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Lefschetz Numbers for C∗-Algebras

Heath Emerson

Abstract. Using Poincaré duality, we obtain a formula of Lefschetz type that computes the Lefschetz

number of an endomorphism of a separable nuclear C∗-algebra satisfying Poincaré duality and the

Kunneth theorem. (The Lefschetz number of an endomorphism is the graded trace of the induced

map on K-theory tensored with C, as in the classical case.) We then examine endomorphisms of

Cuntz–Krieger algebras OA. An endomorphism has an invariant, which is a permutation of an infinite

set, and the contracting and expanding behavior of this permutation describes the Lefschetz number

of the endomorphism. Using this description, we derive a closed polynomial formula for the Lefschetz

number depending on the matrix A and the presentation of the endomorphism.

1 Introduction

Suppose A and B are two separable nuclear C∗-algebras. To say that A and B are

Poincaré dual means that there is given a K-homology class for A ⊗ B such that cup-

cap product with this class induces an isomorphism between the K-theory of A and

the K-homology of B. The homology class plays the role of the orientation class of

a compact manifold. The idea in this form is due to Alain Connes (see [4]). Since

the definition was invented, quite a number of examples of Poincaré dual pairs have

appeared in the operator algebra literature connected with dynamical systems, folia-

tions, hyperbolic groups, twisted K-theory, C∗-algebras of discrete groups with finite

BΓ, etc.

The object of this note is to propose a simple application of the existence of duality

between a pair of algebras, which runs roughly along the lines of a classical argument

with de Rham cohomology and differential forms. Suppose φ : X → X is a smooth

self-map of a compact oriented manifold. Assume that φ is in general position with

regard to fixed-points. Then φ induces a map on homology with rational coefficients,

and its Lefschetz number is

trs(φ∗) := trace
(
φ∗ : Hev(X) → Hev(X)

)
− trace

(
φ∗ : Hodd(X) → Hodd(X)

)
.

The Lefschetz fixed-point theorem states that this number is equal to the number of

fixed points of φ counted with appropriate multiplicities. The proof, which can be

found in any textbook, involves ideas connected with Poincaré duality in de Rham

theory: normal bundles, integration of forms, Thom classes, and so on. The Kun-

neth formula is a separate additional ingredient. It is sometimes therefore said that

the Lefschetz fixed-point formula follows from Poincaré duality and the Kunneth for-

mula.
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In this article, we are going to formalize the exact connection between Poincaré

duality and the Lefschetz fixed-point theorem in such a way as to apply to the cat-

egory of C∗-algebras, with K-theory and K-homology playing the role of ordinary

homology and cohomology. Part of the proof of the classical Lefschetz theorem is

absorbed into our statement, so that the classical theorem can be deduced from ours

by a simple, essentially linear, index calculation. We show via essentially straight-

forward formal calculations with KK-theory, that if one has a Poincaré duality with

“fundamental class” ∆ ∈ KKn(A ⊗ B, C), and if one has a morphism f ∈ KK(A, A),
then the trace of the map on K-theory induced from f is equal to the result of a

certain index pairing (see Section 2) involving f and ∆. This index pairing can in

principle be computed in geometric terms, provided that the cycles underlying f and

∆ themselves admit interesting “geometric” descriptions. Thus, to summarize, the

Lefschetz number can be realized as a Kasparov product. Of course there is more

than one such realization; in [8] we pursue a similar idea to produce other kinds of

identities in equivariant KK-theory.

Of course the main merit of the observation is that one now has the possibility of

proving analogues of the Lefschetz theorem in many different settings, provided one

has available an interesting instance of noncommutative Poincaré duality.

The significance of the classical Lefschetz formula tends to be explained in terms

of the equality of a local and a global invariant. In connection with C∗-algebras, this

does not entirely make sense. What kind of Lefschetz formulas can we expect in

connection with C∗-algebras? One example, based on the abstract Lefschetz formula

presented here, is worked out in [6]. This involves proper actions of discrete groups

on manifolds. The primitive ideal space of a cross product C0(X)⋊G in this situation

is the extended quotient

G \ X̂, where X̂ := {(x, h) ∈ X × G | h ∈ StabG(x)},

where G acts on X̂ by g(x, h) = (gx, ghg−1), and which, as a set, identifies canonically

with the primitive ideal space of C0(X) ⋊ G and inherits a corresponding hull-kernel

topology. It is a bundle over the ordinary space G \ X with fibre at Gx the irreducible

dual of StabG(x), but it is not Hausdorff. The Lefschetz formula for an automorphism

of this situation has the corresponding shape: the geometric side of the formula in-

volves fixed points in the ordinary space G \X, and secondly, involves representation

theoretic data for the isotropy of these fixed-points.

The second purpose of this note is to consider the case of a pair of simple algebras

in duality, namely to pairs A = OA, B = OAT of Cuntz-Krieger algebras (see [11]).

Here, in contrast to the example of the previous paragraph, there are no points at all.

Given an endomorphism of OA arising from certain geometric data, we will solve the

index problem on the geometric side of the formal Lefschetz formula. The endomor-

phisms with which we work correspond to n-tuples of continuous partially defined

homeomorphisms

ϕ : Z ⊂ Σ
+
A → Σ

+
A,

where Σ
+
A is the symbol space of sequences (xi) such that Axi ,xi+1

= 1 for all i. The

information involved in such an n-tuple can be summarized in a single map on the
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countable set of paths in the graph corresponding to A. The geometric computation

of the Lefschetz number turns out to depend, roughly, on the difference between

the number of strings whose length is shrunk by the map and the number of strings

whose length is expanded by the map. This eventually leads to a description of the

Lefschetz number roughly in the following terms: if we write ti =
∑

sµs∗ν for words

µ, ν, for one of the images of the generators of OA under the endomorphism, then

an appearance of (µ, ν) with |µ| ≤ |ν| contributes +1 to the Lefschetz number and

|µ| > |ν|+1 contributes −1 (and there are no contributions when |µ| = |ν|+1). As a

result of this decription, we can, if we want, write down an explicit, closed formula for

the Lefschetz number, which is a polynomial expression in the entries of the matrix

A and its powers.

