ON SQUARE PSEUDO-LUCAS NUMBERS

BY
A. ESWARATHASAN

J. H. E. Cohn (1) has shown that

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{12}=144
$$

are the only square Fibonacci numbers in the set of Fibonacci numbers defined by

$$
F_{1}=F_{2}=1 \text { and } F_{n}=F_{n-1}+F_{n-2} \text { for } n \geqslant 3 .
$$

If n is a positive integer, we shall call the numbers defined by

$$
\begin{equation*}
u_{1}=1, \quad u_{2}=6, \quad u_{n+2}=u_{n+1}+u_{n} \tag{1}
\end{equation*}
$$

pseudo-Lucas numbers.
In this paper we describe a method to show that the only square pseudoLucas numbers are,

$$
u_{1}=1 \quad \text { and } \quad u_{10}=225 .
$$

If we remove the restriction $n>0$, we obtain exactly one more square,

$$
u_{-2}=9
$$

It can be easily shown that the general solution of the difference equation (1) is given by

$$
\begin{equation*}
u_{n}=\frac{1}{5}\left(11 L_{n}-3 L_{n-1}\right), \tag{2}
\end{equation*}
$$

where n is an integer.
Then we easily obtain the following relations:

$$
\begin{gather*}
L_{r}=L_{r-1}+L_{r-2}, \quad L_{1}=1, \quad L_{2}=3, \tag{3}\\
F_{r}=F_{r-1}+F_{r-2}, \quad F_{1}=1, \quad F_{2}=1, \tag{4}\\
L_{r}^{2}-5 F_{r}^{2}=(-1)^{r} 4, \tag{5}\\
L_{2 r}=L_{r}^{2}+(-1)^{r+1} 2, \tag{6}\\
2 L_{m+n}=5 F_{m} F_{n}+L_{m} L_{n}, \tag{7}\\
2 F_{m+n}=L_{n} F_{m}+L_{m} F_{n}, \tag{8}\\
F_{2 r}=L_{r} F_{r}, \tag{9}\\
u_{n}=\frac{1}{2}\left(5 L_{n}-3 F_{n}\right) . \tag{10}
\end{gather*}
$$

Received by the editor May 12, 1977 and in revised form, September 23, 1977.

The following conguences hold:

$$
\begin{align*}
& u_{n+2 r} \equiv(-1)^{r+1} u_{n}\left(\bmod L_{r} 2^{-s}\right), \tag{11}\\
& u_{n+2 r} \equiv(-1)^{r} u_{n}\left(\bmod F_{r} 2^{-s}\right), \tag{12}
\end{align*}
$$

where $s=0$ or 1 . Let

$$
\phi_{t}=L_{2} t,
$$

where t is a positive integer. Then we get

$$
\begin{equation*}
\phi_{t+1}=\phi_{t}^{2}-2 \tag{13}
\end{equation*}
$$

We also need the following results concerning ϕ_{t} :

$$
\begin{align*}
& \phi_{t} \text { is an odd integer, } \tag{14}\\
& \phi_{t} \equiv 3(\bmod 4), \tag{15}\\
& \phi_{t} \equiv 2(\bmod 5), \quad t \geqslant 2 . \tag{16}\\
& \phi_{t} \equiv 2(\bmod 3), \quad t \geqslant 3 . \tag{17}
\end{align*}
$$

We have the following tables of values:

n	-12	-5	-2	-1	0	1	2	3	4	6	7	10	11	20
u_{n}	1021	-35	9	-4	5	1	6	7	13	33	53	225	364	27670
t	4	5	8											
F_{t}	3	5	3.7											
t	5	10	20											
L_{t}	11	3.41	7.2161											
Let														
(18)														

The proof is now accomplished in eighteen stages:
(a) (18) is impossible if $n \equiv 0(\bmod 8)$. For, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{0}\left(\bmod F_{4}\right) . \\
& \equiv 5(\bmod 3) .
\end{aligned}
$$

