collected together to form a
Lie group SO(3) of rigid Euclidean rotations. Those symmetries were given
up following the discovery of general relativity. But, in this discussion, let
me focus on local regimes in which gravity can be neglected and where one
still might wish to postulate that the symmetry group of space at a point is
SO(3).

There is still another option. The elements of a different group, SU (2), can
also be interpreted as symmetries of space. We have seen this group already
in our discussion of spin in Section 3.4.4: its elements are the ‘rotations’
given by

Rx(θ ) = e(i/2)θσx, Ry(θ ) = e(i/2)θσy, Rz(θ ) = e(i/2)θσz, (8.9)

where each σj for j = x,y,z is a Pauli spin observable. As we have seen,
this group has the interesting property that a ‘rotation’ through 2π does
not return a system to where it started. Instead, R(2π) = −I , and a second
rotation through 2π is needed to restore the identity, R(4π) = I . Never-
theless, each element of SU (2) can be viewed as a spatial rotation, in the
sense that there is a neighbourhood of each element that is isomorphic22 to
a neighbourhood of the ordinary rotation group SO(3). The groups SU (2)
and SO(3) have the same local structure but differ in their global description
of how the rotations fit together.

The structure of SU (2) obviously does not capture our experience of
spatial symmetry on the scale of everyday objects: by rotating a ball through
2π , it appears to go back to where it started.23 However, the correct spatial
symmetry group might still be SU (2), if its strange behaviour is invisible on
the scales that are currently accessible to us. Recall the analogy of an arrow
on a Möbius strip: when an arrow is transported orthogonally along a loop,
a rotation through 4π is needed to restore it to its original state. However, if
we imagine that the arrow is scaled to be very small, as in Figure 8.5, or if
it is only detectable in the presence of certain kinds of matter, then it might
appear that a rotation through 2π is enough.

22 Alternatively: these Lie groups have isomorphic Lie algebras at every point; this property will be
defined more generally in Section 8.3.2 in the definition of a covering group.

23 You can still experience SU (2) with relative ease, not as a symmetry of space, but through the
following procedure: hold your palm upright in front of you and notice that by raising your elbow,
it is possible to rotate your hand through 360 degrees, all while keeping your palm upright. Your
arm will now be quite twisted; but, by continuing to rotate in the same direction through another
360 degrees, always palm up, you can then untwist your arm into its original state!
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Figure 8.5 The global structure of SU (2) might be hidden from us for scales
on which the ‘arrows’ are small enough to appear invisible.

This is an ordinary case of underdetermination of theory by evidence:
either the spatial symmetry group is SO(3), or else it is secretly SU (2) but
in a way that gives the illusion of being SO(3) on familiar scales. Of course,
we do not need to take SU (2) too seriously in the absence of evidence for
it. In contrast, if we had evidence that SU (2) were a more effective model
of some phenomenon, in a way that explains the illusion of rotations on
ordinary scales, then we might reject SO(3) in favour of SU (2). I do not
know of any compelling evidence for this in the case of rotations, at least
when considered in isolation. However, I will point out a sense in which this
kind of expansion of the Poincaré group does have modelling advantages,
in that it might allow one to characterise the matter–antimatter relationship
as a spacetime symmetry.

Before I turn to this idea, let me head off a possible source of confusion:
the structure of the rotation group for a spin-1/2 system does not provide
any evidence for SU (2) over SO(3), as far as I am aware. It is true that the
Hilbert space description of a spin-1/2 particle admits an irreducible unitary
representation of SU (2), and not of SO(3). However, this does not imply that
descriptions related by a rotation of R(2π) = −I describe factually different
states of affairs.

On the contrary, the statistical predictions of quantum theory are the same
for all states ψ on the same ray, or set of vectors related by a phase factor. The
‘true’ state space of quantum theory is thus a ray space; correspondingly,
its symmetries are only defined up to a phase factor as well, as discussed
in Section 3.4.2. From this perspective, the transformations R(2π) = −I and
R(0) = I refer to the very same rotation, as Hegerfeldt and Kraus (1968)
have pointed out.24 Indeed, Bargmann (1954) famously showed that the ray
space of a spin-1/2 system does admit a representation of SO(3).

