
1 Introduction to Analysis of
Low-Speed Impact

Philosophy is written in this grand book – I mean the universe – which stands
continuously open to our gaze, but cannot be understood unless one first learns to
comprehend the language in which it is written. It is written in the language of
mathematics and its characters are triangles, circles and other geometric figures,
without which it is humanly impossible to understand a single word of it; without these
one is wandering about in a dark labyrinth.

Galileo Galelei,
Two New Sciences, 1632

When a bat strikes a ball, or a hammer hits a nail, the surfaces of two bodies come
together with some relative velocity at an initial instant termed incidence. After inci-
dence, there would be interference or interpenetration of the bodies were it not for the
interface pressure that arises in a small area of contact around the initial contact point
between the two bodies. At each instant during the contact period, the pressure in the
contact area results in local deformation and consequent indentation; this indentation
just equals the interference that would exist if the bodies were not deformed.

At each instant during impact the interface or contact pressure has a resultant force of
action or reaction that act in opposite directions on the two colliding bodies and thereby
resist interpenetration. Initially, the force increases with increasing indentation and it
slows the speed that the bodies are approaching each other. At some instant during
impact the work done by the contact force is sufficient to bring the speed of approach of
the two bodies to zero. There is a transition at this time from compression to restitution;
i.e., from a normal relative velocity of approach to one of separation. During restitution,
the energy stored during compression drives the two bodies apart until finally they
separate with some relative velocity. For impact between solid bodies, the contact force
that acts during collision is consistent with the local deformations that are required for
the surfaces of the two bodies to conform in the contact area.

The local deformations that arise during impact vary according to the incident or
relative velocity at the point of initial contact and the hardness of the colliding bodies.
Slow speed collisions result in contact pressures that cause small deformations only;
these are significant solely in a small region adjacent to the contact area. At higher
speeds, there are large deformations (i.e., strains) near the contact area that result from
plastic flow; these large localized deformations are easily recognizable since they have
gross manifestations such as cratering or penetration. In each case, the deformations are
consistent with the contact force that causes velocity changes in the colliding bodies.
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The normal impact speed required to cause large plastic deformation is between
102 � VY and 103 � VY , where VY is the minimum relative speed required to initiate
plastic yield in the softer body (for metals the normal incident speed at yield VY is of the
order of 0.1 ms�1). This text explains how dynamics of slow-speed collisions are
related to both local and global deformations in the colliding bodies.

1.1 Terminology of Two-Body Impact

1.1.1 Configuration of Colliding Bodies

As two colliding bodies approach each other, there is an instant of time, termed
incidence, when a single contact point C on the surface of the first body B initially
comes into contact with point C0 on the surface of the second body B0. This time t = 0 is
the initial instant of impact. Ordinarily the surface of at least one of the bodies has a
continuous gradient at either C or C0 (i.e., at least one body has a topologically smooth
surface) so that there is a unique common tangent plane that passes through the
coincident contact points C and C0. The orientation of this plane is defined by the
direction of the normal vector n; a unit vector which is perpendicular to the common
tangent plane.

Central or Collinear Impact Configuration
If each colliding body has a center of mass G or G0 that is on the common normal line
passing through C, the impact configuration is collinear or central. This requires that the
position vector rC from G to C, and the vector r0C from G0 to C, are both parallel to the
common normal line as shown in Figure 1.1a,

rC � n ¼ r0C � n ¼ 0

Collinear impact configurations result in equations of motion for normal and tangential
directions that can be decoupled. If the configuration is not collinear, the configuration
is eccentric.

Figure 1.1 Colliding bodies B and B0 with (a) collinear and (b) non-collinear impact configurations.
In both cases the angle of incidence is oblique; i.e., ψ0 6¼ 0.
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Eccentric Impact Configuration
The impact configuration is eccentric if at least one body has a center of mass that is off the
line of the common normal passing through C as shown in Figure 1.1b. This occurs if either

rC � n 6¼ 0 or r0C � n 6¼ 0

If the configuration is eccentric and the bodies are rough (i.e., there is a tangential force
of friction that opposes sliding), the equations of motion involve both normal and
tangential forces (and impulses). Thus, eccentric impact between rough bodies involves
effects of friction and normal forces that are not separable.