Since

$$
\left(\frac{5}{3}\right)=-1
$$

(18) is impossible.
(b) (18) is impossible if $n \equiv 2(\bmod 16)$. For, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{2}\left(\bmod F_{8}\right) \\
& \equiv 6(\bmod 7), \quad \text { since } 7 / F_{8}
\end{aligned}
$$

Since

$$
\left(\frac{6}{7}\right)=-1
$$

(18) is impossible.
(c) (18) is impossible if $n \equiv 3(\bmod 10)$. For, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{3}\left(\bmod F_{5}\right) \\
& \equiv \pm 7(\bmod 5)
\end{aligned}
$$

Since

$$
\left(\frac{-7}{5}\right)=\left(\frac{7}{5}\right)=-1
$$

(18) is impossible.
(d) (18) is impossible if $n \equiv 4(\bmod 16)$. For, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{4}\left(\bmod F_{8}\right) \\
& \equiv 13(\bmod 7), \quad \text { since } 7 / F_{8}
\end{aligned}
$$

Since

$$
\left(\frac{13}{7}\right)=-1
$$

(18) is impossible.
(e) (18) is impossible if $n \equiv 6(\bmod 16)$. For, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{6}\left(\bmod F_{8}\right) \\
& \equiv 33(\bmod 7), \quad \text { since } 7 / F_{8}
\end{aligned}
$$

Since

$$
\left(\frac{33}{7}\right)=-1
$$

(18) is impossible.
(f) (18) is impossible if $n \equiv 7(\bmod 8)$. For, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{7}\left(\bmod F_{4}\right) \\
& \equiv 53(\bmod 3)
\end{aligned}
$$

Since

$$
\left(\frac{53}{3}\right)=-1
$$

(18) is impossible.
(g) (18) is impossible if $n \equiv 11(\bmod 40)$. For, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv \pm u_{11}\left(\bmod L_{20}\right) \\
& \equiv \pm 364(\bmod 2161), \quad \text { since } 2161 / L_{20}
\end{aligned}
$$

Since

$$
\left(\frac{-364}{2161}\right)=\left(\frac{364}{2161}\right)=-1,
$$

(18) is impossible.
(h) (18) is impossible if $n \equiv 2(\bmod 10)$. For, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{2}\left(\bmod L_{5}\right) \\
& \equiv 6(\bmod 11)
\end{aligned}
$$

Since

$$
\left(\frac{6}{11}\right)=-1
$$

(18) is impossible.
(i) (18) is impossible if $n \equiv-1(\bmod 10)$. For, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{-1}\left(\bmod L_{5}\right) \\
& \equiv-4(\bmod 11)
\end{aligned}
$$

Since

$$
\left(\frac{-4}{11}\right)=-1
$$

(18) is impossible.
(j) (18) is impossible if $n \equiv-5(\bmod 20)$. For, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{-5}\left(\bmod L_{10}\right) \\
& \equiv \mp 35(\bmod 41), \quad \text { since } 41 / L_{10}
\end{aligned}
$$

Since

$$
\left(\frac{-35}{41}\right)=\left(\frac{35}{41}\right)=-1
$$

(18) is impossible.
(k) (18) is impossible if $n \equiv 7(\bmod 10)$. For, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{7}\left(\bmod F_{5}\right) \\
& \equiv \pm 53(\bmod 5)
\end{aligned}
$$

Since

$$
\left(\frac{-53}{5}\right)=\left(\frac{53}{5}\right)=-1,
$$

(18) is impossible.
(1) (18) is impossible if $n \equiv-12(\bmod 40)$. For, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv \pm u_{-12}\left(\bmod L_{20}\right) \\
& \equiv \pm 1021(\bmod 2161), \quad \text { since } 2161 / L_{20}
\end{aligned}
$$

Since

$$
\left(\frac{-1021}{2161}\right)=\left(\frac{1021}{2161}\right)=-1,
$$

(18) is impossible.
(m) (18) is impossible if $n \equiv 4(\bmod 10)$. For, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{4}\left(\bmod F_{5}\right) \\
& \equiv \pm 13(\bmod 5)
\end{aligned}
$$