24 Their article, written in response to Aharonov and Susskind (1967), is in fact the once-rejected paper
that led to their collaboration with Wigner, as reported in Footnote 18.
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My point here is rather that we still face a certain amount of underdeter-
mination: whenever we have a representation of SO(3), we always formally
have a degenerate representation of SU (2). And, when we turn to the case
of the Poincaré group, I will argue that a very similar structure may provide
a more effective model of reality, by allowing us to characterise the matter–
antimatter relationship.

8.3.2 The Covering Group of Spacetime Symmetries

Let me describe an analogous construction to the one above for the case
of the Poincaré group. It will be helpful to first identify the nature of this
construction in a more general way.25

Definition 8.1 A covering group or cover over a Lie group G is a Lie group Ĝ,
together with a continuous homomorphism or ‘covering map’ from Ĝ onto G

such that the induced map on Lie algebras is an isomorphism. The universal
covering group is the unique, simply connected covering group over G.

A cover over a Lie group has the same local structure but may not be
isomorphic. The ‘universal’ covering gets its name from the fact that it is
a cover for all other covers. For example, SU (2) is a cover for SO(3), and
indeed it is simply connected, and so it is the universal covering group over
SO(3).

The universal covering group for the restricted Lorentz group L
↑
+ is called

SL(2,C). It was famously applied by Bargmann (1954) as part of a more
general technique for finding unitary representations of Lie groups using
their universal coverings. Like the case of SU (2), the group SL(2,C) is a
doubly-degenerate cover over L

↑
+, and the choice between L

↑
+ and SL(2,C) is

underdetermined in the same sense that we have discussed in Section 8.3.1.
Locally, it behaves just like the restricted Lorentz group. But, it might be
that its global structure is somehow hidden from us on ordinary scales.
Indeed, SU (2) is a subgroup of SL(2,C), and so this is in fact a more general
instance of the problem discussed in the previous section. To understand
the symmetries of SL(2,C) and its relationship to Minkowski spacetime, let
me introduce a few more details of a classic construction.26

The name SL(2,C) stands for the ‘special linear group’ of 2 × 2 complex-
valued matrices with unit determinant. To compare it to Minkowski

25 See Hochschild (1965, Chapters IV and XII) for an introduction to covering groups.
26 Classic presentations include Gel’fand, Minlos, and Shapiro (1958, Part II Chapter 1 §1.8) and

Naimark (1964, §3.9).
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spacetime, we first give a clever expression of the latter using the set
M of 2 × 2 matrices that are self-adjoint, A = A∗. Note that I write A∗ to
refer to the conjugate-transpose or adjoint of A; I will later write Ā to refer to
conjugation of each matrix element and A� to refer to the matrix transpose.

The set M of self-adjoint matrices is closed under matrix addition and
multiplication by real scalars. It thus forms a real vector space of four
dimensions, with an explicit basis set given by the Pauli matrices:

σ0 =
(

1
1

)
σ1 =

(
1

1

)
σ2 =

( −i

i

)
σ3 =

(
1

−1

)
. (8.10)

We can identify a metric on this space by defining a symmetric bilinear form,
η(σi,σj ) := gij , where gij = diag(1,−1,−1,−1) is the Minkwoski metric. Then
the pair (M,η) is isometric to Minkowski spacetime! In particular, since it is a
linear space, we can interpret it as the tangent space of Minkowski spacetime
at a point. Thus, each element v ∈ M can be interpreted as a vector at a point
in the underlying spacetime manifold, corresponding to an ‘instantaneous’
translation along spacelike, timelike, or null curves.

