
Compositio Math. 141 (2005) 811–846
doi:10.1112/S0010437X0500134X

The Iwasawa theoretic Gross–Zagier theorem

Benjamin Howard

Abstract

We prove Mazur and Rubin’s Λ-adic Gross–Zagier conjecture (under some restrictive
hypotheses), which relates Heegner points in towers of number fields to the 2-variable
p-adic L-function. The result generalizes Perrin-Riou’s p-adic Gross–Zagier theorem.

Introduction

Fix forever a rational prime p > 2 and embeddings Qalg ↪→ Qalg
p and Qalg ↪→ C. Fix also a normalized

cuspidal newform f ∈ S2(Γ0(N),C) and an imaginary quadratic field K/Q of discriminant D and
quadratic character ε satisfying the Heegner hypothesis that all primes dividing N are split in K.
Assume that (p,DN) = 1 and that f is ordinary at p in the sense that the Fourier coefficient
ap(f) ∈ Qalg has p-adic absolute value 1 at the fixed embedding Qalg ↪→ Qalg

p . We let B0 be a
number field which is large enough to contain all Fourier coefficients of f , denote by A0 the integer
ring of B0, and denote by A and B the closures of A0 and B0 in Qalg

p , respectively. Let Hs be the ring
class field of K of conductor ps and let H∞ be the union over all s of Hs. We write Γ = 1+pZp, and
let γ0 ∈ Γ be a topological generator. Using methods of Hida [Hid85], Perrin-Riou [PR87a, PR88]
attached to f a ‘two-variable’ p-adic L-function

Lf ∈ A[[Gal(H∞/K)× Γ]]⊗A B
which interpolates the special values of twists of the complex L-function of f at s = 1. The p-adic
L-function may be expanded as a power series in γ0 − 1

Lf = Lf,0 + Lf,1 · (γ0 − 1) + · · · , (1)

with each Lf,k ∈ A[[Gal(H∞/K)]] ⊗A B. The Heegner hypothesis forces the constant term Lf,0 to
vanish, and the goal of this paper is to relate the linear term Lf,1 to the p-adic height pairings of
Heegner points in the f -component of the Jacobian J0(N).

For every nonnegative integer s the Heegner hypothesis guarantees the existence of a Heegner
point hs ∈ X0(N)(C) of conductor ps; that is, a cyclic N -isogeny of elliptic curves hs : Es −→ E′

s

over C such that both Es and E′
s have complex multiplication by exactly Os = Z+ psOK , the order

of conductor ps in K. The family {hs} may be chosen so that for every s > 1 there is a commutative
diagram

Es
hs ��

��

E′
s

��
Es−1

hs−1 �� E′
s−1

in which the vertical arrows are p-isogenies. The elliptic curve Es−1 (respectively E′
s−1) is then
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necessarily the quotient of Es (respectively E′
s) by its pOs−1-torsion. By the theory of complex

multiplication (for example [Cor02, Proposition 1.2]) the curves Es and E′
s, as well as the isogeny

connecting them, can be defined over Hs, and so define a point hs ∈ X0(N)(Hs). One then has the
Euler system relations (§ 1.2)

Tpr(hs) = NormHs+r/Hs
(hs+r) + Tpr−1(hs−1)

if r, s > 0, and

Tp(h0) =

{
u ·NormH1/H0

(h1) + (σp + σ∗p)h0 if ε(p) = 1
u ·NormH1/H0

(h1) if ε(p) = −1

as divisors on X0(N), where Tpr is the usual Hecke correspondence, 2u = |O×
K |, and σp, σ

∗
p ∈

Gal(H0/K) are the Frobenius automorphisms of the two primes above p in the case ε(p) = 1.
Abusing notation, we also denote by hs the image of hs in J0(N) under the usual embedding
X0(N) −→ J0(N) taking the cusp ∞ to the origin.

Let T be the Q-algebra generated by the action of the Hecke operators T� with (�,N) = 1 on
J0(N). The semi-simplicity of T gives a decomposition of T⊗ B-modules

J0(N)(Hs)⊗Z B ∼=
⊕
β

J(Hs)β

where β ranges over Gal(Qalg
p /B)-orbits of algebra homomorphisms β : T −→ Qalg

p . Each summand
is stable under the action of Gal(Hs/Q), and if β(T) ⊂ B then T acts on J(Hs)β through the
character β. The fixed newform f determines one such homomorphism, and we define hs,f to be the
projection of hs onto the associated factor J(Hs)f . Let α ∈ A× be the unit root of X2−ap(f)X+p.
As in [BD96], define the regularized Heegner point zs ∈ J(Hs)f for s > 0 by

zs =
1
αs
hs,f − 1

αs+1
hs−1,f .

In the case s = 0 we define

z0 = u−1 ·




(
1− σp

α

)(
1− σ∗p

α

)
h0,f if ε(p) = 1

(
1− 1

α2

)
h0,f if ε(p) = −1.

It follows from the Euler system relations that the points zs are compatible under the norm (trace)
maps on J(Hs)f .

The case s = 0 of the following theorem is due to Perrin-Riou [PR87a], and has been generalized
to higher weight modular forms by Nekovář [Nek95].

Theorem A. Assume that D is odd and �= −3, and that ε(p) = 1. For any character η :
Gal(Hs/K) −→ Qalg,×

p

η(κs) logp(γ0) · Lf,1(η) =
∑

σ∈Gal(Hs/K)

η(σ)〈z∨s , zσs 〉

where κs ∈ Gal(Hs/K) is the Artin symbol of ds = (
√
DOK) ∩ Os,

〈 , 〉 = 〈 , 〉J0(N),Hs
: J0(N)∨(Hs)× J0(N)(Hs) −→ Qp

is the p-adic height pairing (9) extended B bilinearly, and z∨s is the image of zs under the canonical
principal polarization of J0(N) (extended B-linearly on Mordell–Weil groups)

J0(N)(Hs)⊗ B ∼= J0(N)∨(Hs)⊗B.
Both sides of the stated equality are independent of the choice of γ0.
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Remark 0.0.1. The p-adic height pairing 〈 , 〉J0(N),Hs
referred to in the theorem is not uniquely

determined (see Proposition 3.2.1 and Remark 3.2.2). We emphasize that Theorem A holds for any
choice of p-adic height pairing 〈 , 〉J0(N),Hs

as in (9).

Remark 0.0.2. Nekovář [Nek95] claims that there is a sign error in the statement of [PR87a,
Théorème 1.3], but there is no small amount of confusion over Perrin-Riou’s normalization of the
height pairing. This is primarily due to the change of sign in Remark 3.3.1, which is our reason for
maintaining the distinction between J0(N) and J0(N)∨, and between the pairings (9) and (10). It
is also possible that [PR87a] uses a different convention for the reciprocity law of class field theory;
see § 3.3.

Remark 0.0.3. Theorem A should hold without the stated hypotheses on D and ε(p). We note that
the hypothesis D �= −3 is not assumed in [PR87a].

Now suppose that f has rational Fourier coefficients, B0 = Q, and E belongs to the isogeny class
of (ordinary!) elliptic curves associated to f . Fix a modular parametrization X0(N)

φ−→ E, and let

φ∗ : J0(N) −→ E, φ∗ : E∨ −→ J0(N)∨

be the Albanese and Picard maps. Extending φ∗ and φ∗ to Qp-linear maps on Mordell–Weil groups,
let ys = φ∗(zs) ∈ E(Hs) ⊗ Zp and let y∨s be the unique point of E∨(Hs) ⊗ Qp with φ∗(y∨s ) = z∨s .
The canonical polarization E ∼= E∨ identifies ys with deg(φ) · y∨s . The points ys and y∨s are norm-
compatible as s varies (since the zs are). Define the Heegner L-function LHeeg ∈ Zp[[Gal(H∞/K)]]⊗
Qp by

LHeeg = lim←−
∑

σ∈Gal(Hs/K)

〈y∨s , yσs 〉E,Hs · σ

where the pairing is the p-adic height pairing of (9) extended Qp-linearly (and not the height pairing
of (10); as E is both a curve and an abelian variety, we have reached a notational singularity). Unlike
the height pairing of Theorem A, the pairing 〈 , 〉E,Hs is canonical. This follows from the ordinarity
of E at p and the uniqueness claims of Proposition 3.2.1. A priori, LHeeg lives in the larger space
lim←−Qp[[Gal(Hs/K)]], but it is known that the denominators in the height pairing are bounded as s
varies (this follows from the construction of [PR87a], although it is not explicitly stated there; note
also Proposition 0.0.4 below).

Theorem B. Under the hypotheses (and notation) of Theorem A,

κ · logp(γ0) · Lf,1 = LHeeg

in Zp[[Gal(H∞/K)]]⊗Qp, where κ = lim←−κs ∈ Gal(H∞/K).

Theorem B is a (very slightly) strengthened form of a conjecture of Mazur and Rubin [MR02,
Conjecture 9]. To make the connection between our theorem and the conjecture of Mazur and Rubin
more explicit, first note that the construction of the p-adic height 〈 , 〉E,Hs depends on the auxiliary

choice of the idèle class character ρHs : A×
Hs
/H×

s −→ Γ
logp−−→ Zp defined at the start of § 3.3.

Define ΓQp = Γ⊗Zp Qp and extend logp to a Qp-linear isomorphism ΓQp
∼= Qp. Define a pairing

〈 , 〉ΓE,Hs
: E∨(Hs)× E(Hs) −→ ΓQp

by 〈 , 〉E,Hs = logp ◦〈 , 〉ΓE,Hs
and set

LΓ
Heeg = lim←−

∑
σ∈Gal(Hs/K)

〈ys, yσs 〉ΓE,Hs
· σ ∈ Zp[[Gal(H∞/K)]]⊗ ΓQp ,
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where we have now identified E ∼= E∨ in the canonical way, so that

(1⊗ logp)(LΓ
Heeg) = deg(φ) · LHeeg.

Let I be the kernel of the projection

Zp[[Gal(H∞/K)× Γ]]⊗Qp −→ Zp[[Gal(H∞/K)]]⊗Qp

and let w : Zp[[Gal(H∞/K)]]⊗ ΓQp −→ I/I2 be the isomorphism defined by w(λ⊗ γ) = λ(γ − 1).
Thus w(LΓ

Heeg) = deg(φ) logp(γ0)−1LHeeg ·(γ0−1). As Lf,0 = 0, the p-adic L-function Lf is contained
in I, and Theorem B may be rewritten as

κ · Lf = κ · Lf,1 · (γ0 − 1) =
1

logp(γ0)
LHeeg · (γ0 − 1) =

1
deg(φ)

w(LΓ
Heeg)

in I/I2.
Now assume the hypotheses of Theorem A, and also that Gal(Kalg/K) surjects onto the

Zp-module automorphisms of Tp(E) and that p does not divide the class number ofK. LetK∞ ⊂ H∞
be the anticyclotomic Zp-extension of K, and set Ks = K∞ ∩Hs+1, so that [Ks : K] = ps. Define
Λanti = Zp[[Gal(K∞/K)]]⊗Qp, and

S(Ks, E) = lim←−
k

Selpk(Ks, E), S∞ = (lim←−
s

S(Ks, E))⊗Qp

X = HomZp(Selp∞(K∞, E),Qp/Zp)⊗Qp.

Let ỹ∞ ∈ S∞ be the inverse limit of ỹs = NormHs+1/Ks
(ys+1) ∈ S(Ks, E), and define the Heegner

submodule H ⊂ S∞ to be the Λanti-submodule generated by ỹ∞. It follows from work of Cornut and
Vatsal [Cor02, Vat02] that H is a free Λanti-module of rank one. It is known by work of Bertolini
and the author [Ber95, How04] that X is a finitely-generated rank-one Λanti-module, S∞ is free of
rank one, and

char(Xtors) divides char(S∞/H) · char(S∞/H)ι (2)

where Xtors denotes the Λanti-torsion submodule of X, and λ �→ λι is the involution of Λanti which
is inversion on group-like elements. Perrin-Riou [PR87b, Conjecture B] has conjectured that the
divisibility (2) is an equality.

Proposition 0.0.4 (Perrin-Riou [PR87b, PR91, PR92]). There is a p-adic height pairing

hs : S(Ks, E)× S(Ks, E) −→ c−1Zp

whose restriction to the image of the Kummer map E(Ks) ⊗ Zp −→ S(Ks, E) agrees with the
pairing 〈 , 〉E,Ks of (9) after identifying E ∼= E∨ in the canonical way, where c ∈ Zp is independent
of s.

There is a Λanti-adic height pairing h∞ : S∞ × S∞ −→ Λanti defined by

h∞(lim←− as, lim←− bs) = lim←−
∑

σ∈Gal(Ks/K)

hs(as, bσs ) · σ,

and we define the Λanti-adic regulator R to be the image of this map. If

e : Zp[[Gal(H∞/K)]]⊗Qp −→ Λanti

is the natural projection, then the norm compatibility of the height pairing (see Remark 3.2.2; in
this case the compatibility is automatic by the uniqueness claim of Proposition 3.2.1 and the fact
that E is ordinary at p) gives

e(LHeeg)Λanti = h∞(ỹ∞, ỹ∞)Λanti = char(S∞/H) · char(S∞/H)ι · R.
814
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If we assume that R �= 0, then Theorem B allows us to rewrite the divisibility (2) as

char(Xtors) divides
e(Lf,1)Λanti

R , (3)

which now has the look and feel of a Λanti-adic form of the Birch and Swinnerton-Dyer conjecture
and no longer makes any mention of Heegner points. It was conjectured by Mazur and Rubin [MR02,
Conjecture 6] that R = Λanti, but those authors have since retracted that conjecture.

Note that the hypothesis on the action of Galois on the p-adic Tate module excludes the case
where E has complex multiplication. Results similar to (3) in the so-called exceptional case where
E has complex multiplication by K can be found in [AH03].

0.1 Plan of the proof
Enlarging B0 if needed, we may assume that A0 contains the Fourier coefficients of all normalized
newforms of level dividing N , so that all algebra maps T −→ Qalg take values in B0. Fix s > 0 and
define, for each integer 0 � i � s, degree 0 divisors on X0(N)/Hs

ci = (hi)− (0), di = (hi)− (∞).

For any pair 0 � i, j � s and any σ ∈ Gal(Hs/K) we define a p-adic modular form

F i,jσ =
∑
β

〈ci, dσj,β〉fβ ∈ S2(Γ0(N),B0)⊗B0 B

where the sum is over algebra homomorphisms β : T −→ B0, fβ is the associated normalized
primitive (i.e. new of some level dividing N) eigenform, 〈 , 〉 = 〈 , 〉X0(N),Hs

is the p-adic height
pairing (10) on degree zero divisors of X0(N)/Hs

(viewed as a pairing on J0(N)(Hs) and extended
B-linearly; by Remark 3.3.1 this is minus the pairing of Theorem A) and the β subscript on dj
indicates projection to the component J(Hs)β. Define a p-adic cusp form

Fσ = U2F s,sσ − UF s,s−1
σ − UF s−1,s

σ + F s−1,s−1
σ ∈ S2(Γ0(Np),B0)⊗B0 B

where U is the Atkin–Lehner Up defined by U(
∑
amq

m) =
∑
ampq

m. For (m,N) = 1, the mth
Fourier coefficient of Fσ is given by the formula (see Proposition 7.0.6)

am(Fσ) = 〈cs, Tmp2(dσs )〉 − 〈cs, Tmp(dσs−1)〉 − 〈cs−1, Tmp(dσs )〉+ 〈cs−1, Tm(dσs−1)〉. (4)

The pairs of divisors occurring in this expression will not be relatively prime for many values of m,
but if we define divisors

hs,r = NormHs+r/Hs
(hs+r), ds,r = NormHs+r/Hs

(ds+r)

on X0(N) and write m = m0p
r with (m0, p) = 1, then the Euler system relation allow us to rewrite

(4) as

am(Fσ) = 〈cs, Tm0(d
σ
s,r+2)〉 − 〈cs−1, Tm0(d

σ
s,r+1)〉. (5)

The pairs of divisors occurring here are relatively prime: the geometric points of Tm0(hs,r) represent
elliptic curves with complex multiplication (CM) by an order O for which ordp(cond(O)) = r + s.
Working with these divisors allows us to avoid the ‘intersection theory with tangent vectors’ used
by Gross–Zagier to deal with divisors having common support.