1.1.2 Relative Velocity at Contact Point

At the instant when colliding bodies first interact, the coincident contact points C and C0

have an initial or incident relative velocity v0 � v 0ð Þ ¼ VC 0ð Þ � V0
C 0ð Þ. The initial

relative velocity at C has a component normal to the tangent plane v0 �n and a
component tangential to the tangent plane n� v0ð Þ � n; the latter component is termed
sliding. The angle of incidence ψ0 is the angle between the initial relative velocity
vector v0 and the normal to the common tangent plane n, i.e.,

ψ0 � tan �1 n� v0ð Þ � n
v0 �n

� �

The angle of incidence can be either positive or negative; it takes the same sign as the
initial direction of tangential relative velocity.

Direct impact occurs when in each body the velocity field is uniform and parallel to
the normal direction. Direct impact requires that the angle of obliquity at incidence
equals zero, ψ0 ¼ 0; on the other hand, oblique impact occurs when the angle of
incidence is nonzero, ψ0 6¼ 0.

1.1.3 Interaction Force

An interaction force and the impulse that it generates can be resolved into components
normal and tangential to the common tangent plane. For particle impact the impulse is
considered to be normal to the contact surface and due to short-range interatomic
repulsion. For solid bodies however, contact forces arise from local deformation of
the colliding bodies; these forces and their associated deformations ensure compatibility
of displacements in the contact area and thereby prevent interpenetration or overlap of
the bodies. In addition, a tangential force, friction, can arise if the bodies are rough and
there is sliding in the contact area. Dry friction is negligible if the bodies are smooth.

Conservative forces are functions solely of the relative displacement of the interact-
ing bodies. In an elastic collision, the forces associated with attraction or repulsion are
conservative (i.e., reversible); it is not necessary, however, for friction (a nonconservative
force) to be negligible. In an inelastic collision the interaction forces (other than friction)
are nonconservative, so that there is a loss of kinetic energy as a result of the cycle of
compression and restitution that gives rise to the interaction force acting in the contact
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region. The energy loss can be due to irreversible elastic-plastic material behavior,
rate-dependent material behavior, elastic waves trapped in the separating bodies, etc.

1.2 Classification of Methods for Analyzing Impact

To classify collisions into specific types which require distinct methods of analysis, we
need to think about the deformations that develop during collision, the distribution of
these deformations in each of the colliding bodies, and how these deformations affect
the period of contact. In general, there are four types of analysis for slow-speed
collisions and they are associated with particle impact, rigid-body impact, transverse
impact on flexible bodies (i.e., transverse wave propagation or vibrations), and axial
impact on flexible bodies (i.e., longitudinal wave propagation). A typical example
where each method applies is illustrated in Figure 1.2.

Figure 1.2 Impact problems requiring different analytical approaches: (a) particle impact, (b) rigid-
body impact, (c) transverse deformations of flexible bodies, and (d) axial deformation of flexible
bodies.
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(a) Particle impact is an analytical approximation that considers a normal component
of interaction impulse only. By definition, particles are smooth and spherical. The
source of the interaction force is unspecified but presumably it is strong and very
short range so that the period of interaction is a negligibly small instant of time.

(b) Rigid-body impact occurs between compact bodies where the contact area
remains small in comparison with all section dimensions. Stresses generated
in the contact area decrease rapidly with radial distance from the contact
region, so the internal energy of deformation is concentrated in a small region
surrounding the interface. This small deforming region has large stiffness and
acts much like a short but very stiff spring separating the colliding bodies at the
contact point. The period of contact depends on the normal compliance of
the contact region and an effective mass of the colliding bodies.