This example thus shows that the “Lefschetz trick” results in interesting formulas

even in what one might loosely refer to as a “very” noncommutative situation.

The idea of formalizing the Lefschetz fixed-point theorem’s proof using Poincaré

duality (and the Kunneth theorem) in order to work in a more general context, is

due to André Weil, though not of course in connection with C∗-algebras and K-

theory. It was used by him in connection with the so-called Weil conjectures (see

the Appendix to [9]). So in this sense, we have rediscovered an old trick. Even so, it

seems worth making it explicit in the operator algebraic context in view of the variety

of Lefschetz-type formulas one can reasonably hope to achieve by using C∗-algebras

and KK-theory, which embrace such a wide selection of geometric situations.

2 The Abstract Lefschetz Theorem

Kasparov’s KK-theory is a realization of an additive Z/2-graded category with objects

C∗-algebras and morphisms A → B the elements of KK•(A, B), defined as a quotient

of a certain set of cycles, by a certain equivalence relation (see [10]).

In addition to its structure of an additive category, KK is a symmetric monoidal

category with unit object the C∗-algebra C and bifunctor given by the tensor product

of C∗-algebras on objects and the “external product”

KK•(D1, D ′
1) × KK•(D2, D ′

2) → KK•(D1 ⊗ D2, D ′
1 ⊗ D ′

2), ( f1, f2) 7→ f1 ⊗̂C f2.

on morphisms, and the flip Σ : A ⊗ B → B ⊗ A inducing the braiding.

The interaction between the flip, the monoidal structure, and the grading in KK

is summarized by the following diagram, which graded commutes, for all Di , D ′
i .

KK•(D1, D ′
1) × KK•(D2, D ′

2)

flip

²²

⊗̂C

// KK•(D1 ⊗ D2, D ′
1 ⊗ D ′

2)

flip

²²

KK•(D2, D ′
2) × K•(D1, D ′

1)
⊗̂C

// KK•(D2 ⊗ D1, D ′
2 ⊗ D ′

1)

In other words,

f1 ⊗̂C f2 = (−1)∂ f1∂ f2 [Σ] ⊗̂D2⊗D1
( f2 ⊗̂C f1) ⊗̂D ′

2⊗D ′
1

[Σ]
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for all f1 ∈ KK•(D1, D ′
1) and f2 ∈ KK•(D2, D ′

2).

Of course a category with similar properties is the category of complex Z/2-graded

vector spaces and vector space maps, where for the monoidal structure we use graded

tensor product of vector spaces, and for the braiding we use the graded flip

Σ
s(a ⊗̂C b) := (−1)∂a∂bb ⊗̂C a

instead of the ordinary flip. The action of a linear transformation T1 ⊗̂C T2 on V1 ⊗̂C

V2, where Ti : Vi → V ′
i , Vi , V ′

i graded vector spaces, is defined by

(T1 ⊗̂C T2)(a ⊗̂C b) := (−1)∂T1∂bT1(a) ⊗̂C T2(b).

Then a short calculation, depending on the fact that

∂x1∂x2 + ∂T1∂x2 + (∂T1 + ∂x1)(∂T2 + ∂x2) = ∂T1∂T2 + ∂x1∂x2 mod (2),

shows that the monoidal structure on Vs is also graded commutative, in the sense

described above for KK•.

These definitions ensure that the K-theory functor KK → Vs,

A 7→ KC

•(A), f ∈ KK•
C

(A, B) 7→ f∗ : KC

•(A) → KC

•(B),

which associates with a C∗-algebra A the complex, Z/2-graded vector space KC

•(A) :=

K•(A)⊗Z C, is compatible with the symmetric monoidal structures on each category,

at least on a bootstrap category N (the Kunneth theorem) where it is an isomorphism

(the Universal Coefficient theorem.)

In order to illustrate these facts in a concrete way, we prove the following simple

lemma.

Lemma 2.1 Suppose c =
∑

ai ⊗̂C bi ∈ K•(A ⊗ B) is written as a sum with ai , bi

homogeneous.1 Let f ∈ KK•(A, A ′) and g ∈ KK•(B, B ′) be homogeneous. Then

c ⊗̂A⊗B ( f ⊗̂C g) =
∑

(−1)∂bi∂ f (ai ⊗̂A f ) ⊗̂C (bi ⊗̂B g) ∈ K•(A ′ ⊗ B ′).

Proof Suppressing subscripts, suppose a ∈ KK•
C

(C, A), b ∈ KK•
C

(C, B), f and g as

above. Then

(a ⊗̂C b) ⊗̂A⊗B ( f ⊗̂C g) = a ⊗̂A (1A ⊗̂C b) ⊗̂A⊗B ( f ⊗̂C 1B) ⊗̂A ′⊗B (1A ′ ⊗̂C g)

= a ⊗̂A Σ∗(b ⊗̂C 1A) ⊗̂A⊗B ( f ⊗̂C 1B) ⊗̂A ′⊗B (1A ′ ⊗̂C g).

Since Σ∗( f ⊗̂C 1B) = Σ∗(1B ⊗̂C f ), the above is equal to

(2.1) a ⊗̂A (b ⊗̂C 1A) ⊗̂B⊗A (1B ⊗̂C f ) ⊗̂B⊗A ′ Σ
∗(1A ′ ⊗̂C g).

1An element of a graded set is homogeneous if it has a definite degree.
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Using graded commutativity we have

(b ⊗̂C 1A) ⊗̂B⊗A (1B ⊗̂C f ) = b ⊗̂C f = (−1)∂b∂ f
Σ∗( f ⊗̂C b)

= (−1)∂b∂ f
Σ∗

(
f ⊗̂A ′ (1A ′ ⊗̂C b)

)
.

Putting this into (2.1) and moving the flip across the tensor product, the above is

equal to

(−1)∂b∂ f a ⊗̂A f ⊗̂A ′ (1A ′ ⊗̂C b) ⊗̂A ′⊗B (1A ′ ⊗̂C g) =

(−1)∂b∂ f (a ⊗̂A f ) ⊗̂C (b ⊗̂B g),

as required.

