CHAPTER 4

ENVIRONMENT AND THE EAST ASIAN CONTEXT

1. INTRODUCTION

In academic circles, it is being increasingly recognised that seemingly minor climatic changes in the environmental record often have had significant, and at times devastating, effects on human as well as animal and plant communities in the past. A slight fluctuation in the precipitation and annual temperature pattern not only leads to a corresponding change in the faunal and floral populations but also can be connected with a topographic change; long-term trends in temperature fluctuation are often tightly correlated to trends in the fluctuation of the volume of ice in the polar regions, which in turn causes fluctuation in the sea level. Changes in sea level affect the rates of erosion and sedimentation of coastlines and riverine plains (e.g. Iseki 1983). The long-lasting influence of the Marxist approach (see Chapter 2.2.2, ‘Post-World War II Reformation and the “Independent-Autonomous” Past’), which explains social reproduction and social change in terms of the management of internal contradictions and its failure, has resulted in keeping the majority of Japanese archaeologists (except the Palaeolithic specialists) away from palaeo-environmental information, in general, and palaeo-climatic data, in particular. However, the generally increasing interest in the application of natural scientific techniques is changing the situation.1

The following sections summarise the recent and relevant outcomes of this change.

This chapter also reviews the historical trajectories of the areas surrounding the Japanese archipelago. The Yayoi and Kofun periods correspond to the time period extending from the Late Zhou (周) period (c. from the eighth to the third centuries BC) to the Sui (隋; c. AD 581–618) and the Tang (唐; c. AD 618–907) dynasties of China, and from the Bronze Age/the Mumun pottery (無文土器) period through the three-kingdom (三国) period to the unified Silla (新羅) period in Korea.

We can observe a remarkable parallelism between the Korean peninsula and the Japanese archipelago in their historical trajectories, especially from the Middle Yayoi period onwards in the case of the latter, and from the Late Mumun pottery period onwards in the case of the former. This parallelism resulted from increasingly intensifying interactions, including hostile ones, between those regions, both of which were situated on the periphery of the sphere of indirect, and occasionally direct, interventions of the Chinese empires.

Because a considerable number of historical studies have already examined the deepening tension and interdependence between the peninsula and archipelago polities, this chapter attempts to present only a very brief summary of the outcomes of solar black spots has made archaeologists realise the importance and possibility of collaboration with natural scientists for not only the dating but also environmental reconstruction (cf. Shitara 2006; Komoto 2007).

---

1 For the development of the trend, the introduction of the AMS dating technique to the absolute dating of Japanese pre- and proto-history (see Chapter 3.3.2) has been instrumental in that the relationship between the calibration curve of raw C-14 data and the fluctuation of the amount of C-14 in the atmosphere of the earth resulting from the fluctuation of the amount of solar black spots has made archaeologists realise the importance and possibility of collaboration with natural scientists for not only the dating but also environmental reconstruction (cf. Shitara 2006; Komoto 2007).
2. ENVIRONMENT

The Yayoi and Kofun periods coincided with a phase of gradual cooling in global temperature. The temperature rise which began at the end of the Younger Dryas event (c. 10,000 BC), following the sudden and sharp decline in temperature after the Bolling warm stage (c. 12,000 BC), marked the beginning of the post-glacial (Holocene) period and continued until about 4000 BC, when it is believed that the annual average temperature was about two degrees higher during summer than it is today (Burroughs 2005). After this point of time, called the Holocene climatic optimum, the dominant trend has been continuous cooling, with some global episodes of limited but rapid climate change (ibid.).