(c) Transverse impact on flexible bodies occurs when at least one of the bodies suffers
bending as a result of the interface pressures in the contact area; bending
is significant at points far from the contact area if the depth of the body in
the direction normal to the common tangent plane is small in comparison
with dimensions parallel to this plane. This bending reduces the interface pres-
sure and prolongs the period of contact. Bending is a source of energy dissipation
during collision in addition to the energy loss due to local deformation that arises
from the vicinity of contact. This can occur in beams, plates, or shells.

(d) Axial impact on flexible bodies generates longitudinal waves which affect the
dynamic analysis of the bodies only if there is a boundary equidistant from the
impact point which reflects the radiating wave back to the impact point; it reflects
the outgoing wave as a coherent stress pulse that travels back to its source
essentially undiminished in amplitude. In this case the time of contact depends
on the transit time for a wave traveling between the impact surface and the distal
surface. Ordinarily this time will be less than that for rigid body impact between
hard bodies with convex surfaces.

1.2.1 Description of “Rigid Body” Impact

For bodies that are hard (i.e., with small compliance) only very small deformations are
required to generate very large contact pressures; if the surfaces are initially nonconform-
ing, the small deformations imply that the contact area remains small throughout the
contact period. The interface pressure in this small contact area causes the initially
nonconforming contact surfaces to deform until they conform or touch at most if not all
points in a small contact area. Although the contact area remains small in comparison with
cross-sectional dimensions of either body, the contact pressure is large and it gives a large
stress-resultant or contact force. The contact force is large enough to rapidly change the
normal component of relative velocity across the small deforming region that surrounds
the contact patch. The large contact force rapidly accelerates the bodies and thereby limits
interference which would otherwise develop after incidence if the bodies did not deform.

Hence in a small region surrounding the contact area the colliding bodies are subjected
to large stresses and corresponding strains that can exceed the yield strain of the material.
At quite modest impact velocities (on the order of 0.1 ms�1 for impact between bodies
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composed of structural metals) irreversible plastic deformation begins to dissipate some
energy during the collision; consequently, there is some loss of kinetic energy of relative
motion in all but the most benign collisions. Despite large stresses in the contact region,
the stresses decay rapidly with increasing distance from the contact surface. In an elastic
body with a spherical coordinate system centered at the initial contact point, the radial
component of stress σr decreases very rapidly with increasing radial distance r from the
contact region (in an elastic solid σr decreases as r�2 in a 3D deformation field). For a
hard body the corresponding rapid decrease in strain means that significant deformations
occur only in a small region around the point of initial contact; consequently, the
deflection or indentation of the contact area remains very small.
Since the region of significant strain is not very deep or extensive, hard bodies have

very small compliance (i.e., a large force generates only a small deflection). The small
region of significant deformation is like a short stiff spring, which is compressed
between the two bodies during the period of contact. This stiff spring with a large
spring constant gives a very brief period of contact. For example, a hard-thrown
baseball or cricket ball striking a bat is in contact for a period of roughly two millisec-
onds (2 ms) while a steel hammer striking a nail is in contact for a period of about
0.2 ms. The contact duration for the hammer and nail is smaller because these colliding
bodies are composed of harder materials than the ball and bat. Both collisions generate a
maximum force on the order of 10 kN (i.e., roughly one ton).
From an analytical point of view, the most important consequence of small compli-

ance of hard bodies is that very little movement occurs during the very brief period of
contact; i.e., despite large contact forces there is insufficient time for the bodies to
displace significantly during impact. This observation forms a fundamental hypothesis
of rigid body impact theory; namely that for hard bodies, analyses of impact can
consider the period of contact to be vanishingly small so that changes in velocity occur
instantaneously (i.e., in the initial or incident configuration). The system configuration
at incidence is termed the impact configuration. This theory assumes there is no
movement during the contact period.