In § 2 we recall some p-adic analytic results of Hida and Perrin-Riou. In particular, we recall the
construction of a p-adic modular form Gσ ∈M2(Γ0(Np∞),A) (a space defined at the beginning of
§ 2) for each σ ∈ Gal(Hs/K), with the property that

logp(γ0) · Lf,1(η) =
∑

σ∈Gal(Hs/K)

η(σ)Lf (Gσ)
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for every character η of Gal(Hs/K). Here Lf is a linear functional

Lf : M2(Γ0(Np∞),A) −→ B
which plays the Hida-theoretic role of taking the Petersson inner product with f .

Perrin-Riou gives an explicit formula for the Fourier coefficient am(Gσ) when p divides m
(Proposition 2.0.5), and in §§ 4, 5, and 6 we adapt the methods of Gross–Zagier and Perrin-Riou
to compute (to the extent necessary) the Fourier coefficients of Fσ . More precisely, each Fourier
coefficient has a decomposition over the finite places of Hs, am(Fσ) =

∑
v am(Fσ)v, arising from

the decomposition of the p-adic heights in (5) into local p-adic Néron symbols on X0(N)/Hs,v
. For

v lying above a rational prime �= p which splits in K, am(Fσ)v = 0 (Proposition 4.0.8). For v above
a nonsplit rational prime � �= p we derive an explicit formula (Proposition 5.4.1) for

∑
v|� am(Fσ)v

similar to formulas of Gross–Zagier. For v | p we can offer no explicit formula for am(Fσ)v, instead
we show that the contribution of am(Fσ)p to am(Fσ) is killed by the operator Lf (Proposition 6.2.2).
This is where we must impose the condition ε(p) = 1, although Proposition 6.2.2 should also hold
when ε(p) = −1. Comparing these calculations with the Fourier coefficients of Gσ, we conclude that

Lf (U2s(1− U2)Gσκ) = Lf (Fσ),

and Theorems A and B follow easily (see § 7 for the details).

0.2 Notation and conventions

The data K, p, N , D, f , A0, and {hs} are fixed throughout. We continue to assume, as in § 0.1,
that A0 contains the Fourier coefficients of all normalized primitive forms of level N . We typically
do not assume that D is odd or �= −3,−4, or that ε(p) = 1, unless explicitly stated otherwise. The
parity assumption on D is needed only for the results of Perrin-Riou cited in § 2. The condition
ε(p) = 1 and D �= −3,−4 is used in the calculation of local Néron symbols above p in § 6.

IfM is any Z-module of finite type and r is a rational prime we setMr = M⊗ZZr. For any integer
n, any order O ⊂ K, and any proper fractional O-ideal a, we denote by ra(n) the number of proper,
integral O-ideals of norm n whose class in Pic(O) agrees with that of a. The order O will usually be
clear from the context. If there is any ambiguity we will write raO(n). Since complex conjugation
acts by inversion on Pic(O), ra(n) = ra−1(n). We define Ra(n) to be the number of proper, integral
O-ideals of norm n in the O-genus of a; that is, such that the image in Pic(O)/Pic(O)2 agrees with
the image of a. For any integer k we set

δ(k) = 2#{prime divisors of (k,D)}.

The reciprocity map of class field theory is always normalized in the arithmetic fashion.

1. Preliminaries on elliptic curves

1.1 CM points, Heegner diagrams, and Serre’s construction

Let S be an OK-scheme and let O = O[c] ⊂ OK be the order of conductor c. Assume (c,N) = 1. An
elliptic curve E −→ S is said to have CM by O if there is an embedding O ↪→ EndS(E). We always
assume that such an embedding is normalized, in the sense that the action of O on the pull-back of
the tangent sheaf of E by the identity section agrees with the action given by viewing the structure
sheaf of S as a sheaf of O-algebras. We say that O is the CM-order of E, or that E has CM by
exactly O, if this action does not extend to any larger order. A Heegner diagram of conductor c
over S, h, is an O-linear cyclic N -isogeny of elliptic curves h : E −→ E′ over S, such that E and E′

both have CM by exactly O. An isogeny of Heegner diagrams means an isogeny of the underlying
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Γ0(N)-structure; i.e. a commutative diagram

E0

f

��

h0 �� E′
0

f ′
��

E1
h1 �� E′

1

in which the vertical arrows are isogenies of elliptic curves over S, and the map f takes the scheme-
theoretic kernel of h0 isomorphically to the scheme-theoretic kernel of h1. The degree of such an
isogeny is defined to be the degree of f , which is also the degree of f ′. Any Heegner diagram h
over S gives rise to an S-valued point of X0(N)/Z, which we also denote by h. Since X0(N) is not
a fine moduli space, Heegner diagrams which are not isomorphic over S may give rise to the same
S-valued point on X0(N).

If E is an elliptic curve over S with CM by O and a is a proper fractional O-ideal, a theorem
of Serre [Con04, Theorem 7.2] guarantees that the functor from S-schemes to O-modules T �→
E(T )⊗O a is represented by an elliptic curve which we denote by E⊗O a. Define Ea = E⊗O a−1. As
in [Con04, Corollary 7.11], this construction extends to Heegner diagrams, and so to any Heegner
diagram h : E −→ E′ of conductor c over S and any a as above, we obtain a new Heegner diagram

ha : Ea −→ E′a.

If S = Spec(C) and E is an elliptic curve over S with CM by exactly O, then E(C) ∼= C/b for
some proper fractional O-ideal b, and we have an analytic isomorphism Ea(C) ∼= C/a−1b. By the
Main Theorem of Complex Multiplication, the right-hand side is analytically isomorphic to Eσ(C)
for any σ ∈ Aut(C/K) whose restriction to H[c] (the ring class field of conductor c) agrees with a

under the Artin map Pic(O) ∼= Gal(H[c]/K). In particular, E has a model over H[c], Eσ and Ea are
isomorphic over C, and Gal(H[c]/K) acts transitively on the C-isomorphism classes of elliptic curves
over H[c] with CM by exactly O. Similarly all Heegner diagrams over C of conductor c have models
over the ring class field of conductor c. If h is a Heegner diagram of conductor c defined over H[c],
we define the orientation of h to be the annihilator in O of the kernel of h : E(C) −→ E′(C). It is an
ideal N of O such that O/N ∼= Z/NZ. Then Gal(H[c]/K) acts transitively on the C-isomorphism
classes of conductor c Heegner points with a given orientation.

1.2 Hecke action on CM points

Let L denote the set of lattices in K, modulo multiplication by K×. The K×-class of a lattice L will
be denoted [L]. For any [L] ∈ L we define the conductor of [L] to be the conductor of the left order
of L; that is, the conductor of the order O(L) = {α ∈ K | αL ⊂ L}. Every lattice of conductor c
is represented uniquely (up to K× action) by an element of Pic(O), where O ⊂ K is the order of
conductor c.

We have the usual action of Hecke operators {Tm} on formal sums of classes in L, which we
wish to make explicit. The following lemma is an elementary exercise.

Lemma 1.2.1. Suppose we are given orders O and O′ of K of conductors c and d, respectively, and
a proper fractional O-ideal c (respectively O′-ideal d). If c | d then the multiplicity of [c] in the
formal sum Tm[d] is equal to rcd−1O(mc/d). If instead d | c, then the multiplicity of [c] in Tm[d] is
given by |O′×||O×|−1rcd−1O′(md/c).

Lemma 1.2.2 (Euler system relations). With notation as in the introduction and 2u = |O×
K |,

Tpr(hs) = NormHs+r/Hs
(hs+r) + Tpr−1(hs−1)
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if r, s > 0, and

Tp(h0) =

{
u · NormH1/H0

(h1) + (σp + σ∗p)h0 if ε(p) = 1
u · NormH1/H0

(h1) if ε(p) = −1.

Proof. We give a brief sketch of the proof of the first relation. Let d be a proper Os+r-ideal such
that C/d ∼= Es+r(C), and for any 0 � t � s+ r, set dt = dOt, so that Et(C) ∼= C/dt. By the theory
of complex multiplication, the complex elliptic curves underlying the Γ0(N)-structures appearing
in the divisor NormHs+r/Hs

(hs+r) are exactly the complex tori of the form C/d′ where d′ is a proper
Os+t-ideal satisfying d′Os = ds. Using Lemma 1.2.1, such a d′ occurs exactly once in the formal
sum Tpr [ds], and does not occur in Tpr−1[ds−1]. As the formal sum of lattices Tpr [ds] − Tpr−1[ds−1]
has degree pr, it must be exactly the formal sum of [d′] with d′ as above.

1.3 The Serre–Tate theorem
We recall the Serre–Tate theory of deformations of elliptic curves. More detail can be found in
[Con04, § 3] and [Gor02, ch. 6]. Let k be a field of nonzero characteristic � and define Ck to be the
category of local Artinian algebras (R,mR) with residue field k, together with a chosen isomorphism
R/mR

∼= k, with morphisms given by local algebra maps inducing the identity on k. Given an elliptic
curve E −→ Spec(k), and some R ∈ Ck, we define a deformation of E to R to be an elliptic curve
ER −→ Spec(R) together with an isomorphism between the closed fiber of ER and E. Similarly,
we may define the notion of a deformation of the �-divisible group of an elliptic curve over k. For
(R,mR) an object of Ck, let DEFR denote the category of pairs (E,G) where E is an elliptic curve
over k and G is a deformation to R of the �-divisible group of E. A morphism from (E,G) to (E′, G′)
is a pair (f, φ) where f : E −→ E′ is a morphism of elliptic curves over Spec(k) and φ : G −→ G′ is a
map of �-divisible groups such that the base change of φ to the closed fiber is the map on �-divisible
groups over Spec(k) induced by f .

Theorem 1.3.1 (Serre–Tate). For any object (R,mR) of Ck, the functor from elliptic curves over R
to DEFR which sends E to the pair (E ×R k,E[�∞]) is an equivalence of categories, where E[�∞]
denotes the �-divisible group of E.

Now assume that k is algebraically closed and fix an ordinary elliptic curve E over k. We
have E[�∞] ∼= µ�∞ ⊕ Q�/Z� as �-divisible groups over k. For any R ∈ CR there is a distinguished
deformation of the �-divisible group of E to an �-divisible group over R, namely the deformation
µ�∞⊕Q�/Z�. Applying the Serre–Tate theorem, we obtain an elliptic curve over R called the Serre–
Tate canonical lift of E to R.

As explained in [Con04, § 3], a theorem of Grothendieck allows one to replace ‘local Artinian’
by ‘complete local Noetherian’ in the definition of Ck, and the discussion above holds verbatim.

2. The p-adic L-function

In this section we quickly recall the essential properties of Hida’s p-adic L-function Lf and Perrin-
Riou’s calculation of its linear term. We refer the reader to [Hid85, Nek95, PR87a] for more detailed
treatments. Assume that D is odd. Recall that A0 ⊂ Qalg is the ring of integers of a number field
with closure A in Qalg

p , B is the fraction field of A, and α ∈ A× is the unit root of X2−ap(f)X+ p.
Set

M2(Γ0(Npk),A) = M2(Γ0(Npk),A0)⊗A0 A
and let M2(Γ0(Np∞),A) be the completion of

⋃
kM2(Γ0(Npk),A) with respect to the p-adic

supremum norm on Fourier coefficients. To any s � 0, σ ∈ Gal(Hs/K), and integer C prime
to Dp, Perrin-Riou [PR87a, § 2.2.3] associates a measure ΦC

σ on Z×
p with values in the space

M2(Γ0(Np∞),A). These are compatible as s and σ vary in the following sense: there is a measure ΦC
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on Gal(H∞/K)× Z×
p with values in M2(Γ0(Np∞),A) such that for any continuous characters

η : Gal(H∞/K) −→ Qalg,×
p , ψ : Z×

p −→ Qalg,×
p

such that η factors through Gal(Hs/K) we have the relation∫
Gal(H∞/K)×Z×p

ηψ dΦC =
∑

σ∈Gal(Hs/K)

η(σ)
∫
Z
×
p

ψ dΦC
σ

in M2(Γ0(Np∞),A)⊗A Qalg
p .

Use the notation T̃� to denote Hecke operators acting on modular forms of level Γ0(Np∞), to
distinguish them from the operators on level Γ0(N). Define Hida’s ordinary projector [Hid93, § 7.2]

eord : M2(Γ0(Np∞),A) −→ M2(Γ0(Np),A)

by eord(g) = limk→∞Uk!(g), where U = T̃p is given by U(
∑
anq

n) =
∑
anpq

n and the limit is with
respect to the supremum norm on Fourier coefficients. Define modular forms of level Γ0(Np) by

f0(z) = f(z)− p

α
f(pz), f1(z) = f(z)− αf(pz).

These are eigenforms for all Hecke operators T̃�, and satisfy a�(f0) = a�(f) = a�(f1) if � �= p, and
ap(f0) = α, ap(f1) = p/α. The B-algebra generated by the Hecke operators T̃� with (�,Np) = 1
acting on M2(Γ0(Np),A)⊗AB is semi-simple, and so contains an idempotent ef such that ef ◦ T̃� =
a�(f)ef . By [Hid85, § 4] there is an idempotent ef0 in the algebra generated by all Hecke operators
T̃�, such that ef0 ◦ T̃� = a�(f0)ef0 for every �. As operators on modular forms, ef0 = ef0ef . Define a
linear functional

lf : M2(Γ0(Np∞),A)⊗A B −→ B
by lf (g) = a1(ef0e

ordg), and set Lf = (1− p/α2)(1 − 1/α2)lf (this is denoted L̃f0 in [PR87a]).

Lemma 2.0.2. The linear functional Lf : M2(Γ0(Np∞),A)⊗A B −→ B satisfies:

(a) Lf = Lf ◦ eord;
(b) Lf (f) = 1− 1/α2;

(c) if g ∈M2(Γ0(Np∞),A) is such that am(g) = 0 for all (m,N) = 1, then Lf (g) = 0;

(d) for any positive integer m, Lf ◦ T̃m = am(f0)Lf ; in particular, Lf ◦ U = αLf .