In northern Europe, scholars have investigated changes in the Holocene climate by studying pollen data gathered from peat bogs, based on which they have identified the following general climate periods: the Preboreal and the Boreal (c. 9500–7000 cal BC), the Atlantic (c. 7000–4000 cal BC), the Sub-Boreal (c. 4000–500 cal BC) and the Sub-Atlantic (c. 500 cal BC to the present). The Boreal period is generally characterised as a cool, dry period with rising temperature, and the Atlantic period, as a warm and wet period, towards the end of which the Holocene warming trend reached its peak (e.g. Burroughs 2005, 175–179). The sub-Boreal period, during which the Yayoi period began, is characterised as a warm and dry period, and the sub-Atlantic period, which substantially overlaps with the Yayoi and Kofun periods, is characterised as a cool and wet period (ibid.). During those periods, however, it is believed that there were some sharp and devastating climatic disturbances. For instance, three notable cooling events have been found to have occurred in the North Atlantic – around 2500–2200 cal BC, around 800 cal BC and around 1,400 cal AD (ibid., 251).

In Japan, the detailed analysis of pollen data by Yutaka Sakaguchi (1982, 1983), who uses the increase and decrease in the percentage of *Pinus* (pine) pollen as an indicator of temperature fluctuations, has revealed that the period between circa the twenty-first century BC and the mid-ninth century BC was an ‘unstable warm stage’, that between circa the mid-ninth century BC and the beginning of the fourth century BC was a ‘cold stage’, that between the beginning of the fourth century BC and the early first century BC was a ‘warm stage’ and that between the early first century BC and the mid-eighth century AD was an ‘unstable cold stage, in which the cold, mild and warm spells frequently alternated’ (Sakaguchi 1982, 16).

The preceding picture reasonably coincides with the episodes of ‘black band’ formation in oceanic sand dunes (Komoto 2007). A black layer in an oceanic sand dune indicates an episode of the slowing down or virtual stoppage of formation of the dune, which allowed vegetation, including grasses and low trees, to invade and form leaf mould (e.g. Iseki 1983). The growing of dunes indicates a cold spell, which in turn causes a lowering of the sea level and an increase in the supply of sediments that contribute to their growth (ibid.). In contrast, an episode of black band formation reflects a warm spell, in which the sea level rises, the supply of sediments ceases and dunes stabilise (Komoto 2007). During the Yayoi and Kofun periods, findings reveal that two major, widespread episodes of black band formation occurred in the archipelago (ibid.). The lack of purpose-specific excavations makes it difficult to specify the terminus post quem (TPQ) and terminus ante quem (TAQ) for the dunes, but it has been confirmed that the greyish layer that lies immediately underneath the sandy layer, which in turn is located below the lower black band, includes potsherds from the middle phase of the Final Jomon period (called the Kurokawa 黒川-style assemblage; ibid.). The lower black band itself formed a stable base on which cemeteries, such as the Shinmachi 新町; Shima TBE 1987), were situated during the Incipient Yayoi and first half of the Yayoi I. The sandy layer sandwiched between the lower black band and the layer containing the Kurokawa potsherds indicates that the dune underwent a rapid formation episode.

---

2 Although Sakaguchi calibrated C-14 dates using his own method, the calibrated dates coincide fairly well with the calibrations of international conventions such as Intcal08 (Shitara 2006).
With regard to the mechanism of sand dune formation, this sandwiching of the sandy layer between the greyish layer and the lower black band indicates a cold spell and a lowering of the sea level. If we refer to Sakaguchi’s findings based on his pollen analysis, the episode can be attributed to the period of cooling between circa the mid-ninth century BC and the beginning of the fourth century BC. It suggests that the beginning of the Yayoi period, that is, the Incipient Yayoi\(^3\) (the Yusu [夜日]-style assemblage phase; see Chapter 5.3.1–3), dates back to the time during this cold period, and that a part of the Incipient Yayoi and the first half of the Yayoi I date back to the period when it was warm, the sea level rose and the formation of the dunes ceased, that is, after the beginning of the fourth century BC.

Concerning the cooling and warming events illustrated earlier, it is particularly interesting that they appear to coincide with the famous plateau around 2400 uncal BP and the steep drop before that in the calibration curve for radiocarbon dating (IntCal09 2009). Carbon-14 (C-14) is produced by collisions between the nitrogen nuclei and cosmic rays in the upper atmosphere. The amount of cosmic rays reaching the upper atmosphere is influenced by the strength of the sunrays, which prevent cosmic rays to enter the solar system and reach the atmosphere. Therefore, when sunrays are strong, the amount of cosmic rays reaching the upper atmosphere decreases, and the production of C-14 is reduced accordingly.