It is illuminating to write these elements explicitly in terms of our basis
elements and some real numbers u = (t,x1,x2,x3), which can be viewed as
representing translations in spacetime. Then the general form of a vector in
Minkowski spacetime at a point is

v = u · σ =
(

t + x3 x1 − ix2

x1 + ix2 t − x3

)
. (8.11)

Writing the Minkowski norm as |v|2 := ημνv
μvν in the Einstein summation

convention can now express it in a particularly simple way:

|v|2 := ημνv
μvν = t2 − x2

1 − x2
2 − x2

3

= (t + x3)(x0 − x3) − (x1 − ix2)(x1 + ix2) = det(v),
(8.12)

where the determinant is associated with the matrix of Eq. (8.11). The
complete Lorentz group L consists of the maps � : M → M that preserve
the Minkowski norm, η(�v,�v) = η(v,v). By Eq. (8.12), this is equivalent
to det(�v) = det(v). The restricted Lorentz group L

↑
+ then consists of those

elements that are continuously connected to the identity.
I have said that SL(2,C) is a cover for L

↑
+. The covering map � : S �→ �S

can be explicitly defined by

�Sv := SvS∗, (8.13)
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for all S ∈ SL(2,C) and all v ∈ M . This map is straightforwardly shown27

to be a continuous, surjective homomorphism � : SL(2,C) → L
↑
+ that is a

doubly-degenerate covering, meaning that ker � = {I,−I }. The latter implies
the map is a local isomorphism and thus induces an isomorphism of Lie
algebras, making this a covering map. Since SL(2,C) is simply connected,
it follows that this is in fact the universal covering group over L

↑
+. Each of

its elements can be written in polar decomposition as S = UeA, where U is
unitary and A is self-adjoint. They are generated by operators of the form
Rj (θ ) = ei(θ/2)σj and Bj (s) = e(s/2)σj with j = x,y,z, where the former give
rise to a subgroup of ‘rotations’ isomorphic to SU (2), and the latter can be
interpreted as Lorentz boosts.

This completes our brief review of SL(2,C).28 It can be extended to include
spacetime translations in a straightforward way, just as they are included in
the restricted Poincaré groupP↑

+, by adopting the semidirect product group
R4
� SL(2,C) with multiplication given by (v,S)(v′,S ′) = (v + Sv′S∗,SS ′).

I will denote this group P↑
+, with a ‘bar’ covering the letter to remind one

that it is the universal covering.
This development of SL(2,C) and its relationship to Minkowski spacetime

provides a well-known technique for constructing projective representations
of the restricted Lorentz group L

↑
+ on a Hilbert space. However, the

interpretation I am considering here goes beyond this usage, in order
to give serious consideration to the possibility that C is a spacetime
symmetry.

Namely, if physical spacetime were locally described by Minkowski space-
time, then its symmetry group would be the complete Poincaré group. But,
spacetime is not locally Minkowski, because P, T, and PT symmetry are all
violated. So, my plan is now to consider the possibility that it is different
in other ways too and in particular that its global structure is given by the
universal covering group P↑

+. This is an unusual way to look at this group.
But, in the next section, I will indicate how it suggests an account of matter–
antimatter exchange that is closely related to a spacetime symmetry and
which allows it to be effectively compared to time reversal.

27 See Varadarajan (2007, p.334–5). To fill in some of the details: �S is in the Lorentz group because
it preserves the Minkowski norm, η(�Sv,�Sv) = det(�Sv) = det(SvS∗) = det(v) = η(v,v).
It is obviously continuous, and one can check that it is a homomorphism, �RS (v) = (RS)v(RS)∗ =
R(SvS∗)R∗ = �R�S (v). To see that it is a twofold covering, let S ∈ ker �, so that v = �Sv = SvS∗
for all v. It follows by Schur’s lemma that S = cI for some c ∈ C. We thus have that 1 = det(S) = c2

and hence that S = ±I , which is to say that ker � = {±I }.
28 For a more detailed introduction, see Varadarajan (2007, p.334–7), or Naimark (1964, §3.9).
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8.4 C as a Spacetime Symmetry