Proof. The first claim is trivial, since eord ◦ eord = eord. The second follows from lf (f0) = 1,
lf (f1) = 0. If g satisfies am(g) = 0 for all (m,N) = 1, then so does efeordg, so we may assume that
g has level Γ0(Np) and that T̃�g = a�(f)g for (�,Np) = 1. By Atkin–Lehner theory, g is a linear
combination of f0 and f1. Since a1(g) = 0, g must be a scalar multiple of f0−f1. But ap(f0−f1) �= 0,
so this scalar must be 0. The final claim follows from ef0 ◦ T̃m = am(f0)ef0 .

Remark 2.0.3. Contrary to the proof of [Nek95, Proposition II.5.10], the weaker hypothesis that
am(g) = 0 for all (m,Np) = 1 is not sufficient to conclude that Lf (g) = 0. The modular form
g = f0 − f1 provides a counterexample.

Whenever ψ is a continuous character of Γ, we extend ψ to a character of Z×
p using the usual

projection 〈 〉 : Z×
p −→ Γ. We now define the p-adic L-function Lf of the introduction (compare

[PR87a, Définition 2.4], but note that Perrin-Riou’s ψ(C) = ψ(FrobCOK
) is our ψ(C)2). For any

continuous character η · ψ of Gal(H∞/K)× Γ, set

Lf (η, ψ) =
1

1− Cε(C)ψ(C)−2
· Lf

(∫
Gal(H∞/K)×Z×p

η · ψ dΦC

)
,
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where C is chosen so that (1−Cε(C)〈C〉−2) ∈ Zp[[Γ]]×. The resulting Lf ∈ A[[Gal(H∞/K)×Γ]]⊗AB
does not depend on the choice of C. Any finite-order character η ·ψ of Gal(H∞/K)×Γ determines
a character

χ(b) = η(Frobb) · ψ(N(b))

on ideals of OK prime to p, and there is an interpolation formula [PR87a, Théorème 1.1] relating
Lf (η, ψ) to L(f, χ̄, 1), where L(f, χ̄, s) is the Rankin product of the L-function of f and the
L-function of the theta series associated to χ̄.

Proposition 2.0.4. Let 1 denote the trivial character of Γ. Then Lf (η,1) = 0 for all continuous
characters η of Gal(H∞/K). Furthermore, in the notation of (1), Lf,0 = 0 and

logp(γ0) · Lf,1(η) =
∑

σ∈Gal(Hs/K)

η(σ)Lf (Gσ)

for every character η of Gal(Hs/K), where Gσ ∈M2(Γ0(Np∞),A) is defined by

Gσ =
1

1− Cε(C)
·
∫
Z
×
p

logp dΦ
C
σ .

Proof. Fix an integer s > 0. For each σ ∈ Gal(Hs/K) define

Lσ(ψ) =
1

1− Cε(C)ψ(C)−2
·
∫
Z×p
ψ dΦC

σ ∈M2(Γ0(Np∞),A),

a function on continuous characters ψ of Γ with the property that

Lf (η, ψ) =
∑

σ∈Gal(Hs/K)

η(σ)Lf (Lσ(ψ))

for any ψ and any character η of Gal(Hs/K). By [PR87a, Remarque 3.19] am(Lσ(1)) = 0 whenever
p | m, and so ULσ(1) = 0. Lemma 2.0.2(d) now implies Lf (Lσ(1)) = 0. Since s and η were
arbitrary, we deduce Lf (η,1) = 0 for all finite order η, hence for all continuous η (since Lf ( ,1) ∈
A[[Gal(H∞/K)]]⊗AB). This is equivalent to Lf,0 = 0. Finally, recall that 〈 〉 denotes the projection
Z×
p −→ Γ and compute

lim
t→0

Lf (η, 〈 〉t)
t

=
∑

σ∈Gal(Hs/K)

d

dt

[
η(σ)

1− Cε(C)〈C〉−2t
· Lf

(∫
Z
×
p

〈x〉t dΦC
σ (x)

)]
t=0

=
∑

σ∈Gal(Hs/K)

η(σ)
1− Cε(C)

· d
dt

[
Lf

(∫
Z
×
p

〈x〉t dΦC
σ (x)

)]
t=0

where in the second equality we have used the fact, proved above, that Lf (
∫
Z×p 1 dΦC

σ ) = 0. Differen-
tiating under the integral and using logp(γ0)Lf,1(η) = limt→0(1/t)Lf (η, 〈 〉t) proves the claim.

Fix s � 0 and σ ∈ Gal(Hs/K). Choose a proper integral Os-ideal, a, such that the class of a in
Pic(Os) corresponds to σ under the Artin symbol. For any positive integer n prime to p and any
positive divisor d | n, define

εa(n, d) =



(
D1

d

)(
D2

−Nn/d
)
χD1,D2(aOK) if gcd(d, n/d,D) = 1

0 otherwise

where D = D1D2 is the factorization into fundamental discriminants with (d,D) = |D2| and χD1,D2

is the associated genus character. That is, the quadratic character of Pic(OK) associated to the
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extension K(
√
D1) = K(

√
D2). Set

σ′a(n) =
∑
d|n
d>0

εa(n, d) logp(n/d
2).

Proposition 2.0.5 (Perrin-Riou). For any positive integer m divisible by p, the mth Fourier coef-
ficient of Gσ is given by

am(Gσ) = −
∑
n>0

(n,p)=1

rads(m|D| − nN)σ′a(n)

where ds = (
√
DOK) ∩ Os.

Proof. This is [PR87a, Proposition 3.18], where Gσ is denoted L′
p,σ,〈 〉. The missing minus sign in

the statement of Perrin-Riou’s Proposition 3.18 is a typographical error, as the proof makes clear.
In Perrin-Riou’s statement rads appears as ra′ where a′ = Da, and (p. 484) ‘D est le Os-idéal

engendré par
√
D’. That is, D =

√
DOs �= ds. Later, on p. 486, Perrin-Riou writes ‘Lorsque s = 0, a′

et a sont équivalent’, although under the stated definition of D they are equivalent even when s �= 0,
suggesting that an unannounced change of notation has occurred. The formulas of [PR87a, § 3.2.3]
are correct with D defined as above, while those of [PR87a, § 3.3] are correct with D replaced by
our ds. In particular, in the proof of [PR87a, Lemme 3.17] one must interpret D as our ds in order
to pass from (3.7) to (3.8) (‘On remplace ensuite n par δ2n . . . ’). The key point is

rD−1
1 a

(mδ1 − nN) = rD−1
1 D2a

(mδ − nδ2N)

in which δ = |D| = δ1δ2 and Di is the Os-ideal of norm δi (the equality is seen by using the map on
Os-ideals b �→ D2b to identify the sets of ideals being counted). Using D−1

1 D2 = ds in Pic(Os), one
obtains the correct formula. Also, the first displayed equation in the proof of [PR87a, Lemme 3.17]
appears to be in error; the two p-adic modular forms in the second equality differ by shifting Fourier
coefficients by δ1 (see [PR87a, (2.4) and Lemme 3.1]). This misstatement has no effect on the proof.

Perrin-Riou’s a is our a−1, but both rads and σ′a are unchanged by a �→ a−1. For σ′a this is
obvious; for rads use the fact that inversion agrees with complex conjugation in Pic(Os), the fact
that complex conjugation preserves norms, and the fact that ds has order two in Pic(Os).
Lemma 2.0.6. Suppose that n is prime to p and that there exists a proper integral Os-ideal b in
the Pic(Os)-class of a with N(b) ≡ −nN (mod Dp). Then

σ′a(n) =
∑
�|n

logp(�) ·




0 if ε(�) = 1
ord�(�n)δ(n)Ranc(n/�) if ε(�) = −1
ord�(n)δ(n)Ranc(n/�) if ε(�) = 0

where in the second and third cases n is any integral Os-ideal of norm N and c is any proper integral
Os-ideal with N(c) ≡ −� (mod Dp).

Proof. By [GZ86, Proposition IV.4.6(b)], the stated equality holds with Ranc(n/�) replaced by
RancOK

(n/�); that is, if we count integral OK -ideals of norm n/� in the OK-genus of ancOK . So,
we only need show that Ranc(n/�) = RancOK

(n/�) under the stated hypotheses. The map I �→ IOK
takes the collection Ranc(n/�) of proper Os-ideals of norm n/� in the Os-genus of anc injectively
to the set RancOK

(n/�) of proper OK -ideals of norm n/� in the OK -genus of ancOK . It suffices
to show that this map has an inverse. More precisely, we show that the map J �→ J ∩ Os from
integral OK-ideals of norm prime to p to integral Os-ideals of norm prime to p restricts to a map
RancOK

(n/�) −→ Ranc(n/�).
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Suppose that I = J ∩ Os is an integral Os-ideal of norm n/� such that J ∈ RancOK
(n/�). Set

p∗ = (−1)(p−1)/2p. Genus theory (for example, [Cox89, § 6.A] discusses the genus theory of OK at
length, and that of Os is similar) gives a canonical isomorphism

Pic(Os)/Pic(Os)2 ∼= Pic(OK)/Pic(OK)2 ×Gal(K(
√
p∗)/K)

under which the Os-genus of I is sent to the OK -genus of J = IOK in the first factor, and to its
Artin symbol (

I

K(
√
p∗)/K

)
=
(

N(I)
Q(
√
p∗)/Q

)
in the second factor. The same holds with I replaced by bnc, and since the OK -genera of J and
bncOK agree by assumption, I ∈ Ranc(n/�) = Rbnc(n/�) if and only if(

N(I)
Q(
√
p∗)/Q

)
=
(

N(bnc)
Q(
√
p∗)/Q

)

which occurs if and only if (
N(I)
p

)
=
(

N(bnc)
p

)
.

Since N(I) = n/� and N(bnc) ≡ nN2� (mod p) we are done.

Corollary 2.0.7. Let κ ∈ Gal(Hs/K) be the Artin symbol of ds. For any positive integer m
divisible by p, the mth Fourier coefficient of Gσκ is given by the expression

−
∑
n>0

(n,p)=1

∑
�|n

logp(�) · ra(m|D| − nN) ·




0 if ε(�) = 1
ord�(�n)δ(n)Ranc(n/�) if ε(�) = −1
ord�(n)δ(n)Ranc(n/�) if ε(�) = 0

where in the second and third cases n is any integral Os-ideal of norm N and c is any proper integral
Os-ideal with N(c) ≡ −� (mod Dp).

Proof. Combine Proposition 2.0.5 and Lemma 2.0.6, and use σ′a = σ′ads (which follows from the
definition of σ′ and the fact that dsOK is principal) and κ2 = 1.

3. The p-adic height pairing

In this section we recall some known facts about p-adic Néron symbols and p-adic height pairings
on abelian varieties and, when the abelian variety is the Jacobian of a curve, the connection with
p-adic Néron symbols and intersection theory on the curve.

3.1 Intersection theory
LetR be a complete discrete valuation ring, S = Spec(R). LetX −→ S be an integral, proper scheme
over S with generic fiber a smooth curve X, and suppose C and D are effective Cartier divisors with
no common components. Define the intersection multiplicity iy(C,D) at a closed point y of X to
be the length of the O(X)y-module O(X)y/(f, g) where f and g are defining equations of C and D
in a neighborhood of y. Define the total intersection multiplicity i(C,D) =

∑
y iy(C,D)[k(y) : k(s)]

where s is the closed point of S and the sum is over closed points of X.
We now assume that X is regular (in particular, we do not need to distinguish between Weil

divisors and Cartier divisors), and record some fundamental properties of the total intersection
multiplicity. We refer the reader to [Gro85] and [La88, ch. III] for details. The total inter-
section multiplicity is bi-additive, and so extends to divisors with rational coefficients. We define,
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for C and D degree zero divisors on X with disjoint support,

[C,D] = i(C + C ′,D) = i(C,D +D′)

where C and D are the horizontal divisors on X whose generic fibers are C and D, respectively, and
C ′ (respectively D′) is a fibral divisor with rational coefficients chosen so that the symbol i(C+C ′, )
(respectively i( ,D +D′)) vanishes on all fibral divisors. Let L be the fraction field of R and let v
denote the normalized valuation on L, so that v(�) = 1 for a uniformizer π. If C = (f) is a principal
divisor then [C,D] = v(f(D)) where D =

∑
ni(Di) is a linear combination of prime divisors Di

with residue field Li and
f(D) =

∏
i

NLi/L(f(Di)ni). (6)

3.2 p-adic Néron symbols, I
We now define local p-adic Néron symbols on abelian varieties. The contents of this subsection are
taken from [PR87a, § 4] essentially verbatim.

Let � be a rational prime and L a finite extension of Q�. Let A be an abelian variety over L
and assume that either � �= p or that A has good reduction. Fix a nontrivial continuous additive
character ρ : L× −→ Zp. If � = p we assume that ρ is ramified.

Proposition 3.2.1. There is a Qp-valued Néron symbol 〈C, d〉 = 〈C, d〉A,ρ defined whenever C is an
algebraically trivial divisor on A, d is a zero cycle of degree zero on A rational point-by-point over
L, and the supports of C and d have no common points. This symbol satisfies:

(a) 〈 , 〉 is bilinear (whenever this makes sense) and invariant under translation by elements of
A(L);

(b) if C = (h) is principal then 〈C, d〉 = ρ(h(d)), where h(d) =
∏
i f(di) is defined as in (6);

(c) for any endomorphism φ : A −→ A, 〈φ∗C, d〉 = 〈C, φ∗d〉;
(d) for any x0 ∈ A(L) and any C as above, the function x �→ 〈C, (x) − (x0)〉 is continuous for the

�-adic topology on A(L);
(e) if � = p, L′ is a finite extension of L contained in the Zp-extension of L cut out by ρ, and C is

a degree zero divisor on A/L′ , then

〈NL′/LC, d〉 ⊂ c−1ρ(NL′/L(L′))

whenever this is defined, for some constant c ∈ Zp independent of L′, C, and d.

Furthermore, if � �= p, or if � = p and A has ordinary reduction, then such a symbol is unique.

Proof. In the case � �= p, or � = p but A has ordinary reduction, see the references after [PR87a,
Théorème 4.2] for existence. In the case � = p with nonordinary reduction, the existence is [PR87a,
Théorème 4.7]. The translation invariance is not stated explicitly by Perrin-Riou, but follows from
the construction as in [Blo80, Lemma 2.14]. We sketch the proof of the uniqueness. If 〈 , 〉′ is another
such symbol then we may define

G(C, x) = 〈C, (x)− (0)〉 − 〈C, (x) − (0)〉′.
This defines a function A∨(L)×A(L) −→ Qp which is linear in the first variable and continuous in
the second. Using translation invariance and the theorem of the square [Mil86, Theorem 6.7], one
can show that G is also linear in the second variable. Hence for fixed C, G(C, ) defines a continuous
linear map A(L) −→ Qp. If � �= p this map must be trivial for topological reasons. If � = p and A
has ordinary reduction, then A∨ also has ordinary reduction, and [Maz72, Proposition 4.39] implies
that the universal norms from the (ramified) Zp-extension cut out by ρ have finite index in A∨(L).
From this and the boundedness property (e), we see that G is identically zero.
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When � �= p the Néron symbol is compatible with base extension in the following sense. If L′/L
is a finite extension, A′ = A×L L′, and ρ′ = ρ ◦NL′/L, then

〈C, d〉A′,ρ′ = 〈NL′/LC, d〉A,ρ (7)

for C an algebraically trivial divisor on A′ and d a point-by-point rational zero cycle of degree zero
on A. This allows us to remove the hypothesis in Proposition 3.2.1 that d is rational point-by-point,
by choosing an extension L′/L over which d becomes pointwise rational and defining

〈C, d〉A,ρ = [L′ : L]−1〈C, d〉A′,ρ′ .