The strength of sunrays correlates with the activity of sunspots, and the former is weak when the latter is low. These observations suggest that the amount of C-14 in the atmosphere is greater than usual when the sunrays are weaker than usual and vice versa. This means that the phase of steep drop in the calibration curve was a warmer-than-usual period, because a drop implies that there was less C-14 than usual in the atmosphere, which made the dates of the tree rings formed during the phase appear younger.\(^4\) Based on a similar mechanism, we can say that the plateau – resulting from the presence of more C-14 than usual in the atmosphere, which made the dates of the tree rings during the phase appear older – was a colder-than-usual period (Figure 4.1.A–C).

The steep drop before the plateau spans roughly the period between 800 and 700 BC, while the plateau roughly extends from 700 to 450 BC. The latter period appears to coincide with Sakaguchi’s findings of the cooling episode between circa the mid-ninth century BC and the beginning of the fourth century BC.

If we focus on the calibration curve, however, we observe another steep drop immediately after the plateau. The drop spans roughly the period between 450 BC and 300 BC, and it indicates a warming episode based on the above-mentioned correlations between the strength of sunrays, amount of cosmic rays reaching the upper atmosphere and temperature of the atmosphere. The onset of this warming also reasonably coincides with the onset of Sakaguchi’s warm stage, that is, circa the beginning of the fourth century BC; however, its end does not correspond with that of Sakaguchi’s warm stage, that is, c. the early first century BC. After this drop, there is another plateau, much shorter than the previous one, which spans the time period from circa 300 to 100 cal BC. Since this 200-year period would have been a cooler-than-usual period, it is believed that Sakaguchi’s pollen analysis might have missed the abrupt change from a warm to a cold spell.

Nevertheless, the pollen data collected from the site of Hie (比恵) in Fukuoka prefecture, might reflect this colder spell. Hideaki Noi, who examined column samples from the site, suggests that there might have been a drop of one degree centigrade in temperature at some point of time between the final phase of the Yayoi I and Yayoi III/IV. Noi’s (1991, 231–233) analysis has revealed that the layers whose TAQ is the final phase of Yayoi I contain a significant amount of hackberry (Celtis-Aphananthe) pollen, whereas the amount of

\(^3\) Or also regarded as the later phase of the Latest Jomon period.

\(^4\) The relationship between the strength of sunrays, the amount of cosmic rays reaching the upper atmosphere, and the temperature of the atmosphere is thought to be highly complicated. For instance, it is argued that the amount of cosmic rays reaching the upper atmosphere correlates with the rate of ionisation which correlates with the amount of cloud (e.g. Marsh and Svensmark 2003). Hence, it can be deduced that when the activity of the sun is weaker than usual, more cosmic rays can reach the upper atmosphere, which causes more cloud cover in the lower atmosphere, resulting in the cooling of the temperature.
oak (*Cyclobalanopsis*) pollen is significantly higher in the layers above this. Noi argues that the increase in the latter indicates a drop in temperature of about one degree centigrade (ibid., 233) and that the former plants tend to flourish during transitional phases between the appearance of warm- and cold-adapted flora (ibid.). This might suggest that the latter established itself in the flora during the above-mentioned cold spell, which probably began some time before the end of the Yayoi I. These observations suggest that the cooling episode which is indicated in the calibration curve began some time before the final phase of the Yayoi I and that the cold spell continued until around the Yayoi III period (and possibly the beginning of the Yayoi IV period), based on the TPQ for the latter, as determined by the imported Early Han Chinese bronze mirrors, dating from the second half of the first century BC (see Chapter 3.3.2, ‘Absolute Chronology’). The Yayoi III, IV and the beginning of the Yayoi V would have experienced climatic fluctuations (Figure 4.1.B).