Underlying Premise of Rigid Body Impact Theory
a. In each of the colliding bodies the contact area remains small in comparison with

both the cross-sectional dimensions and the depth of the body in the normal
direction.

b. The contact period is sufficiently brief that during contact the displacements are
negligible and hence there are no changes in the system configuration; i.e., the
contact period can be considered to be instantaneous.

If these conditions are approximately satisfied, rigid body impact theory can be
applicable. In general, this requires that the bodies be hard and that they suffer only small
local deformation in collision. For a solid composed of material that is rate-independent,
a small contact area results in significant strains only in a small region around the initial
contact point. If the body is hard the very limited region of significant deformations
causes compliance to be small and consequently, the contact period to be very brief. This
results in two major simplifications.
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a. Equations of planar motion are trivially integrable to obtain algebraic relations
between velocity changes and the reaction impulse.1

b. Finite active forces (e.g. gravitational or magnetic attraction) which act during
the period of contact can be considered to be negligible since these forces do no
work during the collision.

During the contact period the only significant active forces are reactions at points of
contact with other bodies; these reactions are induced by displacement constraints.

Figure 1.3 shows a collision where application of rigid body impact theory is
appropriate. This series of high speed photographs shows development of a small
area of contact when an initially stationary field hockey ball is struck by a hockey stick
at an incident speed of 18 ms�1. During collision the contact area increases to a
maximum radius aC that remains small in comparison with the ball radius R0; in
Figure 1.3, aC/R0 < 0:2: This small contact area is a consequence of the small normal
compliance (or large elastic modulus) of both colliding bodies and the initial lack of
conformation of the surfaces around the initial contact point.

A useful means of postulating rigid body impact theory is to suppose that two
colliding bodies are separated by an infinitesimal deformable particle.2 The deformable
particle is located between the point of initial contact on one body and that on the
other, although these points are coincident. The physical construct of an infinitesimal
compliant element separating two bodies at a point of contact allows variations in
velocity during impact to be resolved as a function of the normal component of impulse.
This normal component of impulse is equivalent to the integral of the normal contact
force over the period of time after incidence. Since collisions between bodies with
nonadhesive contact surfaces involve only compression of the deformable particle –

never extension – the normal component of impulse is a monotonously increasing
function of time after incidence. Thus, variations in velocity during an instantaneous
collision are resolved by choosing as an independent variable the normal component of
impulse rather than time. This gives velocity changes which are a continuous or smooth
function of impulse.

There are three notable classes of impact problems where rigid body impact theory is
not applicable if the impact parameters representing energy dissipation are to have any
range of applicability. (a) The first involve impulsive couples applied at the contact
point. Since the contact area between rigid bodies is negligibly small, impulsive couples
are inconsistent with rigid body impact theory. To relate a couple acting during impulse
to physical processes, one must consider the distribution of deformation in the contact
region. Then the couple, due to a distribution of tangential force, can be obtained from
the law of friction and the first moment of tractions in a finite contact area about the
common normal through the contact point. (b) A second class of problems where rigid

1 Because velocity changes can be obtained from algebraic relations, rigid body impact was one of the most
important topics in dynamics before the development of calculus late in the seventeenth century.

2 The physical construct of a deformable particle separating contact points on colliding rigid bodies is
mathematically equivalent to Keller’s (1986) asymptotic method of integrating with respect to time the
equations for relative acceleration of deformable bodies and then taking the limit as compliance (or contact
period) becomes vanishingly small.
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body impact theory does not apply is axial impact of collinear rods with plane ends.
These are problems of one dimensional wave propagation where the contact area and
cross-sectional area are equal because the contacting surfaces are conforming; in this
case the contact area may not be small. In these problems, deformations and particle
velocities far from the contact region are not insignificant. As a consequence, for one-
dimensional waves in long bars, the contact period is dependent on material properties
and depth of the bars in a direction normal to the contact plane rather than compliance of
local deformation near a point of initial contact. (c) The third class of problems where
rigid body theory is insufficient are transverse impacts on beams or plates where
vibration energy is significant.

