
Lecture 1

Introduction and Examples

This book has three parts, each with its own overarching goal. Lec-
tures 2–10 develop tools for designing systems with strategic par-
ticipants that have good performance guarantees. The goal of Lec-
tures 11–15 is to understand when selfish behavior is largely benign.
Lectures 16–20 study if and how strategic players reach an equilib-
rium of a game. The three sections of this lecture offer motivating
examples for the three parts of the book.

1.1 The Science of Rule-Making

We begin with a cautionary tale. In 2012, the Olympics were held
in London. One of the biggest scandals of the event concerned, of
all sports, women’s badminton. The scandal did not involve any
failed drug tests, but rather a failed tournament design that did not
carefully consider incentives.

The tournament design used is familiar from World Cup soccer.
There are four groups (A, B, C, D) of four teams each. The tour-
nament has two phases. In the first “round-robin” phase, each team
plays the other three teams in its group, and does not play teams
in other groups. The top two teams from each group advance to
the second phase, while the bottom two teams from each group are
eliminated. In the second phase, the remaining eight teams play a
standard “knockout” tournament. There are four quarterfinals, with
the losers eliminated, followed by two semifinals, with the losers play-
ing an extra match to decide the bronze medal. The winner of the
final gets the gold medal, the loser the silver.

The incentives of participants and of the Olympic Committee and
fans are not necessarily aligned in such a tournament. What does a
team want? To get as prestigious a medal as possible. What does
the Olympic Committee want? They didn’t seem to think carefully
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2 Introduction and Examples

about this question, but in hindsight it is clear that they wanted
every team to try their best to win every match. Why would a team
ever want to lose a match? Indeed, in the knockout phase of the
tournament, where losing leads to instant elimination, it is clear that
winning is always better than losing.

To understand the incentive issues, we need to explain how the
eight winners from the round-robin phase are paired up in the quar-
terfinals (Figure 1.1). The team with the best record from group
A plays the second-best team from group C in the first quarterfinal,
and similarly with the best team from group C and the second-best
team from group A in the third quarterfinal. The top two teams from
groups B and D are paired up analogously in the second and fourth
quarterfinals. The dominoes started to fall when, on the last day
of round-robin competition, there was a shocking upset: the Danish
team of Pedersen and Juhl (PJ) beat the Chinese team of Tian and
Zhao (TZ), and as a result PJ won group D with TZ coming in second.
Both teams advanced to the knockout stage of the tournament.

Figure 1.1: The women’s badminton tournament at the 2012 Olympics.
Both WY and JK preferred to play TZ in as late a round as possible.

The first controversial match involved another team from China,
Wang and Yu (WY), and the South Korean team of Jung and Kim
(JK). Both teams had a 2-0 record in group A play. Thus, both
were headed for the knockout stage, with the winner and loser of this
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match the top and second-best team from the group, respectively.
Here was the issue: the group A winner would likely meet the fear-
some TZ team in the semifinals of the knockout stage, where a loss
means a bronze medal at best, while the second-best team in group
A would not face TZ until the final, with a silver medal guaranteed.
Both the WY and JK teams found the difference between these two
scenarios significant enough to try to deliberately lose the match!1

This unappealing spectacle led to scandal, derision, and, ultimately,
the disqualification of the WY and JK teams.2 Two group C teams,
one from Indonesia and a second team from South Korea, were dis-
qualified for similar reasons.

The point is that, in systems with strategic participants, the rules
matter. Poorly designed systems suffer from unexpected and unde-
sirable results. The burden lies on the system designer to anticipate
strategic behavior, not on the participants to behave against their
own interests. We can’t blame the badminton players for optimizing
their own medal placement.

There is a well-developed science of rule-making, the field of mech-
anism design. The goal in this field is to design rules so that strategic
behavior by participants leads to a desirable outcome. Killer applica-
tions of mechanism design that we discuss in detail include Internet
search auctions, wireless spectrum auctions, the matching of medical
residents to hospitals, and kidney exchanges.

Lectures 2–10 cover some of the basics of the traditional economic
approach to mechanism design, along with several complementary
contributions from computer science that focus on computational ef-
ficiency, approximate optimality, and robust guarantees.

1.2 When Is Selfish Behavior Near-Optimal?

1.2.1 Braess’s Paradox

Sometimes you don’t have the luxury of designing the rules of a game
from scratch, and instead want to understand a game that occurs

1In hindsight, it seems justified that the teams feared the Chinese team TZ
far more than the Danish team PJ: PJ were knocked out in the quarterfinals,
while TZ won the gold medal.

2If you’re having trouble imagining what a badminton match looks like when
both teams are trying to lose, by all means track down the video on YouTube.
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“in the wild.” For a motivating example, consider Braess’s paradox
(Figure 1.2). There is an origin o, a destination d, and a fixed number
of drivers commuting from o to d. For the moment, assume that there
are two non-interfering routes from o to d, each comprising one long
wide road and one short narrow road (Figure 1.2(a)). The travel time
on a long wide road is one hour, no matter how much traffic uses
it, while the travel time in hours on a short narrow road equals the
fraction of traffic that uses it. This is indicated in Figure 1.2(a) by the
edge labels “c(x) = 1” and “c(x) = x,” respectively. The combined
travel time in hours of the two edges in one of these routes is 1 + x,
where x is the fraction of the traffic that uses the route. Since the
routes are identical, traffic should split evenly between them. In this
case, all drivers arrive at d an hour and a half after their departure
from o.