I proposed a general strategy for determining the discrete symmetries asso-
ciated with a collection of continuous spacetime symmetries in Section 2.6.
In particular, I showed how time reversal arises as an automorphism of
the time translations. In this section, I will argue that matter–antimatter
exchange can be understood in a way that is very similar to this: not as an
automorphism of spacetime symmetries, but of the space of representations
of those symmetries. This brings C, P, T, and their combinations closer to
being on par, so long as the symmetries of spacetime are associated with
the covering group P↑

+.
Two caveats about this account: first, the concept of ‘charge conjugation’

is clearly not exhausted by any purely spacetime description. Charges in
relativistic field theory are conserved quantities associated with a global
gauge group, which in the Standard Model is postulated to be SU (3) ×
SU (2) × U (1). I do not claim that this group is a spacetime structure. What
I would like to indicate is how one aspect of charge conjugation, which
might be called ‘matter–antimatter exchange’, can be viewed as intimately
connected to the spacetime symmetry. I find this to be a natural way to
explore the proposal of Greaves (2010). But, as I will argue, its relationship
to time reversal does not provide a clean vindication of the Feynman view,
and it does not erase the arrow of time associated with T violation.

8.4.1 Extending the Discrete Symmetries

Let me begin by revisiting my account of discrete symmetries. When we
restrict attention to the subgroup (R,+) of time translations in a reference
frame, we find that time reversal is the unique non-trivial automorphism,
τ : t �→ −t (Proposition 2.1). It is not an element of the original symmetry
group but rather a ‘symmetry of symmetries’, which I referred to as ‘higher
order’ in Section 4.3. However, time reversal can always be ‘added’ into the
group through the construction of the semidirect product (R,+) � {ι,τ }. In
Section 2.6, I showed how this produces a group element that reverses time
translations, τ tτ−1 = −t .

Extending this thinking to the restricted Poincaré group P↑
+, we find

three non-trivial automorphisms: time reversal τ , together with the parity
p and their combination pτ . These automorphisms can be defined for
each spacetime translation u = (t,,x1,x2,x3) ∈ R4 in a foliation, as: up :=
(t,−x1,−x2,−x3) and uτ := (−t,x1,x2,x3), and hence upτ = −u. They can
also be defined for each Lorentz boost, as: p(�) = τ (�) = π�π , where
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π : (t,x1,x2,x3) = (t,−x1,−x2,−x3) is a spatial reversal. The latter arises
because both parity and time reversal ‘turn around’ the spatial direction
in which each boost occurs so that the three-velocity is reversed. Thus, the
ordinary p, τ , and pτ transformations can be viewed as automorphisms of
the Poincaré group. In summary:

p : (u,�) �→ (up,π�π)

τ : (u,�) �→ (uτ,π�π)

pτ : (u,�) �→ (−u,�).

(8.14)

These turn out to exhaust the non-trivial automorphisms α of P↑
+ that are

also involutions.29 So, constructing the ‘complete’ Poincaré group from these
automorphisms produces a group that really is complete.

Similar automorphisms can be found for the covering group P↑
+ as well.

Let v ∈ M be a vector in Minkowski spacetime represented as a 2 × 2 self-
adjoint matrix, as introduced in Eq. (8.11). The covering map �Sv = SvS∗

defines the restricted Lorentz transformation �S associated with each S ∈
SL(2,C). With a little effort, one can check30 that S �→ (S−1)∗ is an automor-
phism of SL(2,C) and that it induces the transformation �S �→ �(S−1)∗ =
π�Sπ on the restricted Lorentz group via the covering map. As a result,
S �→ (S−1)∗ induces the same parity and time reversal transformations, as
described for the ordinary Poincaré group in Eq. (8.14).31 We can summarise
these as:

p : (u,S) �−→ (up,(S−1)∗)

τ : (u,S) �−→ (uτ,(S−1)∗)

pτ : (u,S) �−→ (upt,S).