This is independent of the choice of L′ by (7). Proposition 3.2.1(b) continues to hold for this slight
extension of the Néron symbol, provided that one extends the definition of h(d) as in (6).

When � = p the Néron symbol on A may not uniquely determined by the properties above,
but one can choose a compatible family (in the sense that (7) holds) of Néron symbols 〈 , 〉A′,ρ′ as
L′ varies over the finite extensions of L. Again, this allows one to remove the hypothesis that d is
defined point-by-point. Perrin-Riou only states the existence of compatible families for subfields of
the extension of L cut out by ρ, but the same argument holds for all finite extensions.

Remark 3.2.2. Although the choice of a Néron symbol on A in residue characteristic p is (sometimes)
not unique, our results do not depend on the choice. Hence we fix, once and for all, a choice of Néron
symbol on J0(N)Hs,v for every s and every prime v of Hs above p, with the understanding that
these choices are compatible as s varies in the sense of (7).

Now suppose that A is the Jacobian of a smooth, proper, geometrically connected curve X
over L, and that X has an L-rational point ∞. Let α : X −→ A be the canonical embedding
x �→ (x) − (∞). Suppose we are given degree zero divisors C and D on X with disjoint support.
Pullback by α restricts to an isomorphism α∗ : Pic0(A) −→ Pic0(X), and so there is an algebraically
trivial divisor C whose associated line bundle pulls back to the line bundle associated to C. Thus
C = α∗C + (f) for some rational function f on X. The pair (C, f) may be chosen so that (f) is
disjoint from D and then it follows that C has no points in common with α∗D. We now define

〈C,D〉X,ρ = 〈C, α∗D〉A,ρ + ρ(f(D)), (8)

where f(D) is defined by (6). This is independent of the choice of C (by Proposition 3.2.1(b)) and
the choice of f (which is determined up to L× once C is chosen).

3.3 p-adic Néron symbols, II
Identifying Γ with the Galois group of the unique Zp-extension of Q via the cyclotomic character,
the reciprocity map of class field theory and the p-adic logarithm define an idèle class character

ρQ : A×
Q/Q

× −→ Γ
logp−−→ Zp.

Fix a finite extension L/Q, let ρL be the idèle class character of L defined by ρL = ρQ ◦NL/Q. For
each finite place v of L, let πv be a uniformizer of Lv and let N(v) denote the absolute residue degree
of v. We may decompose ρL =

∑
v ρLv as a sum of local characters, and then ρLv(πv) = logp(N(v))

for any prime v not above p. We note that this does not agree with [PR87a, p. 501], which seems
to be in error (note also the remarks of [Nek95, § II.6.4]), although perhaps this is attributable to a
different normalization of class field theory. We remind the reader that we always use the arithmetic
conventions.

Let A be an abelian variety over L with good reduction above p. Summing the local Néron
symbols 〈 , 〉v = 〈 , 〉Av,ρLv

on the completions Av = A×L Lv defines a bilinear pairing on Mordell–
Weil groups

〈 , 〉A,L : A∨(L)×A(L) −→ Qp. (9)
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Indeed, given a ∈ A∨(L) and b ∈ A(L), let C be an algebraically trivial divisor on A which represents
a and let d =

∑
ni(di) be a zero cycle of degree zero on A with

∑
nidi = b. These can be chosen so

that C and d have no points in common and we then define

〈a, b〉A,L =
∑
v

〈C, d〉v

where the sum is over the finite places of L. A different choice of C changes the pairing by∑
v

〈(h), d〉v =
∑
v

ρL,v(h(d)) = ρL(h(d)) = 0

for some rational function h on A. Now fix C and consider the expression
∑

v〈C, d〉v . We have just
seen that this depends only on the linear equivalence class of C (which is translation invariant), and
thus the translation invariance of each 〈 , 〉v shows that

∑
v〈C, d〉v is translation invariant in the

second variable (with C held fixed). From this one may deduce∑
v

〈C, d〉v =
∑
v

〈C, (b)− (0)〉v ,

and so the left-hand side depends only on b and not on the choice of d.
Now suppose X is a proper, smooth, geometrically connected curve over L with an L-rational

point, and that A is the Jacobian of X. Let α : X −→ A be the associated canonical embedding.
For each place v of L we have from § 3.2 a Qp-valued symbol 〈 , 〉Xv ,ρLv

on disjoint divisors on
Xv = X ×L Lv. By summing over all places, we obtain a symbol

〈 , 〉X,L =
∑
v

〈 , 〉Xv ,ρLv
(10)

defined on degree zero divisors of X with disjoint support. This pairing descends to a (symmetric)
pairing on linear equivalence classes (this follows from Proposition 3.3.2(a,b) below and the fact
that ρ =

∑
v ρLv vanishes on L×). In particular, 〈 , 〉X,L extends bilinearly to all pairs of degree

zero divisors, without the assumption of disjoint support.

Remark 3.3.1. As 〈 , 〉X,L is defined on linear equivalence classes, it descends to a bilinear pairing

〈 , 〉X,L : A(L)×A(L) −→ Qp.

which agrees with the pairing −〈 , 〉A,L when one identifies A ∼= A∨ via the canonical principal
polarization [PR87a, § 4.3].

Proposition 3.3.2. Let v be a prime of L above a rational prime �. The local Néron symbol
〈C,D〉v = 〈C,D〉Xv ,ρLv

, defined on degree zero divisors on Xv with disjoint support, satisfies:

(a) 〈 , 〉v is symmetric and bilinear;

(b) if C = (f) is a principal divisor, then 〈C,D〉v = ρLv(f(D));
(c) if T is a correspondence from X to itself and T ι is the dual correspondence, then

〈TC,D〉v = 〈C, T ιD〉v;
(d) for d0 ∈ Xv(Lv)− supp(C), the function on Xv(Lv)− supp(C)

d �→ 〈C, (d) − (d0)〉v
is continuous for the v-adic topology;

(e) if � = p, L′ is a finite extension of Lv contained in the cyclotomic Zp-extension of Lv, and C
and D are degree zero divisors on Xv ×Lv L

′ and Xv, respectively, then

〈NL′/Lv
C,D〉v ⊂ c−1ρQp(NL′/Qp

(L′))

whenever this is defined, for some constant c ∈ Zp independent of C, D, and L′.

Furthermore 〈 , 〉v takes values in a compact subset of Qp.
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Proof. Properties (a)–(e) are direct consequences of the analogous properties of the Néron symbol
on A in Proposition 3.2.1, except for the symmetry (which is stated without proof in [PR87a], but
can be deduced from the construction of the pairing of Proposition 3.2.1). For the final claim one
uses the finite generation of the p-primary part A(Lv) as a Zp-module and the specified behavior
on principal divisors.

Proposition 3.3.3. For any prime v of L with residue characteristic �= p and any degree zero
divisors C and D on Xv with disjoint support,

〈C,D〉v = logp(N(v)) [C,D]

where [C,D] is the pairing of § 3.1 for any regular, integral, proper scheme X over the integer ring
of Lv whose generic fiber is Xv.

Proof. Using the discussion of § 3.1, one can show that the right-hand side satisfies properties
(a)–(d) of Proposition 3.3.2, and so it suffices to show that these determine 〈 , 〉v uniquely. This is
similar to the uniqueness argument of Proposition 3.2.1; the difference of two such symbols would
define a continuous bilinear function A(Lv) × A(Lv) −→ Qp, which must be trivial for topological
reasons.

4. Intersections on modular curves

Fix s > 0 and σ ∈ Gal(Hs/K). Let � be a rational prime, v a place of Hs above �, F the completion
of the maximal unramified extension of Hs,v, W the integer ring of F , and m the maximal ideal
of W . Set Wn = W/mn+1. We denote by X = X0(N)/Z the canonical integral model of [KM85],
and set X = X ×ZW .

Definition 4.0.4. Given elliptic curves with Γ0(N)-structure x and y over Spec(W ), we define
HomWn(y, x)deg(m) to be the set of degree m isogenies (of elliptic curves with Γ0(N)-structure, in
the sense of § 1.1)

y ×W Wn −→ x×W Wn.

Proposition 4.0.5. Let x, y ∈ X(W ) represent elliptic curves with Γ0(N)-structure over W , and
assume that these sections intersect properly and reduce to regular, noncuspidal points in the special
fiber. Then

i(x, y) =
1
2

∑
n�0

|HomWn(y, x)deg(1)|.

Proof. This is [GZ86, Proposition III.6.1], or [Con04, Theorem 4.1].

Now assume � �= p and fix an integer m = m0p
r with r > 0 and (m0, Np) = 1. Choose an

embedding H∞ ↪→ F extending Hs ↪→ F . Recall the notation

hs,r = NormHs+r/Hs
(hs+r), ds,r = NormHs+r/Hs

(ds+r)

of the introduction. For any t � 0, let ht be the Zariski closure (with the reduced subscheme
structure) of ht ∈ X(F ) in X and let Tm0(h

σ
s,r) be the horizontal Weil divisor on X with generic

fiber Tm0(h
σ
s,r). By the valuative criterion of properness, the closed subscheme hs+r has the form

Spec(W ) −→ X . Moreover, the section hs+r arises from a Heegner diagram defined over W . Indeed,
by [Cor02, Proposition 1.2] or [SeTa69, Theorems 8,9] the point hs+r ∈ X(Hs+r) arises from a
Heegner diagram over Hs+r with good reduction above �, and so the section hs+r represents the
Néron model over W of this Heegner diagram. Taking the quotient of hs+r by its pOs+r−1-torsion,
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we obtain a Heegner diagram represented by the section hs+r−1 ∈ X(W ), and so on through all
lower conductors. In particular, we now have a p-isogeny of Heegner diagrams defined over W .

Es
hs ��

φ

��

E′
s

φ′
��

Es−1

hs−1 �� E′
s−1

(11)

Although the expression for the local Néron symbol at � �= p in terms of intersection theory
requires working on a regular model (which X is not when � | N) and modifying the divisors in
questions by a fibral divisor, in our situation these details can be ignored.

Proposition 4.0.6. Suppose that � �= p and 0 � t � s. Then

〈ct, Tm0(d
σ
s,r)〉v = logp(N(v)) · i(ht, Tm0(h

σ
s,r)),

where the pairing on the left is the local Néron symbol on X/Hs,v
of Proposition 3.3.2 and i is the

intersection multiplicity on X of § 3.1.

The proof is as in [GZ86, Proposition III.3.3], together with Proposition 3.3.3.

Remark 4.0.7. In order to make sense of i(ht, Tm0(h
σ
s,r)) when � | N we need to justify why the

prime Weil divisors occurring in Tm0(h
σ
s,r) are locally principal, so that Tm0(h

σ
s,r) may be viewed

as a Cartier divisor. The geometric points of Tm0(h
σ
s,r) all occur in the support of Tm(hσs ). If � | N

then these points represent Heegner diagrams which are prime-to-� isogenous to hσs , and so are all
defined over F . Arguing as in [Con04, Corollary 2.7] (Conrad’s p is our �), the Zariski closures of
these points on X are sections to the structure map X −→ Spec(W ) and lie in the smooth locus.
In particular, the associated ideal sheaves are locally free of rank one.

Proposition 4.0.8. Suppose � �= p and ε(�) = 1. Then for all 0 � t � s, 〈ct, Tm0(d
σ
s,r)〉v = 0, where

the pairing 〈 , 〉v is as in Proposition 4.0.6.

Proof. By Proposition 4.0.6 we must show that i(ht, Tm0(h
σ
s,r)) = 0. The claim is unchanged if

we replace W by the integer ring of a finite extension of F . Doing so, we assume that the divisor
Tm0(h

σ
s,r) is defined point-by-point over F and that the horizontal divisor Tm0(d

σ
s,r) on X is a sum of

sections to the structure map, each of which represents a Heegner diagram over W whose conductor
divides mps and has exact valuation s + r > t at p. Let x be one such Heegner diagram, and let
O and O′ be the endomorphism rings of x and its closed fiber, respectively. These are orders in
K, as x has ordinary reduction, and O ⊂ O′. By the Serre–Tate theorem, O is the intersection
(in K ⊗Q�) of O′ and O ⊗ Z�, therefore

ordp(cond(O′)) = ordp(cond(O)) = s+ r > t.

The same argument shows that the valuation at p of the conductor of the CM order of the special
fiber of ht is t, and so the Heegner diagram ht is distinct in the special fiber from all Heegner
diagrams appearing in Tm0(h

σ
s,r). By Proposition 4.0.5, i(ht, Tm0(h

σ
s,r)) = 0.

5. Nonsplit primes away from p

In this section we examine the local Néron pairings between Heegner points at places lying above
rational primes �= p which are nonsplit in K. The methods are based on those of Chapter III of
[GZ86], and this portion of Gross and Zagier’s work has been reworked and rewritten by Conrad
[Con04] with the addition of considerably more detail.
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Keep the notation of § 4, and assume � �= p is nonsplit in K. In particular � � N . Fix a prime v
of Hs (with s > 0, as always) above � and an integral Os-ideal a of norm prime to D�p whose class
in Pic(Os) represents σ under the Artin map. We denote by l the unique prime of Os above � (we
sometimes let l denote the OK-ideal lOK ; a mild abuse of notation). If ε(�) = −1 then l = �Os is
trivial in Pic(Os), l splits completely in Hs, and v has absolute residue degree 2. If ε(�) = 0 then
l2 = �Os and l is not a principal ideal of Os (if D is not prime then lOK is not principal, if D = −�
is prime then l = (

√
D ∩ Os) is not principal since s > 0). Thus, when ε(�) = 0, l has order 2 in

Pic(Os) and again v has residue degree 2.

5.1 Intersection via Hom sets
Proposition 5.1.1. For any integer m = m0p

r with (m0, Np) = 1,

〈cs, Tm0(d
σ
s,r+2)〉v = logp(�)

∑
n�0

(|HomWn(has, hs)deg(mp2)| − |HomWn(has−1, hs)deg(mp)|)

〈cs−1, Tm0(d
σ
s,r+1)〉v = logp(�)

∑
n�0

(|HomWn(has, hs−1)deg(mp)| − |HomWn(has−1, hs−1)deg(m)|)

where 〈 , 〉v is the local Néron symbol on X/Hs,v
of Proposition 3.3.2, and the Hom sets are those

of Definition 4.0.4.