This nicely corresponds with Noi’s (1991) Hie data, which reveal that oak (*Cyclobalanopsis*) pollen remained significant in quantity throughout the Middle Yayoi period (i.e. the Yayoi II–IV).5

To sum up, the combination of the formation process of the sand dunes and the black bands in them, Sakaguchi’s and Noi’s pollen analyses, and the two significant drops and the plateau in the calibration curve suggest that the Yayoi period began during the cold period immediately following the warm period between circa the ninth and eighth centuries BC and that it generally continued to be cold until the early first century BC, except for a possible warm spell between circa the

5 If the data were found to reflect a prolonged colder spell, they would contradict Sakaguchi’s pollen analysis, which suggests that the same period was a warm one.
Figure 4.1 (continued)
mid-fifth and late fourth centuries BC – the end of which probably overlaps with the final phase of the Yayoi I.

The formation of the previously mentioned black band, based on the archaeological evidence, appears to have continued until at least the beginning of the Kofun period, indicated by the potsherds of the early Haji ware collected from the upper layers of the black band in the Doigahama site (Iseki 1983). However, Sakaguchi’s (1982, 16) pollen analysis indicates that the period between circa the early first century BC and the late eighth century AD was ‘an unstable cold stage, in which the cold, mild and warm spells frequently alternated’. The calibration curve shows a series of small steep drops and short plateaus during the same period, suggesting that there were alternate cold and warm spells (IntCal09 2009). Among them, there is a significant drop in the curve around 200 cal AD, and another one between 350 and 450 cal AD (Figure 4.1.C), indicating short, warm spells, with a fairly cold period between them (ibid.). It is interesting to note that the southern hemisphere experienced a cold spell between 250 and 550 cal AD (Burroughs 2005). These observations suggest that the Later Yayoi V and the earlier half (i.e. Early and Middle parts) of the Kofun period experienced a period of unstable cold weather. The upper sandy layer of the sand dune of Shibushi Bay in Kagoshima prefecture, on which the large keyhole tumulus of Yokose (横瀬) was built around the late fifth century AD, may have been formed during this cold spell (cf. Hashimoto, et al. 2008).

It appears that from the middle part of the Kofun period onwards, the sea level rose by a couple of metres. This is indicated by the complete burial of the shallow valleys originally created by the severe cooling episode before the beginning of the Yayoi, and it also suggests a warming episode (Tsujii 1997, 168–170). In Europe, the next cooling episode occurred between c. AD 950 and AD 1150.

In brief, the Incipient Yayoi began during a cold spell, while the Yayoi I might have corresponded with the onset of a warm spell. The late Yayoi I–III periods were generally cold periods with probable temperature fluctuations, and there was a cold spell during the second half of the Yayoi V; it again may have been quite cold around the Yayoi–Kofun transition and the Early Kofun. The Early and Middle Kofun periods might have experienced a warm spell, but there is a possibility that cold spells momentarily emerged again during the late Middle and the Late Kofun (c. sixth century AD) period.

From the preceding discussion, we can conclude that the phases of climatic and topographic changes appear to coincide with the phases of change in the archaeological evidence fairly well: the transition from the warm to the cold spell around the seventh to fifth centuries BC coincided with the introduction of the Yayoi package (see Chapter 5); the subsequent warming might have corresponded with the spread of agrarian communities (see Chapter 5.3.4). The cold spells following this (i.e. between the late Yayoi I and Yayoi III) coincided with the periods of budding off of smaller hamlets from preexisting settlements and the rapid formation of regional structures consisting of central place–satellite settlement relations (see Chapter 6.4). The next cold spell appears to have corresponded with the Yayoi–Kofun transition (see Chapter 8).

Climate and topography constitute the physical settings in which people decide how to make sense of the environment and deal with it. These settings change, giving rise to changes in various domains of their world, to which the people have to react. In that sense, the above observation is not surprising. In that context, however, it is important to specify how the environmental changes affected the way in which individual fields of social reproduction worked, whether they generated contradictions between them and how they culminated in social change. Needless to say, in such specification we should avoid the fallacy of simplistic environmental determinism. Instead, let us consider environmental factors as one of the ranges of complexity which people and communities have to make sense of and deal with.