We next state the essential definition of this note (see [1, 4, 5, 11].)

Definition 2.2 Let A and B be C∗-algebras. Then A and B are dual in KK (with a

dimension shift of n) if there exists ∆ ∈ KKn(A ⊗ B, C) such that the composition

(2.2) KK•(D1, D2 ⊗ A)
−⊗̂C1B
−−−−→ KK•(D1 ⊗ B, D2 ⊗ A ⊗ B)

⊗̂A⊗B∆

−−−−→ KK•+n(D1 ⊗ B, D2)

is an isomorphism for every D1, D2. We call ∆ the fundamental class of the duality.

Suppose A and B are dual with class ∆. In the above notation, set D1 = C and

D2 = B. Then there is a unique class ∆̂
′ ∈ KK−n(C, B ⊗ A) such that the isomor-

phism

KK−n(C, B ⊗ A)
∼=
−→ KK0(B, B)

carries ∆̂
′ to 1B. We call ∆̂

′ the dual fundamental class. By definition, we have the

equation

(2.3) (∆̂ ′ ⊗̂C 1B) ⊗̂B⊗A⊗B (1B ⊗̂C ∆) = 1B.

A simple computation shows that the map

(2.4) KK•(D1⊗B, D2)
⊗̂C1A
−−−→ KK•(D1⊗B⊗A, D2⊗A)

b∆
′⊗̂B⊗A

−−−−−→ KK•−n(D1, D2⊗A).

is an inverse to (2.2). We obtain a second equation

(2.5) (1A ⊗̂C ∆̂
′) ⊗̂A⊗B⊗A (∆ ⊗̂C 1A) = 1A.

If one prefers to arrange things in a different logical pattern, one can start with a

pair of classes ∆ and ∆̂
′ and insist that they satisfy equations (2.3) and (2.5). Then

the map as in (2.2) can be shown to be an isomorphism with inverse (2.4).

https://doi.org/10.4153/CMB-2010-084-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-084-5


Lefschetz Numbers for C∗-Algebras 87

Remark 2.3 In the above notation,

(2.6) (1A ⊗̂C ∆̂
′) ⊗̂A⊗B⊗A (∆ ⊗̂C 1A) =

(−1)n
(
Σ∗(∆̂ ′) ⊗̂C 1A

)
⊗̂A⊗B⊗A

(
1A ⊗̂C Σ

∗(∆)
)
.

In [5], the definition of Poincaré duality involved classes ∆̂ ∈ KK−n(C, A ⊗ B) and

∆
n(A ⊗ B, C) satisfying appropriate equations. To connect our current discussion

with that definition, set ∆̂ = Σ∗(∆̂ ′). Then, by (2.6), the analogues of equations

(2.3) and (2.5) are

(Σ∗(∆̂) ⊗̂C 1B) ⊗̂B⊗A⊗B (1B ⊗̂C ∆̂) = 1B,

(∆̂ ⊗̂C 1A) ⊗̂A⊗B⊗A

(
1A ⊗̂C Σ

∗(∆̂)
)

= (−1)n 1A,

which is as in [5].

Notice also that the roles of A and B are symmetric when n is even and anti-

symmetric when n is odd.

Given A and B dual as above, define a Z-bilinear map

(2.7) K•(A) × K•(B) → Z, (x | y) := y ⊗̂B x̂,

where x̂ denotes the Poincaré dual of x.

Lemma 2.4 With the Poincaré duality pairing defined in (2.7),

(x | y) = (−1)∂x∂y(x ⊗̂C y) ⊗̂A⊗B ∆

for homogeneous elements x ∈ K•(A), y ∈ K•(B).

Proof Expanding the definitions, we have

y ⊗̂B x̂ = y ⊗̂B (x ⊗̂C 1B) ⊗̂A⊗B ∆ = y ⊗̂B Σ∗(1B ⊗̂C x) ⊗̂A⊗B ∆

= y ⊗̂B (1B ⊗̂C x) ⊗̂A⊗B Σ
∗(∆) = (y ⊗̂C x) ⊗̂B⊗A Σ

∗(∆)

= (−1)∂x∂y
Σ∗(x ⊗̂C y) ⊗̂B⊗A Σ

∗(∆) = (−1)∂x∂y(x ⊗̂C y) ⊗̂A⊗B ∆.

Tensoring with the complex numbers, we obtain a duality pairing

( · | · ) : KC

•(A) × KC

•(B) → C.

This pairing is non-degenerate if B satisfies the Universal Coefficient Theorem. It is

supported on {(x, y) | ∂(x) + ∂(y) = n}.

Now note that if A and B are Poincaré dual, then K•(A) and K•(B) are finitely

generated abelian groups (and for the same reason, if A and B are dual in KKC, then

KC

•(A) and KC

•(B) have finite rank).

By elementary methods one can thus find a basis (xǫ,i) for KC

•(A) and a dual basis

(x∗n−ǫ, j) for KC

•(B) with respect to ( · | · ), i.e., so that we have

(xǫ,i | x∗η, j) = δη,n−ǫδi j .
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Lemma 2.5 In terms of the bases (xǫ,i) and (x∗η, j), the class ∆̂
′ is given by

∆̂
′
=

∑
i,ǫ

(−1)n−ǫx∗n−ǫ,i ⊗̂C xǫ,i .

Proof It suffices to show that the map

(2.8) KK−n
C

(C, B ⊗ A)
⊗̂C1B
−−−→ KK−n

C
(B, B ⊗ A ⊗ B)

⊗̂A⊗B∆

−−−−→ KK0
C

(B, B)

sends
∑

i,ǫ(−1)n−ǫx∗n−ǫ,i ⊗̂C xǫ,i to the identity in KK•
C

(B, B). Since we are over C, the

UCT gives that KK•
C

(B, B) ∼= HomC

(
KC

•(B), KC

•(B)
)

. If x ∈ KC

•(B), and denoting our

proposed formula for ∆̂ by δ̂, then we have

x ⊗̂B (δ̂ ⊗̂ 1B) = (−1)∂x∂bδ δ̂ ⊗̂C x

by Lemma 2.1. Hence the image of δ̂ under (2.8) sends x ∈ KC

•(B) to

(−1)n∂x
∑
i,ǫ

(−1)n−ǫ
(

x∗n−ǫ,i ⊗̂C xǫ,i ⊗̂C x
)
⊗̂B⊗A⊗B (1B ⊗ ∆)

= (−1)n∂x
∑

(−1)n−ǫx∗n−ǫ,i ·
(

(xǫ,i ⊗̂C x) ⊗̂A⊗B ∆
)

=
∑

(−1)n∂x+(n−ǫ)+ǫ∂xx∗n−ǫ,i · (xǫ,i | x).