Proof. We prove the first equality. The proof of the second involves only a change of subscripts.
First consider the easy case where (�,m0) = 1. Then the divisor Tm0(h

σ
s,r+2) on X/F (recall

that F is the completion of the maximal unramified extension of Hs,v, W is its integer ring, and
X = X0(N)/W ) is a sum of sections to the structure map. Hence, the same is true of the horizontal
divisor Tm0(h

σ
s,r+2) on X, and each section represents a Heegner diagram over Spec(W ). Namely,

if we fix an extension of σ to Gal(Hs+r+2/K) and an ideal a of Os+r+2 representing this extension,
then

Tm0(h
σ
s,r+2) =

∑
b

∑
C

habs+r+2/C (12)

where b runs over classes in Pic(Os+r+2) which are trivial in Pic(Os), C runs over the order m0-
subgroup schemes of the Heegner diagram habs+r+2 over Spec(W ) and the subscript /C means the
quotient by C (which makes sense since (m0, N) = 1). Since � does not divide m0, each C is étale
(in fact, constant), determined uniquely by its reduction to Wn for any n, and the decomposition
(12) holds over Wn. By Proposition 4.0.5

i(hs, Tm0(h
σ
s,r+2)) =

∑
b

∑
C

i(hs, h
ab
s+r+2/C)

=
1
2

∑
n

∑
b

∑
C

|HomWn(habs+r+2/C , hs)deg(1)|

=
1
2

∑
n

∑
b

|HomWn(habs+r+2, hs)deg(m0)|,

and by Proposition 4.0.6 the first equality of Proposition 5.1.1 follows once we show

|HomWn(has, hs)deg(mp2)| = |HomWn(has−1, hs)deg(mp)|+
∑
b

|HomWn(habs+r+2, hs)deg(m0)|. (13)

The pr+2-torsion on has is constant as a group scheme, and so the kernel of any degree mp2 isogeny
f : has −→ hs over Wn determines an order pr+2-subgroup of has(W ). By the Euler system relations
of § 1.2, every such subgroup is either the kernel of a map which factors through φa : has −→ has−1,
or is the kernel of the dual isogeny to φab ◦ · · · ◦ φab : habs+r+2 −→ has for some choice of b, and the
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two cases are mutually exclusive. Thus f has one of the two forms

has
φa−→ has−1

ψ−→ hs, has
(φab◦···◦φab)∨−−−−−−−−−→ habs+r+2

ψ−→ hs

where ψ has degree either mp or m0 (respectively). The equality (13) follows.
Now consider the case where � divides m0. This is considerably more involved, but nearly all of

what we need is covered by the generality of [Con04, § 6] (which is based on [GZ86, III § 4–6]), to
which we refer the reader for the proof of (14) below. Write m0 = m1�

t with (�,m1) = 1. As above,
the divisor Tm1(h

σ
s,r+2) on X is a sum of sections, each of which represents a Heegner diagram over

Spec(W ), and we denote by Z the set of such sections

Z = {habs+r+2/C | b ∈ Ker(Pic(Os+r+2) −→ Pic(Os))}
where C runs over the order m1 subgroup schemes of habs+r+2. For each z ∈ Z, one has the expected
(but much more subtle) equality

i(hs, Tm0(h
a
s+r+2)) =

∑
z∈Z

i(hs, T�t(z))

=
1
2

∑
z∈Z

∑
n�0

|HomWn(z, hs)deg(�t)|

=
1
2

∑
n

∑
b

|HomWn(habs+r+2, hs)deg(m0)|. (14)

With this in hand, the remainder of the proof is exactly as in the case (�,m0) = 1.

5.2 Inclusion-exclusion
Our goal is, for any positive integer m with (m,N) = 1, to express the sum over n of

|HomWn(has, hs)deg(mp2)| − |HomWn(has−1, hs)deg(mp)|
− |HomWn(has, hs−1)deg(mp)|+ |HomWn(has−1, hs−1)deg(m)| (15)

as a sum over elements in the quaternion algebra B = EndW0(hs)⊗Z Q.

Lemma 5.2.1. Base change to the fiber induces a degree preserving injection

HomWn(has, hs) −→ HomW0(h
a
s, hs),

and similarly for the other Hom sets occurring in (15).

Proof. This is [Con04, Lemma 2.1(2)] or [Gor02, Proposition VI.2.4(2)].

The isogeny φ induces injections

HomWn(has−1, hs)
◦φa−−→ HomWn(has, hs) −→ HomW0(h

a
s, hs)

HomWn(has, hs−1)
φ∨◦−−→ HomWn(has, hs) −→ HomW0(h

a
s, hs)

whose images we denote by Ln and L∨
n , respectively. We also define Mn to be the image of the

injective composition

HomWn(has−1, hs−1) −→ HomWn(has, hs) −→ HomW0(h
a
s, hs)

where the first arrow is given by f �→ φ∨ ◦ f ◦ φa. Clearly Mn ⊂ Ln ∩ L∨
n . The scheme-theoretic

kernels

ker(φ : Es −→ Es−1), ker(φa : Eas −→ Eas−1)
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are constant group schemes of order p over W . We define

C = (ker φ)(W0), Ca = (ker φa)(W0).

Definition 5.2.2. We say that f ∈ HomWn(has, hs) is stable if the restriction of f to the fiber
f0 : Eas(W0) −→ Es(W0) takes Ca into C. We say that f is unstable otherwise, and make similar
definitions for maps from hs to itself. If Z ⊂ HomWn(has, hs) is any subset, we write Zstable and
Zunstable for the subsets of stable and unstable elements of Z.

Lemma 5.2.3. Suppose that m is any positive integer with (m,N) = 1. Base change to the fiber
identifies the stable elements of degree mp2 in HomWn(has, hs) with the degree mp2 elements of
Ln ∪ L∨

n .

Proof. Fix f ∈ HomWn(has, hs) of degree divisible by p and prime to N . Letting f0 denote the restric-
tion of f to geometric points as above, f is stable if and only if either f0(Ca) = 0 or f0(Ca) = C.
The first condition is equivalent to f0 = g0 ◦ φa for some g0 ∈ HomW0(E

a
s−1, Es). Since φa has

degree p it induces an isomorphism on �-divisible groups over Wn, and so the map on �-divisible
groups induced by g0 lifts to Wn. By the Serre–Tate theorem g0 itself lifts to a morphism over
Wn, and so f ∈ Ln. Now suppose f0(Ca) = C. Since the degree of f is divisible by p we must
have f0(Eas(W0)[p]) = C, and so f∨0 (C) = (f∨0 ◦ f0)(Eas(W0)[p]) = 0. Hence, f∨0 = g0 ◦ φ for some
g0 ∈ HomW0(Es−1, E

a
s), and so f0 ∈ L∨

n as above.
Conversely, if f0 ∈ Ln∪L∨

n then either f0(Ca) = 0 or f∨0 (C) = 0. In the second case we compute
the Weil ep-pairing

ep(f0(Eas(W0)[p]), C) = ep(Eas(W0)[p], f∨0 (C)) = 0.

This implies f0(Eas(W0)[p]) ⊂ C, and so, in either case, f0(Ca) ⊂ C and f is stable.

Lemma 5.2.4. For any positive integer m with (m,N) = 1, the composition

HomWn(has, hs) −→ HomW0(h
a
s, hs)

p−→ HomW0(h
a
s, hs)

taking f �→ pf0 identifies the unstable elements of HomWn(has, hs)deg(m) with the complement of
(Mn)deg(mp2) in (Ln ∩ L∨

n)deg(mp2) (the degree mp2 elements of Mn and Ln ∩ L∨
n , respectively).

Proof. First suppose that we are given some f ∈ HomWn(has, hs); the claim is that pf0 ∈Mn if and
only if f is stable. By definition pf0 ∈ Mn if and only if there is some f ′ ∈ HomWn(Eas−1, Es−1)
such that pf = φ∨ ◦f ′ ◦φa, or equivalently, such that φ◦f = f ′ ◦φa. Furthermore, this is equivalent
to finding f ′0 ∈ HomW0(E

a
s−1, Es−1) such that φ ◦ f0 = f ′0 ◦ φa holds in the fiber (since φ and φa

induce isomorphisms on �-divisible groups over Wn, the map on �-divisible groups induced by f ′0
lifts to Wn, and so the Serre–Tate theorem implies that f ′0 itself lifts). Such an f ′0 exists if and only
if (φ ◦ f0)(Ca) = 0, which is equivalent to f being stable.

Now suppose we are given a homomorphism g0 ∈ Ln∩L∨
n of degree divisible by p2, with g0 �∈Mn.

There is some y ∈ HomWn(has, hs−1) such that g0 is the restriction of g = φ∨ ◦ y to the fiber. Let
y0 denote the restriction of y to the fiber. If y0(Ca) = 0 we could write y0 = y′0 ◦ φa for some
y′0 ∈ HomW0(E

a
s−1, Es−1). As above, the map on �-divisible groups induced by such a y′0 would lift

to Wn, and so by the Serre–Tate theorem y′0 itself would lift to some y′ ∈ HomWn(Eas−1, Es−1) with
g0 equal to the restriction of φ∨ ◦y′ ◦φa to the fiber. This contradicts g0 �∈Mn, so y0(Ca) �= 0. Since
p divides the degree of y0 we must have y0(Eas(W0)[p]) = y0(Ca). Now g0 ∈ Ln implies

0 = g0(Ca) = (φ∨0 ◦ y0)(Ca) = g0(Eas(W0)[p]),

so g0 = pf0 for some f0 ∈ HomW0(E
a
s, Es). As above, the Serre–Tate theorem guarantees that f0

lifts to a morphism f over Wn.
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Corollary 5.2.5. The expression (15) is equal to

|HomWn(has, hs)
unstable
deg(mp2)| − |HomWn(has, hs)

unstable
deg(m) |.

Proof. By the definitions of Mn, Ln and L∨
n ,

|HomWn(has−1, hs−1)deg(m)| = |(Mn)deg(mp2)|
|HomWn(has−1, hs)deg(mp)| = |(Ln)deg(mp2)|
|HomWn(has, hs−1)deg(mp)| = |(L∨

n)deg(mp2)|.
Consequently, the expression (15) is equal to

|HomWn(has, hs)
unstable
deg(mp2)|+ |HomWn(has, hs)

stable
deg(mp2)|− |(Ln)deg(mp2)|− |(L∨

n)deg(mp2)|+ |(Mn)deg(mp2)|.
By Lemma 5.2.3 this is

|HomWn(has, hs)
unstable
deg(mp2)|+ |(Ln ∪ L∨

n)deg(mp2)| − |(Ln)deg(mp2)| − |(L∨
n)deg(mp2)|+ |(Mn)deg(mp2)|

which we write as

|HomWn(has, hs)
unstable
deg(mp2)| − |(Ln ∩ L∨

n)deg(mp2)|+ |(Mn)deg(mp2)|
= |HomWn(has, hs)

unstable
deg(mp2)| − |HomWn(has, hs)

unstable
deg(m) |

using Lemma 5.2.4.

Set R = HomW0(hs, hs) and B = R ⊗Z Q. Thus, B is a rational quaternion algebra ramified
exactly at � and ∞, and R ⊂ B is a level-N Eichler order [Con04, Lemma 7.1]. The reduction map

HomW (hs, hs) −→ HomW0(hs, hs)

induces an embedding ι : K −→ B which, by the Serre–Tate theorem, is optimal for the pair (Os, R)
in the sense that ι(K) ∩R = ι(Os). We henceforth regard K as a subfield of B, suppressing ι from
the notation. There is a canonical decomposition

B = B+ ⊕B− = K ⊕Kj
where j ∈ B is a trace zero element with the property jxj−1 = x̄ for all x ∈ K. This characterizes
j up to multiplication by Q×. The reduced norm is additive with respect to this decomposition, i.e.
N(b+ + b−) = N(b+) + N(b−). We wish to determine which b ∈ R = HomW0(hs, hs) are unstable.

Lemma 5.2.6. An endomorphism b ∈ R is unstable if and only if

ordpN(b+) = ordpN(b−) = −2s,

where b± is the projection of b to the summand B±.

Proof. We are free to assume that j is chosen in R. Let T denote the p-adic Tate module of
Es(W0)[p∞] and set V = T ⊗ Qp. The split quaternion algebra Bp = B ⊗ Qp acts on V , and the
stabilizer of T ⊂ V is exactly Rp = R ⊗ Zp (since the order R is locally maximal away from N).
Under the identification of V/T with Es(W0)[p∞], the subgroup Os−1,pT/T is identified with C, and
so the unstable elements of R are exactly those which do not stabilize the lattice T ′ = Os−1,pT ⊃ T .
As an Os,p-module, T is free of rank one (proof: T is isomorphic as an Os,p-module to some fractional
Os,p-ideal; by the optimality of K −→ B with respect to (Os, R), this ideal is proper, and all proper
ideals of Os,p are principal). Fix a generator t ∈ T , and let X ∈ Os,p be such that jt = Xt. This
implies, in particular, that N(X) = N(j). As a Zp-module, T is generated by t and ps

√
Dt, and so

α+ βj ∈ B (with α, β ∈ K) stabilizes T if and only if the elements

(α+ βj)t = (α+ βX)t, (α+ βj)ps
√
Dt = (α− βX)ps

√
Dt
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are in T . From this we deduce that

Rp = {α+ βj ∈ Bp | α, βX ∈ (ps
√
D)−1Os,p, α+ βX ∈ Os,p}.

Applying similar reasoning to the lattice T ′, we find that the order of Bp leaving both T and T ′

stable is
Rstable
p = {α+ βj ∈ Bp | α, βX ∈ (ps−1

√
D)−1Os−1,p, α+ βX ∈ Os,p}.

Given b = α + βj ∈ Rp, set α′ = ps
√
Dα and β′ = ps

√
Dβ. It is easily seen that the set of

elements of Os,p of norm divisible by p is equal to the unique maximal ideal pOs−1,p ⊂ Os,p. Since
α′ ≡ −β′X (mod ps

√
DOs,p), α′ is a unit if and only if β′X is a unit. Both elements are units if and

only if ordpN(α) = ordpN(βX) = −2s, and both are nonunits if and only if α+ βj ∈ Rstable
p .

Proposition 5.2.7. For any nonnegative integers m, n with (m,N) = 1, there is a bijection between
HomWn(has, hs)unstable

deg(m) and the set of all b ∈ R · a such that:

(a) N(b) = mN(a);
(b) ordpN(b+) = ordpN(b−) = −2s;
(c) and

ord�(DN(b−)) �
{

2n + 1 if ε(�) = −1
n+ 1 if ε(�) = 0.

Proof. By [GZ86, Proposition III.7.3] or [Con04, Theorem 7.12 and (7-3)] there is an isomorphism
of left Os-modules

HomWn(has, hs) ∼= HomWn(hs, hs)⊗Os a

whose image (viewed as a lattice in Ra) is exactly those elements satisfying property (c), under which
the degree m isogenies correspond to those satisfying property (a). We must show that this bijection
takes the stable elements onto those b = b+ + b− for which property (b) fails. The isomorphism in
question is defined as follows. The map

EndWn(Es)⊗Os a
ξn−→ HomWn(HomOs(a, Es), Es) ∼= HomWn(Eas, Es)

defined by ξn(f ⊗ x)(φ) = f(φ(x)) is an isomorphism of Os-modules by Lemma 7.13 of [Con04],
and taking level N structure into account we obtain an injection of left Os-modules

HomWn(has, hs) ∼= HomWn(hs, hs)⊗Os a ↪→ Ra.

This injection identifies

HomWn(has, hs)
stable ∼= HomWn(hs, hs)

stable ⊗Os a

inside of Ra (this is easily checked everywhere locally using the fact that a is proper, hence locally
principal). Localizing at p and using (N(a), p) = 1, the claim follows from Lemma 5.2.6.

For any order S of B, define

Das(S,m) =
{
b ∈ S · a

∣∣∣∣ N(b) = mN(a)
ordpN(b+) = ordpN(b−) = −2s

}

∆as(S,m) =
∑

b∈Das (S,m)

{
1
2 (1 + ord�N(b−)) if ε(�) = −1
ord�(DN(b−)) if ε(�) = 0.