3. THE EAST ASIAN CONTEXT

China had already developed a complex sociopolitical organisation by the time of the Shang (商) period (c. the sixteenth to eleventh centuries BC), when the residents of the peninsula and archipelago still pursued the hunter-gatherer/early agricultural way of life. From the Zhou (周) period (late eleventh century BC to 256 BC)
onwards, Chinese polities rapidly acquired state-like characteristics, and the weakening of the Zhou authority (from the Late Zhou period [771 BC onwards] led to a prolonged period of turmoil, which saw the rise and fall of polities competing over lands, resources and labour force (during the Spring and Autumn, 春秋, period [722-481 BC] and the Warring States, 戰國, period [476-221 BC]), which in turn accelerated developments in the systems of governance, production, transportation, military technology and diplomacy techniques. The exact nature of the effects of this dynamic process on the social transformation of its eastern periphery and beyond is unclear, but the period saw the development of a unique bronzeworking tradition represented by the Liaoning (遼寧) type of dagger and a general increase in social complexity across the peninsula, suggesting that various types of technologies, both material and immaterial, must have emanated from the competing polities through many channels including small-scale migrations. As mentioned earlier, the Yayoi package was also introduced in the northern Kyushu region of the archipelago at this time (see Chapter 3).7

After the unification by the Qin (秦; 221-206 BC), the relationship between the successive dynasties with all the fluctuating frontiers, and polities surrounding them, became one of asymmetrical co-dependency. The Han (漢) dynasty’s two phases – the Early Han (206 BC–AD 8) and the Late Han (AD 25–220), with the short-lived Xin (新) dynasty (AD 8–23) between – certainly had an empire-like character from the very beginning; they tried to secure their boundaries by ever-expanding them, which took the form of incorporating polities on the frontiers into their economic-cosmological sphere. For instance, according to the Confucian ideology which became particularly influential among the governing class from the middle Early Han period onwards, the lands beyond the frontiers were perceived to be occupied by barbarians (Nishijima 1983, 1985), unto which the god-given virtue of the emperors permeated (ibid.). The barbarians were then attracted to that virtue and naturally came to pay their respects and send their tributes to the emperor (ibid.). This implied that those areas and the communities occupying them were supposed to be incorporated, in one way or another, into the sphere over which the emperors reigned as representatives of the will of the god, who was cosmologically perceived as the emperor of heaven (ibid.).

In actuality, in cases where such communities were integrated under leaders whose status was stable enough for politico-diplomatic negotiations, they were either encouraged to or coerced into bringing tributes to the emperors, and in return, they were guaranteed the status of the emperor’s faithful subordinates, with the presentation of titles and official seals. In contrast, outposts (‘commanderies’) were established in places where such communities were small, simple and unintegrated. Such expansion was accelerated from the Early Han period onwards, and the hierarchical relationship was symbolically represented by the imperial issuance of official seals made from different materials and with handles of different shapes for indicating status differences. When sending tributes, the accompanying official letters had to be clay-sealed with a stamp of the issued seal (ibid.).

In Japan, this system of pseudo-king-vassal relationship was widely known as the Sakuho (冊封) system (Nishijima 1985).

In many cases, the expansion itself ignited the development of social complexity in and integration of the communities situated along the frontiers. Some polities which had prospered because of their contact with the dynasties became strong and internally unified enough to launch organised, large-scale attacks on the dynasties, even causing the eventual downfall of some of the dynasties (ibid.). For the polities of the peninsula and the archipelago, the Early Han empire’s establishment of the four commanderies of Lelang (樂浪), Xuantu (玄菟), Zhenfan (真番) and Lintun (臨屯) in 108 BC along the north-eastern regions of Korea.

