A SKEW HADAMARD MATRIX OF ORDER 52

D. BLATT AND G. SZEKERES

1. A Hadamard (H-) matrix $H=\left(h_{i j}\right)$ of order n is an $n \times n$ square matrix satisfying the conditions

$$
h_{i j}=+1 \text { or }-1, \quad \sum_{k=1}^{n} h_{i k} h_{j k}=n \delta_{i j}
$$

for all $i, j \leqq n$. A skew H-matrix is an H-matrix of the form

$$
H=I+S, \quad S^{\prime}=-S
$$

where I is the identity matrix and S^{\prime} the transpose of S. In particular,

$$
S S^{\prime}=-S^{2}=(n-1) I
$$

Skew H-matrices have applications in the theory of finite projective planes (2) and tournaments (4), also in the construction of H-matrices of certain orders. For example, if there is a skew H-matrix of order n, then there is an H-matrix of order $n(n-1)$ (Williamson, see (1, p. 213)).

It is known from constructions of Paley (3) and Williamson (5) that there exist skew H-matrices of orders $2^{t} \prod_{i=1}^{r}\left(p_{i}{ }^{\alpha_{i}}+1\right)$, where the p_{i} are distinct primes, $t \geqq 0, r \geqq 0$, and $p_{i}{ }^{\alpha}{ }^{i}+1 \equiv 0(\bmod 4)$ for each i. Furthermore, if n is an order of a skew H-matrix, then there exists one of order $(n-1)^{3}+1$ (Goldberg (1, p. 221)). Until quite recently these were the only known constructions of skew H-matrices. In a recent paper (4, p. 277, Theorem 6), skew H-matrices of all orders $n=2\left(p^{t}+1\right)$ were constructed, where p is prime and $p^{t} \equiv 5(\bmod 8)$. The following is a summary of the construction.

Given an additive abelian group G of order $2 m+1$, two subsets $A \subset G$, $B \subset G$, each of order m, are called complementary difference sets in G if
(i) $\alpha \in A \Rightarrow-\alpha \notin A$, and
(ii) for each $\delta \in G, \delta \neq 0$, the total number of solutions $\left(\alpha_{1}, \alpha_{2}\right) \in A \times A$, $\left(\beta_{1}, \beta_{2}\right) \in B \times B$ of the equations

$$
\delta=\alpha_{1}-\alpha_{2}, \quad \delta=\beta_{1}-\beta_{2}
$$

is $n-1$.
Then the following results are true.
Theorem 1. If for some abelian group G of order $2 m+1$ there exists a pair of complementary difference sets A, B, then there exists a skew H-matrix of order $4(m+1)$.

Received May 22, 1968.

Theorem 2. Let $2 m+1=p^{t} \equiv 5(\bmod 8)$ and G the additive group of $\mathrm{GF}\left(p^{t}\right)$. Let ρ be a primitive root of $\mathrm{GF}\left(p^{t}\right), H_{0}$ the multiplicative subgroup of index 4 generated by ρ^{4}, and $H_{i}, i=1,2,3$, the coset of H_{0} represented by ρ^{i}. Then

$$
A=H_{0} \cup H_{1} \quad \text { and } \quad B=H_{0} \cup H_{3}
$$

are complementary difference sets in G.
These two theorems clearly imply the existence of a skew H-matrix of order $2\left(p^{t}+1\right) \equiv 12(\bmod 16)$. The construction of a skew H-matrix from complementary difference sets A and B is as follows (see 4).