(8.15)

Can we now introduce matter–antimatter exchange as an automorphism
in a similar way? Not quite. There are exactly three non-trivial ‘outer’
automorphisms of SL(2,C): the inverse-transpose S �→ (S−1)�, the complex
conjugate S �→ (S̄), and their combination S �→ (S−1)∗. There are also

29 The spacetime translations admit further automorphisms of the form a �→ λa for λ ∈ R; however,
the argument of Proposition 2.1 ensures that if they are required to be involutions, then λ = ±q.

30 Conjugation S �→ S̄ and the inverse-transpose S �→ (S−1)� are both automorphisms of SL(2,C), and
thus so is their composition S �→ (S−1)∗. Viewing S = UA in its polar decomposition, one can show
that �S∗ = ��

S
where ‘�’ is the 2 × 2 matrix transpose (Varadarajan 2007, pp.335, Eq. (55)). Now,

defining π (t,x) = (t,−x), one can see by inspection of the form of v in Eq. (8.11) that v−1 = 1
det(v) πv,

and that det(πv) = det(v). This implies that �
S−1v = S−1v(S−1)∗ = (S∗v−1S)−1 =

(S∗ 1
det(v) πvS)−1 = det(v)(�S∗πv)−1 = (π��

S
π )v. Combining this with our equation �S∗ = ��

S

now establishes that �(S−1)∗ = π�Sπ .
31 This was observed already by Gel’fand, Minlos, and Shapiro (1958, p.160).
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conjugate: �S �→ �S̄ = ζ�Sζ

transpose: �S �→ �S� = ζ��
S ζ

inverse: �S �→ �S−1 = π��
S π

Figure 8.6 Automorphisms and antiautomorphisms of SL(2,C), and their
induced effect on the Lorentz group.

four antiautomorphisms: the inverse S �→ S−1 and the transpose S �→ S�,
together with the inverse-conjugate and the transpose-conjugate. One can
calculate the way that each transforms elements �S of the restricted Lorentz
group: three of them are summarised in the table of Figure 8.6, from
which the effects of the remaining one can be determined. Here, π is a
total spatial reversal, while ζ is defined by ζ (t,x1,x2,x3) = (t,x1,−x2,x3),
reversing the spatial translations on just one axis. The problem is that
all the automorphisms of SL(2,C) induce a non-trivial automorphism of
the Lorentz transformations �S . This makes none of them appropriate for
matter–antimatter exchange, which would require a transformation that
does not effect any element of the Lorentz group.

As a result, a little more structure is needed to express matter–antimatter
exchange. This makes sense, because we clearly do not have enough struc-
ture at this abstract level to define something like ‘positive frequency’ and
‘negative frequency’ subspaces. However, that kind of structure is afforded
at the level of representations of SL(2,C). We will now see that, on this space of
representations, matter–antimatter exchange takes the form of a symmetry
that is very similar to parity and time reversal.

8.4.2 Conjugation and Matter–Antimatter Exchange

There are no finite-dimensional unitary representations of SL(2,C), owing to
the fact that it is not a compact Lie group. However, the non-unitary linear
representations of SL(2,C) are the foundation for the theory of spinors,
which play an important role in the description of many quantum fields.32

Weyl (1946, Theorem 8.11.B) showed that these representations of SL(2,C)

32 Spinors appear in the classification of semi-simple Lie groups by Cartan (1913), who in the
introduction to his later 1937 Theory of Spinors delighted in having ‘discovered’ spinors before Dirac.
Brief modern overviews can be found in R. Geroch (1973, “Special topics in particle physics”. In:
Unpublished Manunscript of Fall 1973, Version of 25 May 2006, §18) and Wald (1984, Chapter 13);
for a detailed introduction, see Carmeli and Malin (2000) or Penrose and Rindler (1984).
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have a particular canonical form. And, it is this form that can in some
contexts be interpreted as distinguishing between matter and antimatter.
Let me briefly set out what that is.