(16)

Corollary 5.2.8. For (m,N) = 1,∑
n�0

|HomWn(has, hs)
unstable
deg(m) | = ∆as(R,m).
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Proof. When ε(�) = 0 this is immediate from the proposition above. When ε(�) = −1 it is similarly
clear, provided one knows that ord�N(b−) is always odd; but (as we see in the next section) we are
free to choose j in such a way that ord�N(j) = 1, so writing b− = βj with β ∈ K, ord�(N(b−)) =
1 + ord�N(β) is odd.

5.3 Quaternionic sums
We continue to let B be the rational quaternion algebra of discriminant � and assume we have a fixed
embedding K ↪→ B. As noted before, this embedding induces a splitting B = B+ +B− = K ⊕Kj.
Let S denote the (finite) set of K×-conjugacy classes of Os-optimal, level N Eichler orders in B;
that is, level N Eichler orders S such that S ∩K = Os, modulo the conjugation action of K×. For
such an S, the value of ∆as(S,m) (defined in (16)) depends only on the class of S in S. Define

∆as(m) =
∑
S∈S

∆as(S,m).

The remainder of this subsection is devoted to the proof of the following proposition. The
statement holds without parity restrictions on D, but we will assume throughout that D is odd,
referring the reader to [Man04] for a description of the needed changes to the proof in the case where
D is even. The method of proof follows the calculations performed in [GZ86, § III.9] (and described
in great detail in [Man04]). The main difference (apart from working in higher conductor) is that
we have ‘removed the Euler factor at p’ by adding the condition ordpN(b+) = ordpN(b−) = −2s to
the set Das(S,m) over which the summation ∆as(S,m) occurs.

Proposition 5.3.1. There is a proper integral Os-ideal q such that for every positive integer m

∆as(m) =
∑
n>0

�|n,(n,p)=1

δ(n)ra(mp2s|D| − nN) ·
{

ord�(�n)Raqn(n/�) if ε(�) = −1
ord�(n)Raqnl(n/�) if ε(�) = 0

where n is any integral Os-ideal with Os/n ∼= Z/NZ. When ε(�) = −1, we may take N(q) ≡ −�
(mod Dp), and when ε(�) = 0 we may take N(ql) ≡ −� (mod Dp).

If K̂× denotes the group of finite idèles of K and Ô×
s ⊂ K̂× is the group of units in the profinite

completion of Os, then there is an action of the ring class group K̂×/K×Ô×
s
∼= Pic(Os) on S: if

x = (xr) ∈ K̂× and S ∈ S then Sx is defined by the relation (Sx)r = xrSrx
−1
r ⊂ Br for every

rational prime r. In terms of Os-ideals the action is again by conjugation: Sb = bSb−1.

Lemma 5.3.2. The action of Pic(Os) on S is transitive, and the stabilizer of any element is the
subgroup generated by the class of l (so has order 1 if ε(�) = −1 and order 2 if ε(�) = 0).

Proof. Let S and S′ be Os-optimal level N Eichler orders. To prove the transitivity of the action
of Pic(Os) on S, we must show that Sr and S′

r are conjugate by elements of K×
r for every prime r.

The proof of [Man04, Theorem A.15] shows that this is the case if either Os,r is maximal (which
occurs for all r �= p) or if Sr and S′

r are maximal (which occurs for all (r,N) = 1). To compute the
kernel of the action, fix S ∈ S and let x = (xr) be a finite idèle of K. If S = Sx in S then there is
some y ∈ K× such that xry−1

r is contained in N(Sr), the normalizer of Sr in B×
r , for every prime r.

If (r,N�) = 1 then N(Sr) = Q×
r S

×
r , and so

xry
−1
r ∈ (Q×

r S
×
r ) ∩K×

r = Q×
r O×

s,r.

If r | N then Q×
r S

×
r has index 2 in N(Sr). Fix an isomorphism ψ : Br ∼= M2(Qr) in such a way

that ψ(Kr) ∼= Qr ⊕ Qr is the quadratic subalgebra of diagonal matrices, and let S′
r ⊂ M2(Qr) be

the usual Eichler order of integral matrices whose lower left entry is divisible by Nr = rordr(N).
As Sr and ψ−1(S′

r) are both Os,r-optimal, by the discussion above there is a z ∈ K×
r such
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that zSrz
−1 = ψ−1(S′

r). Thus, replacing ψ by a ψ(K×)-conjugate we may also assume that
ψ(Sr) = S′

r. Having made such a choice, we now suppress ψ from the notation. The nontrival
coset of Q×

r S
×
r in N(Sr) is represented by the matrix

α =
(

0 1
Nr 0

)
,

and one now checks directly that

xry
−1
r ∈ N(Sr) ∩K×

r = (Q×
r S

×
r � αQ×

r S
×
r ) ∩K×

r = Q×
r O×

s,r.

When r = �, B� has a unique maximal order, hence N(S�)∩K×
� = K×

� . We have shown that a finite
idèle (xr) acts trivially on S if and only if (xr) ∈ Q̂×Ô×

s K
×
� K

× = Ô×
s K

×
� K

×.

Let W0 denote the set of prime divisors of Dp if ε(�) = −1, and the set of prime divisors �= �
of Dp if ε(�) = 0. Let W be the free abelian group (written multiplicatively) of exponent 2 on the
elements of W0, and define a homomorphism

W −→ Pic(Os)[2]
by sending w �→ (

√
D)w, the finite idèle of K which is 1 away from w and equal to the image of

√
D

under K× −→ K×
r at each r | w. This map allows us to view S as a W-module. By genus theory,

the map W −→ Pic(Os)[2] is surjective. The kernel has order 2 if ε(�) = −1, and has order 1 if
ε(�) = 0.

As in [GZ86, pp. 265–266], we now choose a particular model for the quaternion algebra B.
Detailed proofs of the following assertions can be found in [Man04]. If ε(�) = −1 then choose a prime
q such that

(−�q
r

)
= 1 for all primes r | D. For such a q the quaternion algebra B is isomorphic

to the quaternion algebra
(D,−�q
Q

)
(meaning the quaternion algebra B = Q ⊕ Qi ⊕ Qj ⊕ Qij with

i2 = D, j2 = −�q, ij = −ji) and q is split in K. We may, and do, further impose the condition
q ≡ −� (mod Dp). If ε(�) = 0 then choose a prime q �= � such that

(−q
r

)
= 1 for all primes r | (D/�),

and with
(−q
�

)
= −1. For such a q the quaternion algebra B is isomorphic to the quaternion algebra(D,−q

Q

)
, and again such a q is split in K. We further impose the condition �q ≡ −� (mod Dp).

We henceforth fix a q as above and identify

B ∼=




(
D,−�q

Q

)
if ε(�) = −1

(
D,−q

Q

)
if ε(�) = 0.

In either case we regard K as a subfield of B via
√
D �→ i, so that conjugation by j acts as complex

conjugation on K. Let Ds = ps
√
DOs denote the different of the order Os. Fix an integral Os-ideal

n such that Os/n ∼= Z/NZ, and let q be an integral Os-ideal of norm q.

Lemma 5.3.3. If ε(�) = −1 there is a collection {Xr ∈ Z×
r | r ∈ W0} such that

R = {α+ βj | α ∈ D−1
s , β ∈ D−1

s nq−1, α−Xrβ ∈ Os,r ∀r ∈ W0}
is an Os-optimal level N Eichler order, and such that X2

r = −�q. If ε(�) = 0 there is a collection
{Xr ∈ Z×

r | r ∈ W0} such that

R = {α+ βj | α ∈ D−1
s l, β ∈ D−1

s lnq−1, α−Xrβ ∈ Os,r ∀r ∈ W0}
has the above property, and X2

r = −q.
Proof. Suppose ε(�) = −1. The order S = Os + q−1j ⊂ B has reduced discriminant p2sD�, and
for a prime r not dividing pND, Rr = Sr. Thus, the lattice Rr is a maximal order at such primes.
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If r | N then Rr = Os,r + nrj is an Eichler order of level rordrN , so it remains to consider Rr for
r | Dp. We have assumed q ≡ −� (mod Dp), so that by Hensel’s lemma j2 = −�q has a square
root Xr ∈ Z×

r for each r | Dp. If we set tr = Xr − j then one readily computes jtr = −Xrtr, so
that Br · tr = Kr · tr is a two-dimensional Qr-vector space on which Br acts by left multiplication.
Exactly as in the proof of Lemma 5.2.6, the (necessarily maximal) order leaving Os,r · tr stable is

Rr = {α+ βj ∈ Br | α, βXr ∈ D−1
s,r , α− βXr ∈ Os,r}.

This shows that R is a level N Eichler order, and the Os-optimality is immediate from the explicit
description. The case ε(�) = 0 is entirely similar.

Fix a family {Xr} and an order R as in the lemma. It is verified by direct calculation that for
any w ∈ W, Rw has the same explicit form as R, but with Xr replaced by

Xw
r =

{
−Xr if r | w
Xr otherwise.

Lemma 5.3.4. If g is any integral Os-ideal of norm prime to Dp then∑
w∈W

∑
b∈Das (Rwg,m)

(1 + ord�N(b−))

=
∑
n>0

�|n,(n,p)=1

δ(n)ra(mp2s|D| − nN) ·
{

4 · raqn̄ḡ2(n/�) ord�(�n) if ε(�) = −1
2 · raqn̄ḡ2l(n/�) ord�(n) if ε(�) = 0.

(17)

Proof. Suppose that ε(�) = −1. The lattice Rwga is given explicitly by

Rwga = {α+ βj | α ∈ D−1
s a, β ∈ D−1

s nq−1gḡ−1ā, α−Xw
r β ∈ Os,r∀r | Dp}.

Denote by C the set of all pairs (c+, c−) of proper, integral Os-ideals such that:

(a) N(c+) + �NN(c−) = mp2s|D|;
(b) c+ and c− are prime to p;
(c) c+ lies in the Pic(Os)-class of ā;

(d) c− lies in the Pic(Os)-class of an̄qḡ2;

and for each w ∈ W let Fw : Das(Rwg,m) −→ C be the function defined by sending b = α + βj to
the pair

c+ = αDsa
−1, c− = βDsqn

−1g−1ḡā−1. (18)

IfDas(Rwg,m) contained both b = α+βj and α−βj then we would have b+ = α ∈ Os,p, contradicting
ordpN(b+) = −2s. This implies that Fw is two-to-one.

The claim is that every element of C is in the image of Fw for exactly 2δ(N(c−)) choices of w,
so that ∑

w∈W

∑
b∈Das (Rwg,m)

(1 + ord�N(b−)) = 4
∑

(c+,c−)∈C
(2 + ord�N(c−)) · δ(N(c−)). (19)

To verify this, fix (c+, c−) ∈ C and choose generators

αOs = c+D−1
s a, βOs = c−D−1

s q−1ngḡ−1ā.

Then b = α + βj lies in Das(R
wg,m) if and only if α − Xw

r β ∈ Os,r for every prime divisor r of
Dp, or equivalently, if α′ ≡ Xw

r β
′ (mod Ds,r) for every r, where α′ = ps

√
Dα, β′ = ps

√
Dβ ∈ Os.

The action of complex conjugation on Os/Ds is trivial and so we have

α′2 ≡ N(α′) = N(a)N(c+) ≡ −�NN(c−)N(a) = −�qN(β′) ≡ X2
rβ

′2
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modulo Ds,r. When r �= p, Os,r/Ds,r is a field, and so α′ ≡ ±Xrβ
′. The congruence holds for both

signs if and only if α′ ≡ 0, which holds if and only if r | N(c−). When r = p, α′ ∈ O×
s,r and the unit

group of the ring Z/p2sZ ∼= Os,r/Ds,r has no 2-torsion apart from ±1. Hence, α′ ≡ ±Xrβ
′ for a

unique choice of sign. We have shown that α+ βj is contained in Das(Rwg,m) for exactly δ(N(c−))
choices of w. The element α− βj lies in Das(R

wg,m) for another δ(N(c−)) choices of w, all distinct
from the first set of choices. This proves (19). The right-hand side of (19) agrees with the right-hand
sum in the statement of the lemma by setting n = �N(c−).

The case where ε(�) = 0 is very similar: the set C is instead taken to be the collection of pairs
of proper, integral Os-ideals (c+, c−) such that:

(a) N(c+) +NN(c−) = mp2s|D|;
(b) c+ and c− are prime to p and divisible by l;

(c) c+ lies in the Pic(Os)-class of ā;

(d) c− lies in the Pic(Os)-class of an̄qḡ2.

The function from Dw
s (Rwg,m) to C is then exactly as in (18), and the expression on the left-hand

side of (17) is equal to

4
∑

(c+,c−)∈C
ord�N(c−) · 2#{r∈W0|r divides N(c−)} = 2

∑
n>0

�|n,(n,p)=1

ra(mp2s|D| − nN)raqn̄ḡ2(n)δ(n)ord�(n)

by taking n = N(c−). This is equivalent to the stated equality.

Proof of Proposition 5.3.1. Fix a set G = {g} of proper integral Os-ideals of norm prime to Dp
such that {g2 | g ∈ G} represents Pic(Os)2. As g varies over G and w varies over W, wg varies over
Pic(Os) hitting each ideal class once if ε(�) = 0 and twice if ε(�) = −1. By Lemmas 5.3.2 and 5.3.4
(recall also that we are assuming D odd) we have

∆as(m) =
1
2

∑
w∈W

∑
g∈G

∆as(R
wg,m)

=
1

2(1− ε(�))
∑
g∈G

∑
w∈W

∑
b∈Das (Rwg,m)

(
1 + ord�N(b−)

)

=
∑
n>0

�|n,(n,p)=1

δ(n)ra(mp2s|D| − nN) ·
{

ord�(�n)Raqn(n/�) if ε(�) = −1
ord�(n)Raqnl(n/�) if ε(�) = 0.

5.4 The �-contribution to the height

Fixm = m0p
r with (m0, Np) = 1. Let b be a proper integral Os-ideal, and denote by τ ∈ Gal(Hs/K)

the Artin symbol of b. We consider the quantity

〈cτs , Tm0(d
στ
s,r+2)〉v − 〈cτs−1, Tm0(d

στ
s,r+1)〉v

where the pairing is the local Néron symbol on X/Hs,v
of Proposition 3.3.2. By replacing hi with hτi

in Proposition 5.1.1, this is equal to

logp(�)
∑
n�0

(|HomWn(habs , h
b
s)deg(mp2)| − |HomWn(habs−1, h

b
s)deg(mp)|

− |HomWn(habs , h
b
s−1)deg(mp)|+ |HomWn(habs−1, h

b
s−1)deg(m)|),
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which is equal, by Corollary 5.2.5, to

logp(�)
∑
n�0

(|HomWn(habs , h
b
s)

unstable
deg(mp2)| − |HomWn(habs , h

b
s)

unstable
deg(m) |).

By Corollary 5.2.8, this last expression is equal to

logp(�)(∆
a
s(R

b−1
,mp2)−∆as(R

b−1
,m)),

where we have used [Con04, (7-8)] to identify EndW0(h
b
s) with b−1 · EndW0(hs) · b inside of B =

HomW0(hs, hs)⊗Q.