Let $\gamma_{1}, \ldots, \gamma_{2 m+1}$ be the elements of G. Define, for $1 \leqq i, j \leqq 2 m+1$,

$$
\begin{aligned}
& -s_{2 m+1+i, 2 m+1+j}=s_{i j}= \begin{cases}+1 & \text { if } \gamma_{j}-\gamma_{i} \in A, \\
-1 & \text { if } \gamma_{i}-\gamma_{j} \in A,\end{cases} \\
& -s_{2 m+1+j, i}=s_{i, 2 m+1+j}= \begin{cases}+1 & \text { if } \gamma_{j}-\gamma_{i} \in B, \\
-1 & \text { if } \gamma_{j}-\gamma_{i} \notin B,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& -s_{4 m+3, i}=s_{i, 4 m+3}=\left\{\begin{array}{l}
1 \text { for } 1 \leqq i \leqq 2 m+1, \\
-1 \text { for } 2 m+2 \leqq i \leqq 4 m+2,
\end{array}\right. \\
& s_{4 m+4, i}=-s_{i, 4 m+4}=1 \text { for } 1 \leqq i \leqq 4 m+3 \text {, } \\
& s_{i i}=0 \text { for } 1 \leqq i \leqq 4 m+4 .
\end{aligned}
$$

Then $H=I+S=\left(\delta_{i j}+s_{i j}\right)$ is a skew H-matrix.
2. The only orders divisible by four and less than or equal to 100 not covered by these constructions are $36,52,96$, and 100 . A machine search has shown that there are no complementary difference sets in the cyclic group of order 17, hence no skew H-matrix of order 36 can be obtained by this construction. Similarly, there are no complementary difference sets in the cyclic group of order 25.

On the other hand, a complete machine search of the elementary abelian group of order 25 and type $(5,5)$ has produced 480 different pairs of complementary difference sets. Examination of these difference sets has shown that the corresponding H -matrices are all equivalent under permutation and multiplication by ± 1 of rows and columns. One of the pairs of sets A and B can be obtained as follows.

We represent G as the additive group of GF (25). Let ρ be a primitive root, H_{0} the multiplicative subgroup of index 8 generated by ρ^{8}, and $H_{i}(i=1, \ldots, 7)$ the coset represented by ρ^{i}. Then

$$
A=H_{0} \cup H_{1} \cup H_{2} \cup H_{3}, \quad B=H_{0} \cup H_{1} \cup H_{6} \cup H_{7}
$$

To prove that A and B are complementary difference sets, it is sufficient to verify that

$$
1=\alpha_{1}-\alpha_{2} \quad \text { and } \quad 1=\beta_{1}-\beta_{2}
$$

$\alpha_{1}, \alpha_{2} \in A, \beta_{1}, \beta_{2} \in B$ have altogether eleven solutions. For the following result is true.

Theorem 3. Let ρ be a primitive root of $G=\mathrm{GF}\left(p^{t}\right)$, where $p^{t}=8 m+1$, $m \equiv 1(\bmod 2)$. Let H_{0} be the multiplicative subgroup of index 8 generated by $\rho^{8}, H_{i}(i=1, \ldots, 7)$ the coset of H_{0} represented by $\rho^{i}, A=H_{0} \cup H_{1} \cup H_{2} \cup H_{3}$, and $B=H_{0} \cup H_{1} \cup H_{6} \cup H_{7}$. Suppose further that the total number of solution vectors $\left(\alpha_{1}, \alpha_{2}\right) \in A \times A,\left(\beta_{1}, \beta_{2}\right) \in B \times B$ of

$$
1=\alpha_{1}-\alpha_{2}, \quad 1=\beta_{1}-\beta_{2}
$$

is $4 n-1$. Then A and B are complementary difference sets in G.
Proof. Let $\delta \in H_{i}$ and denote by M_{i} the number of solutions of $\delta=\alpha_{1}-\alpha_{2}$, $\alpha_{1}, \alpha_{2} \in A$, by M_{i}^{\prime} the number of solutions of $\delta=\beta_{1}-\beta_{2}, \beta_{1}, \beta_{2} \in B$. Clearly M_{i} and $M_{i}{ }^{\prime}$ are independent of the particular representatives δ of M_{i}.