Viewing SL(2,C) as a group of 2 × 2 matrices, it is by definition a
representation amongst the linear transformations of the vector space V A :=
C2, whose elements are called spinors (or sometimes Weyl spinors). Note that
this concept is not the same as that of a (four-component) Dirac spinor. The
tensors built from the vector space V A are called spinorial tensors. I will be
concerned with the symmetric spinorial tensors defined on the n-fold tensor
product V A⊗V A⊗· · ·⊗V A for some n. Writing n = 2j for j = 0, 1

2,1,
3
2 · · · , let

Dj denote the subspace of symmetric spinorial tensors defined on this tensor
product. Following a typical presentation (cf. Varadarajan 2007, p.336), let
ϕj : SL(2,C) → Dj be the representation

ϕj : S �→ S ⊗ S ⊗ · · · ⊗ S. (8.16)

Since spinors are defined on a complex vector space, there exists another
inequivalent representation of SL(2,C) defined by complex conjugation with
respect to the first. One writes V A′ = C2 to denote the complex-conjugate
vector space33 and Dj ′ to denote the subspace of symmetric tensors built
from this vector space. Then the ‘conjugate representation’ ϕj ′ is given by

S �→ S̄ ⊗ S̄ ⊗ · · · S̄. (8.17)

Weyl’s result is that every finite-dimensional irreducible representation
of SL(2,C) is equivalent (up to an intertwining) to one of the form

ϕ(j,j ′) := ϕj ⊗ ϕj ′
, (8.18)

for some j,j ′ = 0, 1
2,1,

3
2, . . . . In the description of a quantum field system,

one may wish to interpret the first factor as a positive-frequency description,
corresponding to an ordinary matter field, while the other is interpreted as a
negative-frequency description, corresponding to an antimatter field. Given
such an interpretation, the exchange of these factors can be understood as
matter–antimatter exchange. Indeed, in the first rigorous statement of a CPT
theorem due to Jost (1965), the ‘charge conjugation’ aspect of CPT is char-
acterised by conjugation of field operators that exchanges these ‘undotted’
and ‘dotted’ spinor subspaces.34

33 Writing the scalar product in V A as av, where a ∈ C and v ∈ V A, we define V A′ to consist of the
same set of vectors as V A but with a scalar product a · v defined by a · v := a∗v.

34 See Haag (1996, §II.5.1) for a modern (and English-language) overview of this theorem.
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Of course, to make this connection concretely, a further unitary represen-
tation of this structure is needed on a Hilbert space of infinite dimension.
This can be carried out by appeal to the representation theory of spinors,
which is found in many places, and so I will not develop it here.35

What I would like to point out is that these representations of matter
and antimatter themselves admit a symmetry, viewed separately from the
symmetries of SL(2,C), which exchanges a given representation with its
conjugate. Namely, we define the map c on the space of irreducible repre-
sentations by the definition

c
(
ϕ(j,j ′)

)
:= ϕ(j ′,j ). (8.19)

In terms of the canonical direct tensor product ϕj ⊗ ϕj ′ , this transforma-
tion exchanges the two components. Thus, interpreting one as a ‘positive
frequency’ subspace and the other as a ‘negative frequency’ subspace, we
arrive at a definition of matter–antimatter exchange.

This transformation C is fundamentally different from P and T, which
are automorphisms of the spacetime symmetry group P

↑
+. In contrast, C

can only be defined as a symmetry of its representations. However, the
definitions of ϕj and ϕj ′ allow us to define time reversal and parity as
transformations of these representations as well, allowing one to compare all
three. Both time reversal and parity take the form τ (S) = p(S) = (S−1)∗, since
these transformations are only distinct in their transformation of spacetime
translations. This induces a transformation of ϕj through Eq. (8.16), and
on ϕj through Eq. (8.17), and therefore on each irreducible representation
ϕ(j,j ′) = ϕj ⊗ ϕj ′ .