Since

$$
\left(\frac{-13}{5}\right)=\left(\frac{13}{5}\right)=-1
$$

(18) is impossible.
(n) (18) is impossible if $n \equiv 6(\bmod 10)$. For, using (12) we get

$$
\begin{aligned}
u_{n} & \equiv \pm u_{6}\left(\bmod F_{5}\right) \\
& \equiv \pm 33(\bmod 5)
\end{aligned}
$$

Since

$$
\left(\frac{-33}{5}\right)=\left(\frac{33}{5}\right)=-1
$$

(18) is impossible.
(o) (18) is impossible if $n \equiv 20(\bmod 40)$. For, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv \pm u_{20}\left(\bmod L_{20}\right) \\
& \equiv \pm 27670(\bmod 2161), \quad \text { since } 2161 / L_{20}
\end{aligned}
$$

Since

$$
\left(\frac{-27670}{2161}\right)=\left(\frac{27670}{2161}\right)=-1
$$

(18) is impossible.
(p) (18) is impossible if $n \equiv 1(\bmod 4), n \neq 1$, that is if $n=1+2^{t} r$, where r is odd and t is a positive integer $\geqslant 2$. For, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv-u_{1}\left(\bmod L_{2}^{t-1}\right) \\
& \equiv-1\left(\bmod \phi_{t-1}\right)
\end{aligned}
$$

Now using (15), we have

$$
\phi_{t-1}=4 k+3
$$

where k is a non-negative integer.
Since

$$
\left(\frac{-1}{\phi_{t-1}}\right)=\left(\frac{-1}{4 k+3}\right)=-1
$$

(18) is impossible.
(q) (18) is impossible if $n \equiv 10(\bmod 16), n \neq 10$, that is if $n=10+2^{t} r$, where r is odd and t is a positive integer $\geqslant 4$. For, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv-u_{10}\left(\bmod L_{2}^{t-1}\right) \\
& \equiv-225\left(\bmod \phi_{t-1}\right)
\end{aligned}
$$

Now using (16) and (17) we get

$$
\left(\phi_{t-1}, 5\right)=1 \quad \text { and } \quad\left(\phi_{t-1}, 3\right)=1
$$

respectively.
By virtue of (15), we get $\phi_{t-1}=4 k+3$, where k is a positive integer $\geqslant 11$.
Next, since

$$
\left(\frac{-225}{\phi_{t-1}}\right)=\left(\frac{-225}{4 k+3}\right)=-1,
$$

(18) is impossible.
(r) (18) is impossible if $n \equiv-2(\bmod 16), n \neq-2$, that is if $n=-2+2^{t} r$, where r is odd and t is a positive integer $\geqslant 4$. For, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv-u_{-2}\left(\bmod L_{2}^{t-1}\right) \\
& \equiv-9\left(\bmod \phi_{t-1}\right)
\end{aligned}
$$

Now using (17) we get

$$
\left(\phi_{t-1}, 3\right)=1
$$

By virtue of (15) we get

$$
\phi_{t-1}=4 k+3
$$

where k is a positive integer $\geqslant 11$.

Next, since

$$
\left(\frac{-9}{\phi_{t-1}}\right)=\left(\frac{-9}{4 k+3}\right)=-1,
$$

(18) is impossible.

We have now three further cases $n=-2,1,10$ to consider
When $n=-2, u_{n}=9$ is a perfect square.
When $n=1, u_{n}=1$ is a perfect square.
When $n=10, u_{n}=225$ is a perfect square.

References

1. J. H. E. Cohn "On Square Fibonacci numbers". J. London Math. Soc. 39 (1964), 537-540.

Department of Mathematics \& Statistics,
University of Sri Lanka,
Jaffna Campus,
Thirunelvely,
Jaffna.
Sri Lanka.