Now every solution of $\delta=\alpha_{1}-\alpha_{2}, \alpha_{1}, \alpha_{2} \in A$ yields a solution of $-\delta=\alpha_{2}-\alpha_{1}$, and hence, since $-1 \epsilon H_{4}, M_{i}=M_{4+i}, i=0,1,2$, 3. Similarly, $M_{i}{ }^{\prime}=M_{4+i}{ }^{\prime}, i=0,1,2,3$. Furthermore, since $\alpha \in A \Rightarrow \rho^{-2} \alpha \in B$ and $\beta \in B \Rightarrow \rho^{2} \beta \in A$, we also have $M_{i+2}=M_{i}{ }^{\prime}, i=0,1,2,3$; hence

$$
\begin{aligned}
& M_{0}+M_{0}^{\prime}=M_{2}+M_{2}^{\prime}=M_{4}+M_{4}^{\prime}=M_{6}+M_{6}^{\prime}=N, \\
& M_{1}+M_{1}^{\prime}=M_{3}+M_{3}^{\prime}=M_{5}+M_{5}^{\prime}=M_{7}+M_{7}^{\prime}=N^{\prime} .
\end{aligned}
$$

However, $\left(N+N^{\prime}\right) 4 m$ is equal to twice the number of pairs $\left(\alpha_{i}, \alpha_{j}\right) \in A \times A$, i.e. to $8 m(4 m-1)$, and thus

$$
N+N^{\prime}=\left(p^{t}-3\right)=2(4 m-1)
$$

Hence, if $M_{0}+M_{0}{ }^{\prime}=N=4 m-1$, then we also have $N^{\prime}=4 m-1$, and the statement is proved.

In the case of $p^{t}=25$, by using a root of $\rho^{2}+\rho+2=0$ as primitive root, we obtain:
$A=\{1,3, \rho, 1+\rho, 4+\rho, 3+2 \rho, 3 \rho, 1+3 \rho, 3+3 \rho, 4+3 \rho, 2+4 \rho, 3+4 \rho\}$, $B=\{1,2, \rho, 1+\rho, 2+\rho, 3+\rho, 2 \rho, 2+2 \rho, 3+2 \rho, 1+3 \rho, 4+3 \rho, 1+4 \rho\}$, and the solutions of $1=\alpha_{1}-\alpha_{2}$ and $1=\beta_{1}-\beta_{2}$ are

$$
\begin{aligned}
&\left(\alpha_{1}, \alpha_{2}\right)=(1+\rho, \rho),(\rho, 4+\rho),(1+3 \rho, 3 \rho),(4+3 \rho, 3+3 \rho) \\
&(3 \rho, 4+3 \rho),(3+4 \rho, 2+4 \rho) \\
&\left(\beta_{1}, \beta_{2}\right)=(2,1),(1+\rho, \rho),(2+\rho, 1+\rho),(3+\rho, 2+\rho),(3+2 \rho, 2+2 \rho)
\end{aligned}
$$

Hence A and B are complementary difference sets and we have constructed a skew H-matrix of order 52 .

There seems to be no obvious generalization of this construction. J. M. Goethals and J. J. Seidel have recently obtained a skew H-matrix of order 36 , by an entirely different method (private communication). Thus the lowest unsettled case is now 92 .

References

1. Marshall Hall, Jr., Combinatorial theory (Blaisdell, Waltham, Massachusetts, 1967).
2. E. C. Johnsen, Integral solutions to the incidence equation for finite projective plane cases of orders $n \equiv 2(\bmod 4)$, Pacific J. Math. 17 (1966), 97-120.
3. R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys. 12 (1933), 311-320.
4. G. Szekeres, Tournaments and Hadamard matrices, Enseignement Math. 15 (1969), 269-278.
5. J. Williamson, Hadamard's determinant theorem and the sum of four squares, Duke Math. J. 11 (1944), 65-81.

University of Sydney,
Sydney, Australia;
University of New South Wales,
Kensington, New South Wales