(a) Initial network (b) Augmented network

Figure 1.2: Braess’s paradox. Each edge is labeled with a function that
describes the travel time as a function of the fraction of the traffic that uses
the edge. After the addition of the (v, w) edge, the price of anarchy is 4/3.

Suppose we try to improve commute times by installing a tele-
portation device that allows drivers to travel instantly from v to w
(Figure 1.2(b)). How will the drivers react?

We cannot expect the previous traffic pattern to persist in the new
network. The travel time along the new route o → v → w → d is
never worse than that along the two original paths, and it is strictly
less whenever some traffic fails to use it. We therefore expect all
drivers to deviate to the new route. Because of the ensuing heavy
congestion on the edges (o, v) and (w, d), all of these drivers now
experience two hours of travel time from o to d. Braess’s paradox thus
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shows that the intuitively helpful action of adding a new superfast
link can negatively impact all of the traffic!

Braess’s paradox also demonstrates that selfish routing does not
minimize the commute time of drivers—in the network with the tele-
portation device, an altruistic dictator could assign routes to traffic
to improve everyone’s commute time by 25%. We define the price
of anarchy (POA) as the ratio between the system performance with
strategic players and the best-possible system performance. For the
network in Figure 1.2(b), the POA is 2

3/2 = 4
3 .

The POA is close to 1 under reasonable conditions in a remark-
ably wide range of application domains, including network routing,
scheduling, resource allocation, and auctions. In such cases, selfish
behavior leads to a near-optimal outcome. For example, Lecture 12
proves that modest over-provisioning of network capacity guarantees
that the POA of selfish routing is close to 1.

1.2.2 Strings and Springs

Braess’s paradox is not just about traffic networks. For example,
it has an analog in mechanical networks of strings and springs. In
the device pictured in Figure 1.3, one end of a spring is attached to
a fixed support and the other end to a string. A second identical
spring is hung from the free end of the string and carries a heavy
weight. Finally, strings are connected, with a tiny bit of slack, from
the support to the upper end of the second spring and from the lower
end of the first spring to the weight. Assuming that the springs are
ideally elastic, the stretched length of a spring is a linear function of
the force applied to it. We can therefore view the network of strings
and springs as a traffic network, where force corresponds to traffic
and physical distance corresponds to travel time.

With a suitable choice of string and spring lengths and spring
constants, the equilibrium position of this mechanical network is de-
scribed by Figure 1.3(a). Perhaps unbelievably, severing the taut
string causes the weight to rise, as shown in Figure 1.3(b)! To ex-
plain this curiosity, note that the two springs are initially connected
in series, so each bears the full weight and is stretched out to a cer-
tain length. After cutting the taut string, the two springs carry the
weight in parallel. Each spring now carries only half of the weight,
and accordingly is stretched to only half of its previous length. The
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(a) Before (b) After

Figure 1.3: Strings and springs. Severing a taut string lifts a heavy
weight.

rise in the weight is the same as the decrease in the commute time
achieved by removing the teleporter from the network in Figure 1.2(b)
to obtain the network in Figure 1.2(a).

1.3 Can Strategic Players Learn an Equilibrium?

Some games are easy to play. For example, in the second network
of Braess’s paradox (Figure 1.2(b)), using the teleporter is a no-
brainer—it is the best route, no matter what other drivers do.

In most games, however, the best action to play depends on what
the other players do. Rock-Paper-Scissors, rendered below in “bima-
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trix” form, is a canonical example.

Rock Paper Scissors
Rock 0, 0 −1, 1 1,−1
Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

One player chooses a row and the other a column. The numbers in the
corresponding matrix entry are the payoffs for the row and column
player, respectively. More generally, a two-player game is specified
by a finite strategy set for each player, and a payoff to each player
for every pair of strategies that the players might choose.

Informally, an equilibrium is a steady state of a system where each
participant, assuming everything else stays the same, wants to remain
as is. There is certainly no “deterministic equilibrium” in the Rock-
Paper-Scissors game: whatever the current state, at least one player
can benefit from a unilateral deviation. For example, the outcome
(Rock, Paper) cannot be an equilibrium, since the row player wants
to switch and play Scissors.

When playing Rock-Paper-Scissors, it appears as if your oppo-
nent is randomizing over her three strategies. Such a probability
distribution over strategies is called a mixed strategy. If both play-
ers randomize uniformly in Rock-Paper-Scissors, then neither player
can increase her expected payoff via a unilateral deviation (all such
deviations yield an expected payoff of zero). A pair of probability dis-
tributions with this property is a (mixed-strategy) Nash equilibrium.

Remarkably, allowing randomization, every game has at least one
Nash equilibrium.