Proposition 5.4.1. For any positive integer m = m0p
r with (m0, Np) = 1 and any � nonsplit in

K, ∑
w

(〈cs, Tm0(d
σ
s,r+2)〉w − 〈cs−1, Tm0(d

σ
s,r+1)〉w) = logp(�)(∆

a
s(mp

2)−∆as(m))

where the sum is over all primes w of Hs above � and ∆as(m) is the quantity defined in § 5.3 (and
computed explicitly in Proposition 5.3.1), and the pairing is the local Néron symbol on X/Hs,w

of
Proposition 3.3.2.

Proof. Let Pic�(Os) denote the quotient of Pic(Os) by the subgroup generated by the class of the
unique prime of K above �. Then Pic�(Os) acts simply transitively on the set S by Lemma 5.3.2, and
also acts simply transitively on the primes of Hs above �. If we let b vary over a set of representatives
of Pic�(Os) and use the relation 〈xτ , yτ 〉v = 〈x, y〉τ−1(v) for τ ∈ Gal(Hs/K), then the claim follows
from the discussion above.

6. Néron symbols above p

In this section we use the methods of Perrin-Riou [PR87a, § 5.3] to analyze the p-adic Néron symbol
on X0(N) at primes above p.

Fix s > 0, σ ∈ Gal(Hs/K), and assume that ε(p) = 1 and D �= −3,−4. As always, we let
a ⊂ Os be a proper ideal whose Artin symbol is σ. For any positive integer m, we let Tm be the
usual Hecke correspondence on X0(N) (taking the Atkin–Lehner U� at primes dividing N). For
any correspondence T from a curve to itself, we let T ι denote the transpose correspondence. Thus
Tm = T ιm for (m,N) = 1. If p is one of the two primes of K above p, we let δ be the order of p in
the ideal class group of K.

6.1 Some modular forms
Fix a place v of Hs above p.

Lemma 6.1.1. Let R be the integer ring of Hs,v and let hσs,r be the horizontal divisor of X0(N)/R
with generic fiber hσs,r. For any divisor C on X0(N)/R, there is a constant c = c(C) such that the
intersection multiplicity i(C,hσs,r) of § 3.1 depends only on r (mod δ) when r > c.

Proof. It suffices to prove this when C is effective. The extension H∞/H0 is totally ramified at v,
and we let w denote the unique place of H∞ above v. Let F (r) be the completion of the maximal
unramified extension of Hs+r,w with integer ring W (r), and let W (r)k be the quotient of W (r)
by the (k + 1)th power of the maximal ideal. Let Q̂unr

p denote the completion of the maximal
unramified extension of Qp. The extension Hs+r,w/H0,w is totally ramified of degree pr+s−1(p− 1),
and H0,w ⊂ Q̂unr

p . From this one easily deduces that F (r) is the compositum of Q̂unr
p and Hs+r,w (so

is abelian over Qp), and that F (r)/Q̂unr
p is totally ramified of degree pr+s−1(p − 1). By class field

theory F (r) = Q̂unr
p (µps+r). Decompose C =

∑er
k=0 y(k) as a sum of prime divisors on X0(N)/W (r).
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For r greater than or equal to some r0 the sequence er is constant and hσs,r has no components in
common with C. Abbreviate e = er0 and take c = r0 + δ.

Fix r1 > c, r = r1 + iδ with i � 0, and an extension of σ to Gal(H∞/K). By [Con04, Lemma 2.4]
or [SeTa69, Theorems 8, 9(1)] the point hσs+r ∈ X0(N)(F (r)) represents a Heegner diagram over
F (r) having good reduction, and so its Zariski closure hσs+r in X0(N)/W (r) is a section to the
structure map representing a Heegner diagram over W (r). As in § 4, the choice of Heegner diagram
hσs+r determines a family of isogenous Heegner diagrams over W (r),

hσs+r −→ hσs+r−1 −→ · · · .
The generic geometric kernel of the map hσs+r −→ hσs+r−1 is stable under the action of the absolute
Galois group of F (r), and the Euler system relations of § 1.2 tell us that no other order p subgroup
of hσs+r(F (r)alg) has this property. Indeed, the remaining p quotients by order p subgroups are
permuted simply transitively by Gal(F (r + 1)/F (r)). It follows that this kernel must be the kernel
in hσs+r[p] of reduction to W (r)0 (recall ε(p) = 1, so hσs+r has ordinary reduction) and the map
hσs+r −→ hσs+r−1 reduces to the absolute Frobenius in the closed fiber. The action of Os+r on the
closed fiber of hσs+r extends to an action of the maximal order (we have just shown that the closed
fiber of hσs+r is isomorphic to a Galois conjugate of the closed fiber of hσ0 ), and if p denotes the
prime of K below v, then the action of any generator of the principal ideal pδ is a degree pδ purely
inseparable endomorphism, whose kernel must therefore be the kernel of the δth-iterate of Frobenius.
This shows that the Heegner diagrams hσs+r and hσs+r−δ are isomorphic over Spec(W (r)0), and that
the closed fiber of hσs+r is the base change to W (r) of the closed fiber of the Zariski closure of hσs+r1
on X0(N)/W (r1).

We claim that the Heegner diagram hσs+r−δ is distinct from hσs+r over W (r)1, so that
Proposition 4.0.5 gives the intersection formula

i(hσs+r, h
σ
s+r−δ) = 1

2 |O×
K | = 1 (20)

on X0(N)/W (r). Indeed, if these Heegner diagrams are isomorphic over W (r)1, then the reduction
of such an isomorphism to W (r)0 allows us to view hσs+r−δ and hσs+r over W (r)1 as isomorphic
deformations of the common closed fiber, which we denote by g. Let T = lim←− g(W (r)0)[pk] ∼= Zp.
The theory of Serre–Tate coordinates (for example [Gor02, ch. 3, Theorem 4.2]) associates to these
Heegner diagrams over W (r) (viewed as deformations of g) two bilinear maps

qs+r−δ, qs+r : T ⊗ T −→ 1 + mW (r).

The first surjects onto µps+r−δ , and the second onto µps+r . Since we assume the Heegner diagrams
over W (r)1 are isomorphic as deformations of g, the bilinear maps qs+r−δ, qs+r are congruent modulo
1 + m2

W (r). This is a contradiction, as µps+r−δ is contained in 1 + m2
W (r) while µps+r is not (use the

fact, noted above, that F (r) = Q̂unr
p (µpr+s) to replace mW (r) with the maximal ideal of Zp[µpr+s]).

Each prime divisor y(k) occurring in the support of C either does not meet the common closed
point of hσs+r−δ, h

σ
s+r, in which case i(y(k), hσs+r) = 0, or it does, in which case y(k) intersects both

hσs+r−δ and hσs+r. Assume we are in the latter case. The divisors y(k) and hσs+r−δ on X0(N)/W (r)

both arise as the base change of divisors defined over W (r − δ). Since base change through a
finite extension multiplies intersections by the ramification degree, i(y(k), hσs+r−δ) > 1. If also
i(y(k), hσs+r) > 1, then i(hσs+r, h

σ
s+r−δ) > 1, contradicting (20). Thus i(y(k), hσs+r) = 1. We have

shown that

i(C,hσs,r)R = i(C, hσs+r)W (r) =
e∑

k=0

i(y(k), hσs+r)W (r)

(the subscripts denoting the bases over which the intersections are computed) is equal to the number
of y(k), 0 � k � e, which contain the closed point of hσs+r. By the discussion earlier this is equal to
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the number of y(k) on X0(N)/W (r1) which contain the closed point of the Zariski closure of hσs+r1
on X0(N)/W (r1), which is equal to i(C,hσs,r1)R by taking r = r1 in the preceding argument.

Let us say that a divisor C on X0(N)/Hs,v
has good support if its support contains no cusps

except possibly for the cusp 0. Note that the set of such divisors is stable under the action of T im
for any m. This follows easily from the fact that the main Atkin–Lehner involution w on X0(N)
satisfies wTmw = T ιm and w ·∞ = 0, and that Tm ·∞ is supported at ∞. For C of degree zero with
good support we define a formal q-expansion

φ(C)v =
∑

m=m0pr

〈C, Tm0d
σ
s,r〉vqm (21)

where 〈 , 〉v is the p-adic Néron symbol on X0(N)/Hs,v
of Proposition 3.3.2, and where for any integer

m > 0 we write m = m0p
r with (m0, p) = 1. Let U denote the shift operator on formal q-expansions

U(
∑
amq

m) =
∑
ampq

m. The q-expansion φ(C)v is only defined if C has support prime to Tm0(d
σ
s,r)

for every m = m0p
r, but for any C with good support and degree 0 the q-expansion Ukφ(C)v is

defined for k � 0. Indeed, the geometric points in the support of Tm0(d
σ
s,r+k) each represent either

the cusp ∞ or a CM elliptic curve such that the valuation at p of the conductor of the CM order is
exactly s+ r + k.

We can use the Lemma 6.1.1 to compute p-adic Néron symbols at v in the only case where they
are known to be related to intersection pairings: the case where one divisor is principal.

Corollary 6.1.2. Suppose C is the divisor of a rational function on X0(N)/Hs,v
, and that C has

good support. Then for each integer m > 0

lim
k→∞

am(Uk(U δ − 1)φ(C)v) = 0.

Proof. Write m = m0p
r with (m0, p) = 1. The divisor T ιm0

(C) is again principal with good support,
and we fix a rational function f with (f) = T ιm0

(C). Writing v for the normalized valuation on Hs,v,
the intersection theory of § 3.1 gives

v(f(dσs,r+k+δ)) = [(f),dσs,r+k+δ] = i((f),hσs,r+k+δ))− pr+k+δ · i((f),∞))

where the underlining of divisors indicates passing to horizontal divisors on X0(N)/R, R the integer
ring of Hs,v. Similarly

v(f(dσs,r+k)) = [(f),dσs,r+k] = i((f),hσs,r+k))− pr+k · i((f),∞)).

From this and Lemma 6.1.1 we deduce

v

(
f(hσs,r+k+δ)
f(hσs,r+k)

)
= v

(
f(dσs,r+k+δ)
f(dσs,r+k)

)
+ (pδ − 1)pr+k · v(f(∞))

= (pδ − 1)pr+k · [v(f(∞)) − i((f),∞)]

for k large. Multiplying f by an element of H×
s,v does not change (f), and so we may assume

that v(f(∞)) = i((f),∞). Then f(hσs,r+k+δ)/f(hσs,r+k) is a unit in Hs,v for k large. It is also
the norm of some uk ∈ Hs+r+k,v, the completion of Hs+r+k at the unique prime above v. Using
Proposition 3.3.2(b)

am(Uk(U δ − 1)φ(C)v) = 〈C, Tm0d
σ
s,r+k+δ〉v − 〈C, Tm0d

σ
s,r+k〉v

= ρHs,v(f(dσs,r+k+δ))− ρHs,v(f(dσs,r+k))

= ρHs,v

(
f(hσs,r+k+δ)
f(hσs,r+k)

)
− (pδ − 1)pr+kρHs,v(f(∞))

= ρQp(NormHs+r+k,v/Qp
(uk))− (pδ − 1)pr+kρHs,v(f(∞)).
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Since p is split, the field Hs+r+k,v is abelian over Qp, the unit norms from Hs+r+k,v to Qp converge
to 1 as k →∞, and so the final expression converges to 0.

Given any point P ∈ J0(N)(Hs,v) we may choose a degree zero divisor C on X0(N)/Hs,v
having

good support which represents P . Corollary 6.1.2 implies that for any sequence of integers b = (bk)
with bk →∞, the q-expansion with Qp-coefficients

Φb(P )v
def= lim

k→∞
U bk(U δ − 1)φ(C)v ,

if the limit exists (in the sense of coefficient-by-coefficient convergence; there is no assumption of
uniformity) depends only on P and not on the choice of C.

Definition 6.1.3. A sequence of integers b = (bk) is admissible if bk → ∞ and if the limit
(coefficient-by-coefficient) defining Φb(P )v exists for every P ∈ J0(N)(Hs,v).

Lemma 6.1.4. Any sequence of integers tending to ∞ admits an admissible subsequence.

Proof. Fix a sequence b = (bk) of integers tending to∞. Let C be a degree zero divisor on X0(N)Hs,v

with good support, and consider the first Fourier coefficient

a1(U bk(U δ − 1)φ(C)v) = 〈C,dσs,bk+δ − dσs,bk〉v .
By the final claim of Proposition 3.3.2 the sequence on the right-hand side takes values in a com-
pact subset of Qp, and so we may choose a convergent subsequence. By Corollary 6.1.2 and the
finite dimensionality of J0(N)(Hs,v) ⊗ Qp, we may repeat this process, eventually replacing b by a
subsequence (still denoted b, abusively) such that

lim
k→∞

a1(U bk(U δ − 1)φ(C)v)

exists for every degree zero divisor with good support. By the same argument we may assume that
the limit limk→∞ ap(U bk(U δ − 1)φ(C)v) also exists for all such divisors. Now fix m = m0p

r with
(m0, p) = 1. From the definition of φ we have

am(U bk(U δ − 1)φ(C)v) = apr(U bk(U δ − 1)φ(T ιm0
C)v) (22)

(for k large enough that both sides are defined). If r = 0 or 1, then the limit as k → ∞ exists by
the above choice of b. For r > 1 we use the Euler system relations of § 1.2 to see that

dσs,r+bk = NormHs+bk+1/Hs
dσs+bk+1,r−1

= NormHs+bk+1/Hs
(Tpr−1dσs+bk+1 − Tpr−2dσs+bk)

= Tpr−1dσs,bk+1 − pTpr−2dσs,bk
which, together with the same formula with bk replaced by bk + δ, implies that the right-hand side
of (22) equals (for k � 0)

ap(U bk(U δ − 1)φ(T ιm0pr−1C)v)− p · a1(U bk(U δ − 1)φ(T ιm0pr−2C)v),

and this limit exists as k →∞.

Fix an admissible sequence b. Note that the above proof shows that

amp(Φb(P )v) =

{
ap(Φb(T ιmP )v) if (m, p) = 1
ap(Φb(T ιmP )v)− pa1(Φb(T ιm/pP )v) otherwise.

(23)

Let Tfull denote the Qp-algebra generated by the Hecke operators Tm for all m > 0 acting on J0(N).
For any P ∈ J0(N)(Hs,v) and any i > 0, the linear functional on Tfull defined by T �→ ai(Φb(T ιP )v)
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determines a p-adic modular form

hi(P ) =
∑

ai(Φb(T ιmP )v) · qm ∈ S2(Γ0(N),Q) ⊗Qp

of level Γ0(N) (as does any linear functional on Tfull; this follows from [Hid93, § 5.3 Theorem 1] and
the identification of Tfull with the Hecke algebra acting on weight two cusp forms). The relation
(23) can be written as

U · Φb(P )v = hp(P )− pV · h1(P )
where V (

∑
anq

n) =
∑
anq

pn. As V takes modular forms of level Γ0(N) to modular forms of level
Γ0(Np), we may define

Ψb(P )v = U · Φb(P )v ∈M2(Γ0(Np),A)⊗A B
for any P ∈ J0(N)(Hs,v).