Now setting x = x∗γ, j , each term vanishes save when ǫ = n−γ, in which case the sign

is (−1)nγ+γ+(n−γ)γ
= +1.

With these preliminaries out of the way, we can now state and prove the formal

Lefschetz theorem for Poincaré dual pairs of C∗-algebras alluded to in the introduc-

tion.

Suppose we have a duality with fundamental classes ∆̂
′ ∈ KK−n(B ⊗ A, C) and

∆ ∈ KKn(A ⊗ B, C). Let f ∈ KK(B, B). Define

Ind(∆, f ) := ∆̂
′ ⊗̂B⊗A ( f ⊗̂C 1A) ⊗̂B⊗A Σ

∗
∆ ∈ KK(C, C) ∼= Z.

As the notation suggests, this ‘index’ only depends on f and ∆ subject to the condi-

tion that ∆ implement a Poincaré duality. However, the way Ind is defined involves

both ∆ and the dual class ∆̂
′, so that if one changes the duality, it is easy to check that

two cancelling changes are introduced into Ind, so that Ind(∆, f ) does not depend

on the choice of ∆.

Motivated by the classical case, we define the Lefschetz number Lef( f ) of f ∈
KK0(B, B) in the standard way as the graded trace of f acting on the complexified

K-theory of B :

Lef( f ) := trs( f∗ : KC

•(B) → KC

•(B))

:= traceC

(
f∗ : KC

0 (B) → KC

0 (B)
)
− traceC

(
f∗ : KC

1 (B) → KC

1 (B)
)
.

https://doi.org/10.4153/CMB-2010-084-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-084-5


Lefschetz Numbers for C∗-Algebras 89

Theorem 2.6 Let A and B be C∗-algebras satisfying the Universal coefficient theorems

and the Kunneth theorem. Suppose that A and B are dual with fundamental class ∆ ∈

KKn(A ⊗ B, C) and dual class ∆̂
′ ∈ KK−n(C, B ⊗ A). Then for any f ∈ KK0(B, B),

the Lefschetz number of f is equal to the index Lef( f ) = Ind(∆, f ).

Proof Let f ∈ KK0(B, B). We can write f∗(x∗ǫ,i) =
∑

r f ǫ
irx

∗
ǫ,r. Hence,

(1A ⊗̂C f )∗(∆̂) =
∑

(−1)n−ǫ f n−ǫ
ir x∗n−ǫ,r ⊗̂C xǫ,i .

Applying the flip gives

Σ∗(1A ⊗̂C f )∗(∆̂) =
∑

(−1)n−ǫ+ǫ(n−ǫ) f n−ǫ
ir xǫ,i ⊗̂C x∗n−ǫ,r.

Finally, pairing this expression using ∆ gives

〈Σ∗(1A ⊗̂C f )∗(∆̂),∆〉 =
∑

(−1)n−ǫ+ǫ(n−ǫ) f n−ǫ
ir (xǫ,i ⊗̂C x∗n−ǫ,r) ⊗̂A⊗B ∆

=
∑

(−1)n−ǫ f n−ǫ
ir (x∗n−ǫ,r | xǫ,i)

=
∑

(−1)n−ǫ f n−ǫ
ii = tr( f 0

∗ ) − tr( f 1
∗ ) = trs( f∗),

as required.

Finally, we note that it is rather natural to call the Lefschetz number of the identity

morphism 1B ∈ KK•(B, B) the Euler characteristic of B; it is the difference in ranks of

K0(B) and K1(B), and by our formal Lefschetz theorem it is the index

(2.9) EulB = 〈∆̂,∆〉,

which is a sort of formal Gauss–Bonnet theorem.

Example 2.7 Let A be the C∗-algebra of sections Cτ (X) of the Clifford algebra of

a compact manifold X, and B = C(X). The best known example of K-theoretic

Poincaré duality is in this situation. The class ∆ is represented by the unbounded

self-adjoint operator D := d + d∗ acting on the bundle Λ
∗
C

(X) of differential forms

on X, where d is the de Rham differential, and the additional datum of the Clifford

multiplication

Cτ (X) ⊗C(X) → B(L2(Λ∗
C

(X))
)
.

The class ∆̂ involves a Clifford multiplication by an appropriate vector field on

X × X, acting on a submodule of C(X) ⊗ Cτ (X), but the important point is that

this vector field vanishes on the diagonal. It is immediate that when we take the Kas-

parov product of ∆ and ∆̂, we get simply the operator D acting on forms L2(Λ∗
C

(X)).

Hence (2.9) says that EulX = Index(DdR), with DdR the de Rham operator on X. See

[7] for a closely related computation.

It is also a simple matter to deduce the classical Lefschetz fixed-point formula in

the same way. The fact that the class ∆̂ is supported in a neighbourhood of the

diagonal in X × X means that if we twist ∆̂ by a smooth map whose graph X →
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X×X is transverse to the diagonal, and pair with ∆, the result is supported in a small

neighbourhood of the fixed-point set of the map. The latter is a discrete set. Thus,

the formal Lefschetz theorem gets us this far, and to finish the computation we need

to carry out a local index computation. (See [6] for the details in a more general

context.)

The reader wanting other simple examples may wish to consider an automor-

phism of a finite group. A pleasant noncommutative Lefschetz formula for this sit-

uation can be deduced using the formal Lefschetz formula. This formula gives the

well-known relationship between the number of fixed points of the induced map

ζ̂ : Ĝ → Ĝ on the (finite) space of irreducible representations, and the number of

“ζ-twisted conjugacy classes” in G. The reference [6] also contains this result.

