
A SKEW HADAMARD MATRIX OF ORDER 52 

D. BLATT AND G. SZEKERES 

1. A Hadamard (H-) matrix H = (hi3) of order n is an n X n square 
matrix satisfying the conditions 

n 

htj = + 1 or — 1, ^ hikhjk = nôij 

for all i, j ^ n. A skew H-matrix is an H-matrix of the form 

H = I + S, S' = -S, 

where / is the identity matrix and S' the transpose of 5. In particular, 

SS' = - 5 2 = (n - 1)1. 

Skew H-matrices have applications in the theory of finite projective planes 
(2) and tournaments (4), also in the construction of H-matrices of certain 
orders. For example, if there is a skew H-matrix of order n, then there is an 
H-matrix of order n(n — 1) (Williamson, see (1, p. 213)). 

I t is known from constructions of Paley (3) and Williamson (5) that there 
exist skew H-matrices of orders 2 ' I I ^ i (pt

ai + 1), where the pi are distinct 
primes, / ^ 0, r ^ 0, and pf1: + 1 = 0 (mod 4) for each i. Furthermore, if n 
is an order of a skew H-matrix, then there exists one of order (n — l ) 3 + 1 
(Goldberg (1, p. 221)). Until quite recently these were the only known con­
structions of skew H-matrices. In a recent paper (4, p. 277, Theorem 6), skew 
H-matrices of all orders n = 2(pl + 1) were constructed, where p is prime and 
pl = 5 (mod 8). The following is a summary of the construction. 

Given an additive abelian group G of order 2m + 1, two subsets A C G, 
B C G, each of order m, are called complementary difference sets in G if 

(i) a £ A =5 — a g A, and 
(ii) for each 8 G G, 8 9e 0, the total number of solutions («i, a2) G A X A, 

(0i, 02) G B X B of the equations 

Ô = OL\ — « 2 , 8 = (3i — @2 

is n — 1. 
Then the following results are true. 

THEOREM 1. If for some abelian group G of order 2m + 1 there exists a pair of 
complementary difference sets A, B, then there exists a skew H-matrix of order 
4:(m + 1). 
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THEOREM 2. Let 2m + 1 = pl = 5 (mod 8) and G the additive group of 

GF(£')« Let p be a primitive root of GF(pl), HQ the multiplicative subgroup of 
index 4 generated by p4, and Hu i = 1,2, 3, JAe C0S£/ 0/iïo represented by pl. Then 

A = HoUHi and B = H*\J Hz 

are complementary difference sets in G. 

These two theorems clearly imply the existence of a skew H-matrix of order 
2{p% + 1) = 12 (mod 16). The construction of a skew H-matrix from com­
plementary difference sets A and B is as follows (see 4). 

Let 7i, . . . , 72w+i be the elements of G. Define, for 1 ^ i,j ^ 2m + 1, 

_ c _ / + 1 if Ti — 7* 6 A, 
-s2m+1+u2m+1+j - s t J - ^ _ x i{ y _ ^ e Ai 

and 

_ ( + 1 i f 7 ; - 7 i € 5 , 

_ _ _ (1 for 1 ^ î ^ 2m + 1, 
*4»+8.i - si|4ro+8 ~ ) _ i for 2m + 2 ^ i ^ 4m + 2, 

54m+4,i = —5i>4w+4 = 1 for 1 ^ i ^ 4m + 3, 

Su = 0 for 1 ^ i ^ 4m + 4. 

Then i? = 7 + S = (ô^ + 5^) is a skew H-matrix. 

2. The only orders divisible by four and less than or equal to 100 not covered 
by these constructions are 36, 52, 96, and 100. A machine search has shown 
that there are no complementary difference sets in the cyclic group of order 17, 
hence no skew H-matrix of order 36 can be obtained by this construction. 
Similarly, there are no complementary difference sets in the cyclic group of 
order 25. 