6 The definition of the state adopted in the present volume, see Chapter 3.2.1, ‘Temporal Scope’.
7 The trajectory described here has been revealed and described in an innumerable numbers of works, among which (Nishijima 1983, 1985) are most respected and frequently cited. (Yamao 2003) is a concise summary of what he revealed throughout his long carrier specialised in Japanese ancient history and the history of interaction between polities in the peninsula and the archipelago, and well cited by Japanese Kofun specialists. The overall picture can be situated in a broad centre-and-periphery perspective (see e.g. Rowlands and Larsen 1987), although this volume does not draw on it.
China and the northern part of the Korean peninsula was significant (see Chapter 6).8

From the Late Han period onwards, nomadic and semi-nomadic tribal polities of the northern and north-eastern frontiers became strong enough to be a constant threat to the stability of the empires. Groups surrounding those polities became the subject of militaristic-diplomatic interventions by the successive dynasties in their attempts to check the growing power of those polities (e.g. Xiongnu [匈奴] and Koguryo [遼句麗]).9 The tribal groups of the southern part of the Korean peninsula and the western part of the Japanese archipelago became entangled in this dynamic system of asymmetrical co-dependency. In AD 57, the chief of Na (奴), a polity widely accepted to have been located in the Fukuoka plain of northern Kyushu, sent a delegation to Emperor Guangwu (光武), who granted its chief a kingship. In AD 107, records indicate that the king of Wa, called Suisho (師升), and others sent a delegation to the court of Emperor An (安). The fact that the emperor had been enthroned in AD 106 might suggest that they knew of the event and tried to take advantage of it. Those events took place during the period covered in Chapter 7.

The downfall of the Late Han dynasty (AD 220) marked the end of the unified Chinese domain, and it remained divided until its reunification by the Sui (隋) dynasty in AD 581. The dynastic states within the Chinese domain competed against one another ideologically, cosmologically and militaristically by claiming sole legitimacy as the ruling dynasty. By this time, the Korean peninsula and the western part of the Japanese archipelago became integrated into a small number of complex polities, and they began to compete against one another by tactically forging ties with the competing Chinese dynasties.

The turmoil in the dying years of the Late Han dynasty saw the semi-independence of the commanderies of Liaotong (遼東), Xuantu, Lelang (带方) under the rule of the Gongsun (公孫), who was originally appointed as the governor of the region by the Han authority but who later become an independent local ruler (AD 190–238). The Wa, who were now represented by Queen Himiko (卑弥呼) of Yamatai (邪馬台), as recorded in the book of Wei (魏) in the Records of Three Kingdoms (三国志), were described in the same record – together with some polities in the southern Korean peninsula – as ‘belonging to’ this Gongsun polity around the year AD 210. The Gongsun polity tried to maintain its independence by contacting and negotiating its status with the Three Kingdoms (三国) who were contesting for the legitimate emperorship of China – the Wei (魏), the Wu (吳) and the Shu (蜀); although the Wei and Wu kingdoms were the main contenders for this position, it was eventually achieved by the Wei in AD 238. Again, at this juncture, co-dependency appeared in the form of a delegation sent by Himiko through the commandery of Daifeng to Luoyang (洛陽), the capital of Wei, in AD 239; in return, the queen was appointed the king of Wa, issued the famous golden seal (金印) and presented with a range of items, including bronze mirrors, as her ‘favourite items’ (好物). For the Wei, it was profitable to retain Wa as a tributary state because the archipelago was believed to stretch not to the north-east but to the south and therefore extend towards the domain of Wu, that is, the region off the coast of the present-day Fujian province (Yamao 1986, 135–150), which would enable the Wei to keep an eye on Wu’s manoeuvres. For the queen, the Wei emperor’s authorisation as the legitimate chief of the Wa, along with the presentation of items which would raise her prestige far and wide, must have been advantageous in the ongoing hierarchisation and centralisation of inter-regional relations (the archaeological evidence of what was going on and its interpretation during this period are covered in Chapter 8).