In the remainder of this note, we are going to work out a highly noncommutative

example (the algebras A and B are simple). The merit of considering an example

like this is that we do get a genuinely new equality of invariants – a genuinely new

Lefschetz theorem. The difficulty with the example is that it is not so easy to see what

its meaning is. It is helpful to have the classical examples at hand for comparison.

3 Example: Endomorphisms of Cuntz-Krieger Algebras

Let OA (see [2, 3]) be the Cuntz–Krieger algebra with (irreducible) matrix A, the

universal C∗-algebra generated by n nonzero partial isometries s1, . . . , sn such that

∑
Ai js js

∗
j = s∗i si .

We are going to illustrate the formal Lefshetz theorem given in the previous section

by proving an analogue of the Lefschetz fixed-point theorem for (certain) endomor-

phisms of OA.

We first remind the reader of the following theorem of Cuntz and Krieger.

Lemma 3.1 (see [2]) The group K0(OA) is Z/(1−At )Z, and the group K1(OA) is the

quotient of Z/(1 − At )Z by its torsion subgroup.

To compute the Lefschetz number of an endomorphism of OA, we must therefore

split off the free part of the K0 group and compute the images of a set of generators,

and similarily, find free generators for K1 and compute their generators.

Example 3.2 A standing numerical example will be the case

A =




1 1 0

1 1 1

0 1 1



 .

By Lemma 3.1, K-theory of OA is infinite cylic in each of dimensions 0 and 1, with

free generator [s1s∗1 ] the class of the projection s1s∗1 in even degree, and free generator

the class [s1 + s∗3 ] of the unitary s1 + s∗3 in odd degree. Note that [s2s∗2 ] = 0 and

[s3s∗3 ] = −[s1s∗1 ] in K0.
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Any (unital) endomorphism α : OA → OA maps each generator si to a partial

isometry ti ∈ OA such that t1, . . . , tn satisfy the same relations. Conversely, by the

universal property of OA, any choice of t1, . . . , tn satisfying the Cuntz–Krieger rela-

tions gives rise to a ‘symmetry’ of OA, i.e., an endomorphism. A well-known family

of is the periodic 1-parameter family given by the circle action

si 7→ zsi , where z ∈ S1, i = 1, 2, . . . , n.

These endomorphisms are, however, obviously homotopic to the identity, whence

we cannot expect very interesting Lefschetz numbers (they will all be zero, since the

Euler characteristic of OA is zero). Instead we are interested in more combinatorially

defined endomorphisms.

The following definition is vaguely analogous to the assumption that one has an

infinitely differentiable map, in the setting of the classical Lefschetz theorem. Let Σ
+
A

denote the Cantor set of sequences (xi) in the graph Λ determined by the matrix A.

Definition 3.3 Let Z ⊂ Σ
+
A be an open subset and ϕ : Z → Σ

+
A be a continuous

map with domain Z. Then ϕ is smooth if

• Z is a cylinder set;
• there exists k ∈ N and a map ψ ′ : P≤k → P such that

ψ(x1, x2, x3, . . . ) = (ψ ′(x1, . . . , xk), xk+1, xk+2, . . . ),

for all x = (x1, x2, x3, . . .) ∈ Z,

where P := {(x1, . . . , xm) | Axi ,xi+1
= 1, m ≥ 0} is the set of finite allowable strings

in the alphabet determined by A, and P≤k is the set of strings of length at most k.

We allow the empty string ∅. With this convention, the left shift

σA : Z := Σ
+
A → Σ

+
A

is smooth, since σA(x1, x2, . . . ) = (σ ′
A(x1), x2, x3, . . . ), where σ ′

A(x) = ∅ for every

string of length 1.

Our definition is actually closer to the idea of a quasi-conformal map. Note that

P is the vertex set of the tree Λ̃, which is the universal cover of Λ. As such, it admits

a canonical path metric. It is “Gromov hyperbolic” as a metric space, and so has a

Gromov boundary.

Lemma 3.4 A smooth map ϕ : Z → Σ
+
A is the boundary value of a quasi-isometry

ϕ ′ : Z ′ → Λ̃, where Z ′ is a subset of P.

Proof Suppose we are given a smooth map ψ : Z → Σ
+
A in the above sense, with k

and ψ ′ as in the definition. We can take the cylinder set Z to be of the form Z =

{x ∈ Σ
+
A | πN (x) ∈ F}, where πN : Σ

+ → PN is the projection, and F is a finite subset

of PN , and where N is larger than k. Now whether an infinite string is or is not in

the domain of ϕ only depends on the first N letters. Geometrically, the set of infinite
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strings x with first N letters belonging to a given fixed finite set of finite strings is a

clopen set of Σ
+
A, and is the closure in the compactification of the tree, of the set of

finite strings of length at least N, and with first N letters in the given set. Hence the

set Z is the boundary values of a subset Z ′ ⊂ P, i.e., Z = Z ′ ∩ ∂Λ̃, where Z ′ is the set

of finite strings of length at least N with first N letters in F.

Assuming now that the finite string (x1, . . . , xm) is in Z ′, whence that any bound-

ary point x = (x1, . . . , xm, xm+1, . . . ) is in Z, we have

ψ(x) = (ψ ′(x1, . . . , xk), xk+1, . . . , xm, . . . ),

which says that the last letter of ϕ ′(x1, . . . , xk) is allowed to be followed by xk+1.

Therefore, we can define ψ ′(x1, . . . , xm) := (ψ ′(x1, . . . , xk), xk+1, . . . , xm). It is clear

that ψ ′ is a quasi-isometry of the tree. It therefore extends to the boundary ∂Λ̃ = Λ

and it is clear that its boundary values give precisely ψ : Z → Σ
+
A.

A typical “geometric” endomorphism of OA will be specified by the following def-

inition.

Definition 3.5 A geometric endomorphism of OA, where A is n-by-n, shall refer

to the data of a partition Σ
+
A = Z1 ∪ · · · ∪ Zn of the symbol space and an n-tuple

Ψ = (ψ1, . . . , ψn) of smooth homeomorphisms ψi : Wi

∼=
→Zi ⊂ Σ

+
A, such that Wi =⋃

Ai j=1 Zi .