Moreover, there is a sense in which both P and T are closely connected to
matter–antimatter exchange. Both of them involve the conjugation automor-
phism S �→ S̄, albeit together with the inverse-transpose as well. Viewed
as transformations from one representation ϕ(j,j ′) of SL(2,C) to another,
both are also ‘equivalent’ to matter–antimatter exchange, in the following
sense: consider the element iσ2 ∈ SL(2,C), where σ2 is a Pauli matrix. It can
be shown through simple matrix multiplication to transform time reversal
τ (S) = (S−1)∗ to the conjugate automorphism,

(iσ2)τ (S)(iσ2)−1 = S̄. (8.20)

35 Comments on this representation theory can be found in Carmeli and Malin (2000, §4.3), Penrose
and Rindler (1984), Varadarajan (2007, Chapter IX), or Wald (1984, 357–9).
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But, the automorphism S �→ (iσ2)τ (S)(iσ2)−1 = S̄ transforms a represen-
tation in the same way that matter–antimatter exchange does, c

(
ϕ(j,j ′)) :=

ϕ(j ′,j ). As a result, parity, time reversal, and matter–antimatter exchange are
all related by an intertwining map iσ2. More precisely, the transformations
p, τ , and c are related by the property that

(iσ2) ◦ p = (iσ2) ◦ τ = c ◦ (iσp). (8.21)

In the language of representation theory, this means that they are ‘equiv-
alent’ as symmetries of the space of representations. Although it is more
common to propose that matter–antimatter exchange is relevant to time
reversal, this suggests a sense in which it is relevant to parity as well.
Indeed, Wigner (1957, p.258) himself considered the possibility that “the
mirror image of matter is antimatter” in response to Wu’s discovery of
parity violation.

This provides a neat connection between C, P, and T. Let me now compare
it to the remarks about time reversal considered at the beginning of this
chapter. In the first place, matter–antimatter exchange is not quite a spacetime
symmetry – not even adopting the idiosyncratic view of spacetime symme-
tries as given by SL(2,C) – but rather a symmetry of its representations. So,
there is really no sense in which time reversal is ‘really’ CT or CPT, since
neither can be viewed as an automorphism of the continuous spacetime
symmetries. This provides a clear sense in which CT and CPT do not behave
in an appropriate way to be deserving of the name ‘time reversal’, following
the discussion of Section 8.1. These are not spacetime symmetries but rather
symmetries of a representation. As a result, a symmetry involving matter–
antimatter exchange cannot ‘erase’ the time asymmetry established by T
violation. Only the latter is relevant for describing the symmetries of ‘time
alone’.

However, there is still an interesting sense in which the Feynman pro-
posal is perhaps vindicated: time reversal, parity, and matter–antimatter
exchange can all be viewed as transforming ‘spinor’ representations to their
conjugates. One might interpret this as the statement that both parity and
time reversal ‘automatically’ include matter–antimatter exchange in a spinor
representation. However, exploring this possibility in detail would require
considerably more development.

8.5 Summary

T violation means that the standard time reversal operator T does not pro-
vide a representation of time translation reversal, t �→ −t . The experimental
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evidence for this provides strong evidence that time itself has an arrow, as
I have argued in Chapter 7. In this chapter, I considered a possible concern
about this conclusion: that there is always a large number of representations
that ‘restore’ temporal symmetry, which might include transformations like
PT or CPT. One might worry that these would ‘erase’ the arrow established
by T violation and provide an appropriate representation of time reversal
symmetry. But, this would be to ignore the broader context of what these
transformations mean. The transformation PT reverses spatial translations
and so does not deserve the name ‘time reversal’. And, when we are con-
sidering an irreducible representation, the choice of time reversal operator
is generally unique.

There are other arguments that might seek to establish that time reversal is
‘really’ CT or CPT. Quantisation theory is one; but, on careful mathematical
treatments, this transforms classical time reversal to the ordinary quantum
time reversal operator T. A more ambitious reinterpretation of C brings us
a little closer: by moving up from the ordinary spacetime symmetries to
the more exotic universal covering group, I exhibited a close relationship
between time reversal and matter–antimatter exchange. However, these
transformations are still defined on different spaces. In particular, there is
no plausible way to define matter–antimatter exchange as a true spacetime
symmetry, even for the universal covering group. Transformations like CT
and CPT are certainly important in the foundations of quantum field theory.
However, they should not be mistaken for transformations that determine
whether time has an arrow.
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