The Wei defeated the Shu in AD 263, and the Wei emperor Cao Huan (曹奂) (posthumously called Emperor Yuan, 元) handed over the emperorship to Sima Yan (司馬炎, posthumously called Emperor Wu, 武), who founded the Jin (晉) dynasty in AD 265. In AD 266, Queen Toyo (台與,
possibly Iyo, 勸与) of Wa again sent a delegation to Jin. The Jin dynasty's defeat of the Wu in AD 280 marked the reunification of China after the demise of the late Han dynasty, but the death of Emperor Wu ignited the War of the Eight Princes (八王之乱), which in turn caused the demise of the Jin dynasty in AD 316. Following this, other polities, many of them nomadic, successively came to power and then declined in northern China (the Sixteen Kingdoms, 五胡十六国) until the area's unification under the Northern Wei (北魏) in AD 439. The Eastern Jin dynasty, claiming to be the legitimate successor of the Jin dynasty, was founded in the south and lasted until AD 420, when the emperorship was handed over to another ruler, also called Emperor Wu, who founded the Song dynasty (Liu Song, 刘宋). The turmoil in the north only further strengthened the Koguryo kingdom of northern Korea and led to the development of the polities that were later to become the Paekche (百济) and Shilla (新羅) kingdoms. During this period, while northern China experienced a power vacuum, the Wa stopped maintaining official contacts with Chinese polities and appear to have begun exchanges with the increasingly integrated and complex communities of the peninsula, while intervening in their internal and external conflicts. The stèle of King Gwanggaeto (好太王; reigning from AD 391 to 412) of Koguryo, erected in AD 414 by his son Jangsu (长寿王; AD 413–491), records that the Wa had begun military interventions in the Paekche and Shilla kingdoms (records indicate that they basically backed the former while trying to subjugate the latter) since AD 391 until King Gwanggaeto defeated the Wa in AD 400 and 404 and chased them out of the domain. This detail may have been exaggerated in order to glorify the king's achievement, but it is generally accepted that the descriptions reflect a real occurrence. Those events took place during the period covered in Chapter 9.

Since the foundation of Liu Song in AD 420, five successive kings of Wa – probably the paramount chieftains – sent a total of ten delegations (in AD 421, 425, 430, 438, 443, 451, 460, 462, 477 and 478) to the Liu Song court, requesting that they be granted the military rulership (i.e. be made the ‘generals’, 将軍) of not only Wa but also Paekche, Shilla and other smaller polities along the southern coastal region of the Korean peninsula. Their pleas were partially addressed but never fully granted. In addition, records indicate that after AD 478, the Wa did not send any official delegation to China until AD 660.

The period from the end of the fifth to the end of the sixth centuries AD was one of intense interactions and confrontations between the Wa and the Koguryo, Paekche, Shilla and other small polities of the Korean southern coast. During this period, goods, people and information were exchanged through a complex process of negotiations, forging of alliances and militaristic confrontations, thus developing the mechanisms of efficient governance and control in those polities. Against this background, it is but natural that the reunification of the Chinese domain under the Sui (AD 581–618) coincided with the final phase of inter-polity competition in the peninsula and the archipelago, while the establishment of the Tang (AD 618) coincided with the final formative phase of the ancient state of Japan, as well as that of Shilla, who unified the peninsula under their rule in AD 663 by annihilating the Paekche kingdom. Those events took place during the periods covered in Chapters 10 and 11.

As in the case of environmental factors, we should avoid attributing the causes of the changes that occurred in the regions situated on the periphery of the Chinese imperial domain solely to their relationships with each other. While it appears that these relationships gained increasing importance as the process of early state formation progressed, what needs to be investigated is how these relationships led to changes and developments (i.e. increasing complexity) in the functioning of each field of social reproduction (see Chapter 3.4.1, ‘Theory’). We need to study whether the relationships generated any contradictions between those fields and whether they subsequently led to any significant social changes. In that sense, again, contacts between those regions and political entities should be treated as a complex domain; the people and the communities in this domain had to make sense of and deal with such complexities as time progressed. We can infer that the experience of dealing with not only people who had different ways of thinking, feeling and acting but also events which became increasingly
political – and later on even politico-militaristic – must have generated very different sets of contingencies from those generated by the erstwhile rice-agriculture-based daily life of the inhabitants of the archipelago. In that context, at least, we can safely assume that the deeper their commitments to matters concerning their relations with the Chinese dynasties and the polities of the peninsula, the greater were the changes effected in the inhabitants’ ways of thinking, feeling and acting.