On the other hand, a complete machine search of the elementary abelian 
group of order 25 and type (5, 5) has produced 480 different pairs of comple­
mentary difference sets. Examination of these difference sets has shown that 
the corresponding H-matrices are all equivalent under permutation and 
multiplication by db 1 of rows and columns. One of the pairs of sets A and B 
can be obtained as follows. 

We represent G as the additive group of GF (25). Let p be a primitive root, HQ 
the multiplicative subgroup of index 8 generated by p8, and Ht (i = 1, . . . , 7) 
the coset represented by p \ Then 

A = H0V HX\J H2\J Hz, B = H*\J HX\J H*KJ Hi, 

To prove that A and B are complementary difference sets, it is sufficient to 
verify that 

1 = on — a2 and 1 = 0i — /32, 
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ai, a2 € A, fa, 02 € B have altogether eleven solutions. For the following 
result is true. 

THEOREM 3. Let p be a primitive root of G = GF(pl), where pl = 8m + 1, 
m = 1 (mod 2). Let H0 be the multiplicative subgroup of index 8 generated by 
p8, Hi (i = 1, . . . , 7) /^£ <?0se/ 0/-Ho represented by p\A = HQ\J H±KJ H2\J i73, 
and B = HQ\J HI\J H§\J HT. Suppose further that the total number of solution 
vectors (on, a2) £ A X A, (fa, fa) £ B X B of 

1 = on — a2, 1 = 0i — 02 

?'s 4w — 1. 77tew 4̂ awd 5 are complementary difference sets in G. 

Proof. Let 8 £ Ht and denote by ikf * the number of solutions of 8 = ai — a2, 
ai, a2 G ̂ 4, by Af/ the number of solutions of 8 = fa — fa, 0i, 02 € -B. Clearly 
Mt and Jkf/ are independent of the particular representatives 8 of Mt. 

Now every solution of 8 = on — a2, ai, a2 G 4̂ yields a solution of 
— 8 = a2 — ai, and hence, since —le #4, Afz- = M±+i, i = 0, 1, 2, 3. Similarly, 
ilf / = Mi+i, i = 0, 1, 2, 3. Furthermore, since a Ç .4 => p_2a Ç B and 
0 ç 5 =» pip ç. A, we also have Af,+2 = Af/, * = 0, 1, 2, 3; hence 

Mo + M0
f = M2 + M2' = Mi + ¥ / = Af 6 + -Me' = N, 

Mx + MS = Mz + Mz
f = M5 + itf5' = M7 + Af7' = N'. 

However, (N + iV)4m is equal to twice the number of pairs (a{, a ;) £ A X A, 
i.e. to 8m (4m — 1), and thus 

N + N' = (pl - 3) = 2(4m - 1). 

Hence, if Mo + M J = N = 4m — 1, then we also have N' = 4m — 1, and 
the statement is proved. 

In the case of pl = 25, by using a root of p2 + p + 2 = 0 as primitive root, 
we obtain: 

A = {1, 3, p, 1 + p, 4 + p, 3 + 2p, 3p, 1 + 3p, 3 + 3p, 4 + 3p, 2 + 4p, 3 + 4p}, 
B = {l ,2,p, l + p,2 + p,3 + p, 2p, 2 + 2p, 3 + 2p, 1 + 3p, 4 + 3p, 1 + 4p}, 

and the solutions of 1 = ai — a2 and 1 = 0i — 02 are 

(ai, a2) = (1 + p, P ) , (P, 4 + p), (1 + 3p, 3p), (4 + 3p, 3 + 3p), 
(3p,4 + 3p), (3 + 4p, 2 + 4p), 

(0i, fa) = (2,1), (1 + p, p), (2 + p, 1 + p), (3 + p, 2 + p), (3 + 2P, 2 + 2p). 

Hence A and B are complementary difference sets and we have constructed a 
skew H-matrix of order 52. 

There seems to be no obvious generalization of this construction. 
J. M. Goethals and J. J. Seidel have recently obtained a skew H-matrix of 
order 36, by an entirely different method (private communication). Thus the 
lowest unsettled case is now 92. 
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