It is clear that such partially defined maps determine elements of OA; we define

(3.1) ti :=
∑

µ∈W ′
i , |µ|=k

sψ ′
i (µ)s

∗
µ,

where the summation is over the words of length k in W ′
i , with W ′

i ⊂ P with W ′ ∩
∂Λ̃ = Wi as explained above, and where ψ ′

i are the extensions of the ψi to P, and, of

course, where k is sufficiently large.

Then the range projection of ti identifies, in the obvious sense, with the image

Zi of ψi , and the cokernel projection identifies with the domain of definition Wi of

ψi . Hence, due to the last condition in Definition 3.5, we get an endomorphism

αΨ(si) := ti of OA.

Remark 3.6 The identity endomorphism corresponds to the evident partition with

Zi = {x | x begins with i} and ψi(x) = (i, x) for x ∈ Wi :=
⋃

Ai j=1Z j .

From now on we will abuse notation and denote by the same letter the partially

defined maps ψi : P → P and the maps ψi : Σ
+
A → Σ

+
A. Of course there is ambiguity

in the choice of the lifts ψ : P → P, but we fix choices once and for all. Similarly, we

will write Wi instead of W ′
i and Zi instead of Z ′

i .

Example 3.7 A good example of a geometric endomorphism for

A =




1 1 0

1 1 1

0 1 1




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is

t1 = s2
1s∗1 s∗2 + s1s2(s∗2 )2 + s2s2

3s∗3 s∗2 + s2s3s2s∗2 s∗3 + s2s∗1 ,

t2 = s3s2, t3 = s2
3s∗3 .

The corresponding partition and triple of smooth maps is as follows.

(i) Z1 is all sequences (xn) beginning with 1 or 2.

(ii) Z2 is all sequences (xn) beginning with 32.

(iii) Z3 is all sequences (xn) beginning with 33.

ψ1 We require ψ1 : W1 := Z1 ∪ Z3

∼=
−→ Z1. If a sequence begins with 1, then we

replace the initial 1 by a 2. If a sequence begins with 2, then we replace the initial

2 by a 1, unless the second coordinate is 3. In that case, we replace the initial 23

by 233. Finally, on sequences beginning with 32, we replace the initial 32 by 232.

Observe that the image of ψ1 is all strings beginning with 2 or 1.

ψ2 We require ψ2 : W2 := Z1 ∪ Z2 ∪ Z3 = Σ
+
A

∼=
−→ Z2. We add 32 to the beginning

of any sequence.

ψ3 We require ψ3 : W3 := Z2 ∪Z3

∼=
−→ Z3. To any sequence beginning with 3 we add

an additional 3.

Remark 3.8 The endomorphism αΨ above sends the range projection of s1 to the

range projection of t1, which is s1s∗1 + s2s∗2 . Hence (αΨ)∗([s1s∗1 ]) = [s1s∗1 ] + [s2s∗2 ] =

[s1s∗1 ], so the induced map (αΨ)∗ : K0(OA) → K0(OA) is the identity. To see the

action on K1(OA), one can check that the map (t1 + t∗3 | · ) : K0(OA) → Z induced

from the Poincaré duality pairing (see the end of this section) vanishes identically.

Therefore, [t1 + t∗3 ] = 0 ∈ K1(OA) and (αΨ)∗ : K1(OA) → K1(OA) is the zero map.

So the Lefschetz number of αΨ : OA → OA is equal to 1. (In particular, αΨ is not an

automorphism.)

We now describe an invariant of any geometric endomorphism, which will be a

single partially defined map P → P.

Definition 3.9 Let Ψ = (ψ1, . . . , ψn) be a geometric endomorphism. Extend the

ψi to partially defined self-maps of P. We let Ψ̇ : P → P be the partially defined map

defined by

Ψ̇(x1, . . . , xn) := ψxn
(x1, . . . , xn−1)

if (x1, . . . , xn−1) ∈ Dom(ψxn
).

Example 3.10 The map Ψ̇ of Example 3.7 is defined on paths of length 2 by

Ψ̇(11) = 2, Ψ̇(21) = 1, Ψ̇(12) = (321), Ψ̇(22) = (322),

Ψ̇(32) = (323), Ψ̇(33) = (33),
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and on paths of length 3 by

Ψ̇(111) = (21), Ψ̇(121) = (22), Ψ̇(211) = (11), Ψ̇(221) = (12).

Ψ̇(⋆ ⋆ 2) = (32 ⋆ ⋆) for any (⋆⋆) allowable,

Ψ̇(323) = (33), Ψ̇(333) = (333).

Finally, on words of length 4, Ψ is defined by

Ψ̇(1111) = (211), Ψ̇(1121) = (212), Ψ̇(1221) = (222),

Ψ̇(2111) = (111), Ψ̇(1211) = (221), Ψ̇(2211) = (121),

Ψ̇(3211) = (2321), Ψ̇(1121) = (212), Ψ̇(2121) = (112),

Ψ̇(⋆ ⋆ ⋆2) = (32 ⋆ ⋆⋆), for any ⋆ ⋆ ⋆ allowable,

and

Ψ̇(3223) = (33223), Ψ̇(3233) = (33233), Ψ̇(3323) = (33323),

Ψ̇(3333) = (33333).

In these formulas, any string not mentioned is not in the domain.

Say that two partially defined maps Ψ̇ and Ψ̇ are equivalent if Ψ̇ = Ψ̇
′ on suffi-

ciently long strings. Then it is only the class of Ψ̇ modulo ∼ that will matter to us for

what is coming. Denote by [Ψ̇] the class of Ψ̇. We are going to associate a geomet-

ric endomorphism with an integer invariant. This invariant will only depend on the

equivalence class [Ψ̇] and not on Ψ̇ itself.

By formal series
∑∞

k=1 ak, where ak are real numbers, we will refer to the sequence

of of its terms, modulo the equivalence relation
∑∞

k=1 ak ∼
∑∞

k=1 bk if
∑m

k=1 ak =∑m
k=1 bk for m sufficiently large. For example 1 + 2 + 3 + 4 + · · · ∼ 3 + 0 + 3 + 4 + · · · .