Theorem 1.1 (Nash’s Theorem) Every finite two-player game
has a Nash equilibrium.

Nash’s theorem holds more generally in games with any finite number
of players (Lecture 20).

Can a Nash equilibrium be computed efficiently, either by an al-
gorithm or by strategic players themselves? In zero-sum games like
Rock-Paper-Scissors, where the payoff pair in each entry sums to zero,
this can be done via linear programming or, if a small amount of error
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can be tolerated, via simple iterative learning algorithms (Lecture 18).
These algorithmic results give credence to the Nash equilibrium con-
cept as a good prediction of behavior in zero-sum games.

In non-zero-sum two-player games, however, recent results indi-
cate that there is no computationally efficient algorithm for com-
puting a Nash equilibrium (Lecture 20). Interestingly, the standard
argument for computational intractability, “NP-hardness,” does not
seem to apply to the problem. In this sense, the problem of comput-
ing a Nash equilibrium of a two-player game is a rare example of a
natural problem exhibiting intermediate computational difficulty.

Many interpretations of an equilibrium concept involve someone—
the participants or a designer—determining an equilibrium. If all par-
ties are boundedly rational, then an equilibrium can be interpreted
as a credible prediction only if it can be computed with reasonable ef-
fort. Computational intractability thus casts doubt on the predictive
power of an equilibrium concept. Intractability is certainly not the
first stone to be thrown at the Nash equilibrium concept. For exam-
ple, games can have multiple Nash equilibria, and this non-uniqueness
diminishes the predictive power of the concept. Nonetheless, the in-
tractability critique is an important one, and it is most naturally for-
malized using concepts from computer science. It also provides novel
motivation for studying computationally tractable equilibrium con-
cepts such as correlated and coarse correlated equilibria (Lectures 13,
17, and 18).

The Upshot

✰ The women’s badminton scandal at the 2012
Olympics was caused by a misalignment of the
goal of the teams and that of the Olympic Com-
mittee.

✰ The burden lies on the system designer to antic-
ipate strategic behavior, not on the participants
to behave against their own interests.

✰ Braess’s paradox shows that adding a superfast
link to a network can negatively impact all of
the traffic. Analogously, cutting a taut string
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in a network of strings and springs can cause a
heavy weight to rise.

✰ The price of anarchy (POA) is the ratio be-
tween the system performance with strategic
players and the best-possible system perfor-
mance. When the POA is close to 1, selfish
behavior is largely benign.

✰ A game is specified by a set of players, a strat-
egy set for each player, and a payoff to each
player in each outcome.

✰ In a Nash equilibrium, no player can increase
her expected payoff by a unilateral deviation.
Nash’s theorem states that every finite game
has at least one Nash equilibrium in mixed (i.e.,
randomized) strategies.

✰ The problem of computing a Nash equilibrium
of a two-player game is a rare example of a nat-
ural problem exhibiting intermediate computa-
tional difficulty.

Notes

Hartline and Kleinberg (2012) relate the 2012 Olympic women’s
badminton scandal to mechanism design. Braess’s paradox is
from Braess (1968), and the strings and springs interpretation is
from Cohen and Horowitz (1991). There are several physical demon-
strations of Braess’s paradox on YouTube. See Roughgarden (2006)
and the references therein for numerous generalizations of Braess’s
paradox. Koutsoupias and Papadimitriou (1999) define the price of
anarchy. Theorem 1.1 is from Nash (1950). The idea that markets
implicitly compute a solution to a significant computational problem
goes back at least to Adam Smith’s “invisible hand” (Smith, 1776).
Rabin (1957) is an early discussion of the conflict between bounded
rationality and certain game-theoretic equilibrium concepts.
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Exercises

Exercise 1.1 Give at least two suggestions for how to modify the
Olympic badminton tournament format to reduce or eliminate the
incentive for a team to intentionally lose a match.

Exercise 1.2 Watch the scene from the movie A Beautiful Mind
that purports to explain what a Nash equilibrium is. (It’s easy to
find on YouTube.) The scenario described is most easily modeled as
a game with four players (the men), each with the same five actions
(the women). Explain why the solution proposed by the John Nash
character is not a Nash equilibrium.

Exercise 1.3 Prove that there is a unique (mixed-strategy) Nash
equilibrium in the Rock-Paper-Scissors game.

Problems

Problem 1.1 Identify a real-world system in which the goals of some
of the participants and the designer are fundamentally misaligned,
leading to manipulative behavior by the participants. A “system”
could be, for example, a Web site, a competition, or a political pro-
cess. Propose how to improve the system to mitigate the incentive
problems. Your answer should include:

(a) A description of the system, detailed enough that you can
express clearly the incentive problems and your solutions for
them.

(b) Anecdotal or demonstrated evidence that participants are gam-
ing the system in undesirable ways.

(c) A convincing argument why your proposed changes would re-
duce or eliminate the strategic behavior that you identified.

Problem 1.2 Can you produce a better video demonstration of
Braess’s paradox than those currently on YouTube? Possible dimen-
sions for improvement include the magnitude of the weight’s rise,
production values, and dramatic content.
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