6.2 Annihilation of Eσ

Recall Hida’s ordinary projector eord = limk→∞Uk! from § 2. Fix an admissible (in the sense of
Definition 6.1.3, and for all primes above p simultaneously) subsequence b = (bk) of k! and define,
for any P ∈ J0(N)(Hs), a p-adic modular form Ψb(P ) =

∑
v|p Ψb(P )v where the sum is over primes

v of Hs above p. Similarly, define φ(C) =
∑

v φ(C)v (whenever φ(C)v is defined for all v above p).
In the next section, we shall see that there is a modular form

Eσ ∈M2(Γ0(Np∞),A)⊗ B
with the following property: if 〈 , 〉p denotes the sum of the local p-adic Néron symbols onX0(N)/Hs,v

at the primes of Hs above p, then for any m = m0p
r with (m0, Np) = 1 the mth Fourier coefficient

of Eσ is given by the expression

am(Eσ) = 〈cs, Tm0(d
σ
s,r+2)〉p − 〈cs−1, Tm0(d

σ
s,r+1)〉p

= amp2(φ(cs))− amp(φ(cs−1)),

where, as in § 0.1, ci = (hi)− (0). From this we immediately deduce the following.

Lemma 6.2.1. There is a modular form g ∈ M2(Γ0(Np),A) ⊗ B such that am(g) = 0 whenever
(m,N) = 1, and

(U δ − 1)eordEσ = UΨb(cs)−Ψb(cs−1) + g.

Proof. Compare both sides coefficient by coefficient.

The significance of Lemma 6.2.1 is the following: while Eσ depends a priori on the divisors cs
and cs−1, the p-adic modular forms Ψb(cs) and Ψb(cs−1) depend only on the images in J0(N)(Hs).
This plays a crucial role in the proof of the following proposition.

Proposition 6.2.2. Let f be the modular form fixed in the introduction. The p-adic modular form
Eσ is annihilated by the linear functional Lf of Lemma 2.0.2.

Proof. By Lemmas 2.0.2(c) and (d) and 6.2.1

(αδ − 1)Lf (Eσ) = Lf ((U δ − 1)eordEσ) = αLf (Ψb(cs))− Lf (Ψb(cs−1)),

and so it suffices to show that Lf (Ψb(P )v) = 0 for every P ∈ J0(N)(Hs) and every prime v of Hs

above p. Fix one such prime and let T be the Q-algebra generated by all T� with (�,N) = 1 acting
on J0(N). Recall from the introduction the decomposition

J0(N)(Hs)⊗B ∼=
⊕
β

J(Hs)β
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where the sum is over all algebra homomorphisms β : T −→ Qalg
p (and recall that all such maps

take values in B by hypothesis) and T acts on J(Hs)β through the character β. Let βf be the
homomorphism associated to the fixed newform f .

Suppose that P ∈ J(Hs)β for some character β, and extend Ψb( )v B-linearly to J0(N)(Hs)⊗B.
We treat the cases β �= βf and β = βf separately.

Lemma 6.2.3. If β �= βf , then Lf (Ψb(P )v) = 0.

Proof. Use the notation T̃m for Hecke operators in level Γ0(Np). For any m prime to Np we have

am(f)Lf (Ψb(P )v) = Lf (T̃mΨb(P )v) = Lf (Ψb(TmP )v) = β(Tm)Lf (Ψb(P )v)

(the first equality is by Lemma 2.0.2, the second is a straightforward calculation, and the third is
obvious). Thus, if Lf (Ψb(P )v) �= 0, then βf (Tm) = β(Tm) for all (m,Np) = 1. The Atkin–Lehner
strong multiplicity one theorem [AL70, Lemma 24] thus implies that βf = β, a contradiction.

Lemma 6.2.4. If β = βf , then Lf (Ψb(P )v) = 0.

Proof. We follow the lead of [PR87a, Example 4.12]. Let R be the integer ring of Hs,v, m the
maximal ideal of R, and F = R/m. Let Gn be the pn-torsion of the Néron model of J0(N) over
R, a finite group scheme over R. Let G0

n and Get
n be the connected component and maximal étale

quotient of Gn, respectively, and let G0,et
n (respectively G0,0

n ) be the maximal subgroup scheme of
G0
n with étale dual (respectively quotient with connected dual).

By the theory of Dieudonné modules the Frobenius and Verschiebung morphisms on (G0,0
n )/F

are nilpotent, and so by the Eichler–Shimura congruence the same is true of the Hecke operator Tp.
This is equivalent to T ip(I) ⊂ mI for some i, where A is the Hopf algebra over R associated to the
affine group scheme G0,0

n , I is the kernel of the augmentation map A −→ R, and Tp is now viewed
as an R-algebra map A −→ A. For any Artinian quotient R/mkR of R and any R-algebra map
τ : A −→ R/mkR,

(τ ◦ T ikp )(I) ⊂ τ(mkI) = 0.

Back in the world of group schemes, this says that Tp acts as a nilpotent operator on G0,0
n (R/mk)

for any k and any n. From this it follows easily that Tp acts as a topologically nilpotent operator
on R-valued points of the formal group scheme Ĝ0,0 associated to the p-divisible group lim−→G0,0

n .

Let Ĝ0 and Ĝ0,et be the formal group schemes associated to G0
n and G0,et

n , respectively. As
Ĝ0(R) ⊂ J0(N)(Hs,v) with finite index, we may identify

Ĝ0(R)⊗ B ∼= J0(N)(Hs,v)⊗B.
As βf (Tp) = ap(f) ∈ A× is a unit, any element of Ĝ0(R) ⊗ B on which T acts through βf must
come from the subspace Ĝ0,et(R)⊗Zp B. We are thus reduced to the case P ∈ Ĝ0,et(R). By [Sch87,
Theorem 1(i)] (together with the proof of [Sch87, Theorem 2]), the universal norms in Ĝ0,et(R) from
any ramified Zp-extension of Hs,v have finite index. We are thus further reduced to the case where
P ∈ J0(N)(Hs,v) is a universal norm from L∞, the cyclotomic Zp-extension of Hs,v. Let Ln ⊂ L∞
be the extension of Hs,v with [Ln : Hs,v] = pn, and write P = NLn/L0

Qn for some Qn ∈ J0(N)(Ln).
Lift Qn to a degree zero divisor on X0(N)/Ln

with support prime to the cusps. Then for m = m0p
r

with (m0, p) = 1,

am(Ψb(P )v) = lim
k→∞

am(U bk+1(U δ − 1)φ(NLn/L0
Qn)v)

= lim
k→∞
〈NLn/L0

Qn, Tm0d
σ
s,bk+1+δ+r − Tm0d

σ
s,bk+1+r〉X0(N),Hs,v

.

Using Proposition 3.3.2(e), we at last deduce Ψb(P )v = 0.

This completes the proof of Proposition 6.2.2.
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Remark 6.2.5. The reader is invited to reconsider the case β = βf under the additional hypo-
thesis that f is ordinary at every place of Qalg above p. Then the abelian variety (up to isogeny)
Af attached to f by Eichler–Shimura theory is ordinary at p, and a theorem of Mazur [Maz72,
Proposition 4.39] tells us that the universal norm subgroup of Af (Hs,v) from a ramified Zp-extension
has finite index.

7. Completion of the proofs

Assume that D is odd and �= −3, and that ε(p) = 1. Fix s > 0 and σ ∈ Gal(Hs/K). Let a be a
proper integral Os-ideal of norm prime to p whose class in Pic(Os) represents σ. Recall from § 0.1
the p-adic modular form Fσ defined by

Fσ = U2F s,sσ − UF s,s−1
σ − UF s−1,s

σ + F s−1,s−1
σ ∈M2(Γ0(Np),A)⊗A B.

Proposition 7.0.6. For every m = m0p
r with (m0, Np) = 1,

am(Fσ) = 〈cs, Tmp2(dσs )〉 − 〈cs, Tmp(dσs−1)〉+ 〈cs−1, Tm(dσs−1)〉 − 〈cs−1, Tmp(dσs )〉
= 〈cs, Tm0(d

σ
s,r+2)〉 − 〈cs−1, Tm0(d

σ
s,r+1)〉. (24)

where 〈 , 〉 = 〈 , 〉X0(N),Hs
is the global pairing of (10) viewed as a pairing on J0(N)(Hs), and

cs, ds, cs,r, and ds,r are as in § 0.1. Furthermore, extending the height pairing B-bilinearly to
J0(N)(Hs)⊗ B,

Lf (Fσ) = (α2 − 1)α2s〈zs, zσs 〉
where Lf is the linear functional on M2(Γ0(Np∞),A) of Lemma 2.0.2 and zs is the regularized
Heegner point appearing in Theorem A.

Proof. Recall, for i, j � s and any m, that

am(F i,jσ ) =
∑
β

〈ci, dσj,β〉am(fβ)

where the sum is over algebra homomorphisms β : T −→ Qalg, fβ is the associated primitive
eigenform, and dσj,β is the projection of dσj ∈ J0(N)(Hs) to J(Hs)β . Thus, if (m,N) = 1,

am(F i,jσ ) =
∑
β

〈ci, β(Tm)dσj,β〉 =
∑
β

〈ci, Tmdσj,β〉 = 〈ci, Tmdσj 〉.

The first claim follows easily from this and the Euler system relations of § 1.2.
For the second claim,

Lf (Fσ) = α2Lf (F s,sσ )− αLf (F s,s−1
σ )− αLf (F s−1,s

σ ) + Lf (F s−1,s−1
σ )

by the final claim of Lemma 2.0.2. It follows from the same lemma that Lf (fβ) = 0 unless fβ = f
(as in the proof of Lemma 6.2.3), while Lf (f) = 1− α−2. Therefore,

Lf (F i,jσ ) = (1− α−2)〈ci, dσj,f 〉 = (1− α−2)〈di,f , dσj,f 〉
where the subscript f indicates projection to the component J(Hs)βf

of the algebra homomorphism
βf : T −→ Qalg associated to f , and the second equality uses the fact that ci − di = (∞) − (0) is
torsion in J0(N)(Hs) and that summands J(Hs)β are orthogonal for distinct β (an easy consequence
of Proposition 3.3.2(c)). This gives

Lf (Fσ) = (1− α−2)[α2〈ds,f , dσs,f 〉 − α〈ds,f , dσs−1,f 〉 − α〈ds−1,f , d
σ
s,f 〉+ 〈ds−1,f , d

σ
s−1,f 〉]

= (1− α−2)〈αds,f − ds−1,f , αd
σ
s,f − dσs−1,f 〉

= (α2 − 1)〈αszs, αszσs 〉
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as zs was defined to be α−s(ds,f − α−1ds−1,f ) (in the introduction we abusively confused hi with
di = (hi)− (∞)).

As explained in § 0.1, in each of the pairings of (24) the divisors have disjoint supports, and so
we may decompose am(Fσ) =

∑
v am(Fσ)v as a sum of local Néron symbols on Xv = X0(N)×QHs,v

by defining

am(Fσ)v = 〈cs, Tm0(d
σ
s,r+2)〉v − 〈cs−1, Tm0(d

σ
s,r+1)〉v

where for each prime v of Hs, 〈 , 〉v = 〈 , 〉Xv ,ρHs,v
is the local Néron symbol of Proposition 3.3.2.

We also define, for a rational prime �, am(Fσ)� =
∑

v|� am(Fσ)v.

Proposition 7.0.7. Suppose (m,N) = 1. Then∑
� 
=p

am(Fσ)� = amp2s(Gσκ)− amp2s+2(Gσκ),

where Gσ is the p-adic modular form of Proposition 2.0.4.

Proof. For any � �= p, Proposition 4.0.8 shows that am(Fσ)� = 0 when ε(�) = 1, while Proposi-
tions 5.3.1 and 5.4.1 give an explicit formula for am(Fσ)� when ε(�) �= 1. Corollary 2.0.7 gives an
explicit formula for the right-hand side.

Proof of Theorem A. If we define a p-adic modular form Eσ ∈M2(Γ0(Np∞),A)⊗A B by

Eσ = Fσ − U2s(1− U2)Gσκ,

then for every m = m0p
r with (m0, Np) = 1 Proposition 7.0.7 implies

am(Eσ) = 〈cs, Tm0(d
σ
s,r+2)〉p − 〈cs−1, Tm0(d

σ
s,r+1)〉p.

Proposition 6.2.2 now implies Lf (Eσ) = 0, and so

Lf (Fσ) = Lf (U2s(1− U2)Gσκ).

Applying Lemma 2.0.2(d) and Proposition 7.0.6

(α2 − 1)α2s〈zs, zσs 〉X0(N),Hs
= α2s(1− α2)Lf (Gσκ).

Summing over σ and applying Proposition 2.0.4,∑
σ

η(σ)〈zs, zσs 〉X0(N),Hs
= −

∑
σ

η(σ)Lf (Gσκ) = −logp(γ0)η(κ) · Lf,1(η)

for any character η of Gal(Hs/K). We now view zs as an element of J0(N)(Hs)⊗ B, let z∨s be the
image of zs in J0(N)(Hs)∨ ⊗ B under the canonical polarization, and switch to the height pairing
〈 , 〉J0(N),Hs

of (9). Recalling Remark 3.3.1,∑
σ

η(σ)〈z∨s , zσs 〉J0(N),Hs
= logp(γ0)η(κ) · Lf,1(η).

This completes the proof of Theorem A when s > 0. If η is a character of Gal(H0/K), then we may
view η as a character of Gal(Hs/K) for some s > 0, and this does not change the value of Lf,1(η).
As the zs and z∨s are norm compatible∑

σ∈Gal(Hs/K)

η(σ)〈z∨s , zσs 〉J0(N),Hs
=

∑
σ∈Gal(H0/K)

η(σ)〈z∨s , zσ0 〉J0(N),Hs

=
∑

σ∈Gal(H0/K)

η(σ)〈z∨0 , zσ0 〉J0(N),H0
,

so Theorem A also holds when s = 0.
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Proof of Theorem B. If we show that

〈y∨s , yσs 〉E,Hs = 〈zs, zσs 〉J0(N),Hs
(25)

for any s then we are done, as Theorem A shows that the two sides of the equality of Theorem B
agree on all finite-order characters. Implicit in this statement is that (25) holds for any choice
of height pairing 〈 , 〉J0(N),Hs

as in (9) (recall that the definition of (9) depends on the possibly
noncanonical choice of the local symbol 〈 , 〉J0(N)v ,ρHs,v

of Proposition 3.2.1 for each place v above
p, and that there is a unique choice of local symbol 〈 , 〉Ev,ρHs,v

at every place v). Fix a prime v of
Hs and define a Qp-valued symbol 〈c, d〉 on pairs of degree zero divisors on Ev = E ×Q Hs,v with
disjoint support (and d rational over Hs,v point-by-point) by

〈c, d〉 =
1
n
〈φ∗c, δ〉J0(N)v ,ρHs,v

where δ is a zero cycle on J0(N)v such that n · d = φ∗δ for some n (using the fact that φ∗ :
J0(N)(Hs,v) −→ E(Hs,v) has finite cokernel). It can be shown that the symbol 〈 , 〉 satisfies the
properties of Proposition 3.2.1, and so must be the unique symbol 〈 , 〉Ev,ρHs,v

. From this one easily
deduces the compatibility of the global symbols (9)

〈c, φ∗d〉E,Hs = 〈φ∗c, d〉J0(N),Hs

for c ∈ E(Hs) and d ∈ J0(N)(Hs). The equality (25) is then obvious from the definition of ys
and y∨s .
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imaginaire, J. London Math. Soc. (2) 38 (1988), 1–32.
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