The condition ∼ implies, obviously, that ak = bk for large enough k, but it is stronger.

Definition 3.11 Let Ξ : P → P be a partially defined bijection with finite propaga-

tion; that is, there exists N := Prop(Ξ) such that

Ξ(Pk) ⊂
⋃

|l−k|≤N

Pl, for all k.

Let Dom(Ξ) ⊂ P be its domain and Im(Ξ) its range. We set

Indexk(Ξ) := card
(

Pk ∩ Im(Ξ)
)
−

(
Pk ∩ Dom(Ξ)

)
.

We let Index(Ξ) be the formal series

(3.2) Index(Ξ) =

∞∑
i=1

Indexi(Ξ).

We show below that the index only depends on [Ξ] and converges if Ξ = Ψ̇ for some

geometric endomorphism Ψ.
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Lemma 3.12 The index has the following properties.

(i) If Ξ and Ξ
′ are two partially defined maps that agree on Pk for all sufficiently large

k, then Index(Ξ) = Index(Ξ ′) as formal series. Hence, Index is compatible with

∼.

(ii) For any geometric endomorphism Ψ, Indexk(Ψ̇) = 0 for k sufficiently large. Hence

the formal series in (3.2) converges in this case.

Proof We prove (ii) first. For simplicity, we assume that a given partially defined

map Ξ has propagation at most 1. We start by assuming that Ξ has no strings in its

domain of length ≤ m − 1, for some m ≥ 2. Now we remove any strings of length m

from the domain of Ξ. Let the new partially defined map be called Ξ
′. We claim that

the index (or more precisely the formal sum (3.2)) has not changed. The index in

dimension m − 1 has clearly been reduced by the number of elements in dimension

m that previously mapped to dimension m − 1. Call this a(m, m − 1). Thus,

Indexm−1(Ξ ′) = Indexm−1(Ξ) − a(m, m − 1).

On the other hand, the domain in dimension m has been reduced by card(Dom(Ξ)∩
Pm), while the image in dimension m has been reduced by a(m, m). So

Indexm(Ξ ′) = Indexm(Ξ) − a(m, m) + Dom(Ξ) ∩ card(Pm).

Finally, the image in dimension m+1 is reduced by a(m, m+1). Meanwhile, the index

in dimension < m − 1 has not changed, nor has the index in dimensions > m + 1,

since Ξ changes lengths of strings by at most 1. So

Index(Ξ ′)

= Index(Ξ) − a(m, m − 1) − a(m, m) + −a(m, m) + card(Dom(Ψ̇) ∩ Pm)

= Index(Ξ).

This proves the result.

Now this means that any Ξ can have its domain successively shrunk by eliminating

strings of length 1, then 2, and so on, without altering its index. The first assertion is

now immediate, since without changing the index, we can alter both maps until they

agree as partially defined maps.

The second assertion is left to the reader (it follows from the analytic considera-

tions discussed in the last section of the paper).

Example 3.13 Consider Examples 3.7 and 3.10. The domain in dimension 1 has 0

elements. The image has 2 elements. So Index1(Ψ̇) = 2. The domain in dimension 2

has 6 elements, and the image has 6 elements. Hence Index2(Ψ̇) = 0. In dimension 3

there are 13 elements in the domain and 12 in the image. So, Index3(Ψ̇) = −1. One

checks that Indexk(Ψ̇) = 0 for k > 3. Hence

Index(Ψ̇) = 2 + 0 − 1 = 1.
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Remark 3.14 Altering the domain of a Ψ̇ on a finite piece is analogous to altering

a map f : M → M up to homotopy, whilst retaining transversality. The net effect on

the fixed points (with signs) is zero.

Remark 3.15 (i) The identity morphism of OA corresponds to the partially de-

fined map Ψ̇id with domain of definition the set of paths (x1, . . . , xn) such that

Axn,x1
= 1, i.e., the set of loops in the graph. The action of Ψ̇id is by shifting the

parameterization of loops. In particular, Index(Ψid) = 0.

(ii) If the graph corresponding to A is complete, then Index(Ψ̇) = 0 for every Ψ̇.

This follows from the Lefschetz theorem.

The point about the index is that there is a lot of cancellation in the expression

(3.2). Taking into account this cancellation, we get a much more computable de-

scription of the index

Lemma 3.16 Let Ξ : P → P be a partially defined homeomorphism with finite prop-

agation. Let m > 0. Define

γm(Ξ) := ♯{x ∈ P | |x| > m, |Ξ(x)| ≤ m} − ♯{x ∈ P | |x| ≤ m, |Ξ(x)| > m}.

Then

Index1(Ξ) + Index2(Ξ) + · · · + Indexm(Ξ) = γm(Ξ).

In particular, if Ξ = Ψ̇ for some geometric endomorphism Ψ, then γm = γm+1 = · · · =

Index(Ψ̇) for m sufficiently large.

Proof Let a(i, j) denote the number of strings of length i that are mapped by Ξ to

strings of length j. Let δ(i, j) := a(i, j) − a( j, i). Assume that Ξ alters lengths of

strings by at most N. Choose k > 0. By definition,

Indexm(Ξ) = ♯ (Im(Ξ) ∩ Pm) − ♯ (Dom(Ξ) ∩ Pm).

On the other hand, ♯ Im(Ξ) ∩ Pm) =
∑N

k=−N a(m + k, m), while ♯ (Dom(Ξ) ∩ P) =∑N
k=−N a(m, m + k), whence

Indexm(Ξ) =

N∑
k=−N

δ(m + k, m).

Of course δ(i, j) = −δ( j, i). Hence when we take the (formal) sum

Index(Ξ) =

∞∑
m=1

N∑
k=−N

δ(m + k, m),

a term δ(i, j) appears exactly twice with opposite signs, if i and j are small enough

relative to m. It follows that

m∑
k=1

Indexk(Ξ) = γm(Ξ)

because of telescoping.

The last assertion follows from Lemma 3.12.
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For instance, in Examples 3.7 and 3.10, m = 3 is large enough; note that

Prop(Ψ̇) ≤ 1. There are 8 strings of length 4 mapped to strings of length 3 and 7

strings of length 3 mapped to strings of length 4, so

Index(Ψ̇) = 8 − 7 = 1.

Based on Lemma 3.16, we can give a poynomial formula for the index as fol-

lows. Fix m large. Fix j. We count the number of strings of length m + j (for

j = 1, 2, . . . , N, which are mapped to strings of length ≤ m. We refer to the pre-

sentation (3.1). Fix i and µ with |µ| = k. Suppose that |ψi(µ)| ≤ |µ| − j + 1.

Consider a string w = (µ, u) of length m + j, where |u| = m + j − |µ| is a string

(path) from the terminus t(µ) of µ to i. Then this is mapped under Ψ̇ to a string of

length ≤ m + j − 1 − j + 1 = m. Hence for each such i, µ, and u we get a positive

contribution to the index. For fixed µ and i the number of possible u’s is equal to the

number of paths of length m + j − k from t(µ) to i, which equals A
m+ j−k
t(µ)i . Hence the

total positive contribution to the index is

n∑

i=1

N∑

j=1

∑

µ∈Wi , |ψi (µ)|≤|µ|− j+1

A
m+ j−k
t(µ),i .

For the negative contributions, for j = 0, 1, . . . , N − 1 fix i and µ such that

|ψi(µ)| ≥ |µ|+ j+2. Then for each w = (µ, u) of length m− j, so that u is a string from

t(µ) to i of length m− j−k, the length of Ψ̇(w) is ≥ m− j−1+ j+2 = m+1. Hence we

get a negative contribution to the index. Therefore the total negative contributions is

n∑

i=1

N−1∑

j=0

∑

µ∈Wi |ψi (µ)|≥|µ|+ j+2

A
m− j−k
t(µ),i .

Therefore we get the following curious, completely explicit, polynomial formula for

the index (which is equal to the Lefschetz number of the induced endomorphism of

OA).

Theorem 3.17 The index of Ψ̇, where Ψ ∈ GA has presentation (3.1), is given explic-

itly by the formula

n∑

i=1

N∑

j=1

∑

µ∈Wi , |ψi (µ)|≤|µ|− j+1

A
m+ j−k
t(µ),i −

n∑

i=1

N−1∑

j=0

∑

µ∈Wi |ψi (µ)|≥|µ|+ j+2

A
m− j−k
t(µ),i

for any N > Prop(Ψ̇) = maxi,µ

(
|µ| − |ψi(µ)| + 1

)
for any m large enough.

For instance, in our main example the above formula with k = 2, m = 3, N = 1

gives

Index(Ψ̇) = (A2
11 + A2

21 + A2
11 + A2

21)

− (A12 + A22 + A12 + A22 + A32 + A22 + A32) = 8 − 7 = 1.

We can now state our Lefschetz formula for Cuntz–Krieger algebra endomor-

phisms, at least those coming from simple combinatorics of generators and relations.
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Theorem 3.18 Let Ψ ∈ GA and αΨ : OA → OA be the corresponding endomorphism.

Then the Lefschetz number of α equals the index of Ψ:

Lef([αΨ]) = Index(Ψ̇).

To prove this, we need to show that Index(Ψ̇) = Ind(∆, [αΨ]) for an appropriate

∆ inducing a duality. Kaminker and Putnam proved such a duality in [11]. We refer

the reader to their paper for further details and merely sketch the computation here.

Let s1, . . . , sn denote the generators for OA and t1, . . . , tn the generators for OAt .

Define HA := ℓ2(P), where P is the set of strings, as above. Let

Si : HA → HA, Si(ew) := Aio(w)eiw, R j(ew) := At(w) jew j .

Clearly [Si , R j] = 0, while S∗i , R j] = 0 modulo finite-rank operators. It is also easy

to check that
∑

j Ai jS jS
∗
j = S∗i Si modulo finite rank operators, and similarly the R j

satisfy the relations for OAt . We obtain the Busby invariant

OA ⊗ OAT → B(HA)/K(HA)

of an extension of OA ⊗ OAt by the compact operators and hence (since OA is nu-

clear) a class in KK1(OA ⊗ OAt , C). Kaminker and Putnam prove that ∆ induces a

duality with dual class the element w =
∑

si ⊗ t∗i . Then ww∗
= w∗w and each are

projections. Therefore w + 1 − ww∗ is a unitary in OA ⊗ Ot
A and so defines an ∆̂ of

KK1(C, OA,⊗OAt ). Now suppose we have an endomorphism

si 7→ ti :=
∑

µ∈Wi , |µ|=k

sψi (µ)s
∗
µ.

Then under the endomorphism, ∆̂ is mapped to

∑

i, µ∈Wi , |µ|=k

sψi (µ)s
∗
µ ⊗ ti .

To compute the pairing

Ind(∆, [α]) = 〈(αΨ ⊗ 1OAt )∗(∆̂),∆〉

we need to compute the index of the obvious lift Fredholm index of WΨ + (1 −
WΨW ∗

Ψ
). However, it is clear that WΨW ∗

Ψ
is equal to W ∗

Ψ
WΨ on ℓ2(Pm) for m ≥

dmin(Ψ) + 1. Hence the sum

∞∑

j=1

dim ker((WΨ)|ℓ2(P j )
) − dim ran(WΨ) ∩ ℓ2(P j))

converges, and evidently converges to the analytic index. Now we can regard WΨ as

the operator induced by the partial permutation Ψ̇ of P, in which point masses ew in

the kernel of WΨ correspond to words w not in the domain of WΨ. We are now in

the setting of our earlier discussion of partially defined maps P → P, and it is clear

that the index of WΨ is exactly the same as the index defined in Definition 3.11, and

we are done by Section 2.
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Remark 3.19 It was mentioned above that the geometric index of an arbitrary en-

domorphism must vanish in the case of a Cuntz algebra. This is of course obvious

from the Lefschetz formula since the K-theory of Cuntz algebras vanishes rationally.

On the other hand, it does not seem very obvious from a geometric point of view.

This sort of thing happens in classical topology of course; one proves the existence of

fixed points by homology computations.
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