Figure 1.3 High speed photographs of hockey stick striking at 18 ms�1 (40 mph) against an
initially stationary field hockey ball (diam. D0 ¼ 74 mm, M0 ¼ 130 g). Framing rate 5000 fps,
contact duration tf � 0:0015 s, and maximum normal force Fc ¼ 3,900 N.

8 Introduction to Analysis of Low-Speed Impact
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Collisions with Compliant Contact Points of Otherwise “Rigid” Bodies
Whilemost of our attentionwill be directed toward rigid body impact, there are cases where
distribution of stress is significant in the region surrounding the contact area. These
problems require consideration of details of local deformation of the colliding bodies near
the point of initial contact; they are analyzed in Chapters 6 and 8. The most important
example may be collisions in multi-bodied systems where the contact points do not have
substantial increase in compliance as the contact becomes more remote from any point of
external impact; i.e., a compliant contact theory is required if all contacts have similar
stiffness or compliance. Considerations of local compliance may be represented by discrete
elements such as springs and dashpots or they can be obtained from continuum theory.
Also, for collisions between bodies where an irreversible compliance can be obtained for
each body, this compliance can be used to calculate energy loss during collision and thereby
evaluate the coefficient of restitution as a function of incident velocity at the impact point.
To obtain the local distribution of strain (and stress) near the contact region of deformable
bodies from continuum theory, the artifice of a deformable particle separating the contact
points needs to be abandoned. Instead we seek a distribution of contact pressure which
results in compatible surface displacements inside the periphery of the contact area; i.e., the
pressure distribution must be determined which causes the surfaces of initially noncon-
forming bodies to touch at each point inside a contact radius without interpenetration.

1.2.2 Description of Transverse Impact on Flexible Bodies

Transverse impact on plates, shells, or slender bars results in significant flexural
deformations of the colliding members both during and following the contact period. In
these cases, the stiffness of the contact region depends on flexural rigidity of the bodies in
addition to continuum properties of the region immediately adjacent to the contact area;
i.e., it is no longer sufficient to suppose that a small deforming region is surrounded by a
rigid body. Rather, flexural rigidity is usually the more important factor for contact
stiffness when impact occurs on a surface of a plate or shell structural component.

1.2.3 Description of Axial Impact on Flexible Bodies

Elastic or elastic-plastic waves radiating from the impact site are present in every impact
between deformable bodies – in a deformable body, it is these radiating waves that
transmit variations in velocity and stress from the contact region to the remainder of the
body. Waves are an important consideration for obtaining a description of the dynamic
response of the bodies, however, only if the period of collision is determined by
wave effects. This is the case for axial impact acting uniformly over one end of a slender
bar if the far or distal end of the bar terminates in a reflective boundary condition.
Similarly, for radial impact at the tip of a cone, elastic waves are important if the cone is
truncated by a spherical surface with a center of curvature at the apex. In these cases
where the impact point is also a focal point for some reflective distal surface, the wave
radiating from the impact point is reflected from the distal surface and then travels back
to the source where it affects the contact pressure. On the other hand, if different parts of
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the outgoing stress wave encounter boundaries at various times and these surfaces are not
normal to the direction of propagation, the wave will be reflected in directions that are
not towards the impact point; while the outgoing wave changes the momentum of the
body, this wave is diffused rather than returning to the source as a coherent wave that can
change the contact pressure and thereby affect the contact duration.

1.2.4 Applicability of Theories for Low-Speed Impact

This text presents several different methods for analyzing changes in velocity (and
contact forces) resulting from low-speed impact; i.e., where the bodies are not signifi-
cantly deformed by impact. These theories are listed in Table 1.1 with descriptions of
the differences and an indication of the range of applicability for each.

The stereo-mechanical theory is a relationship between incident and final conditions;
it results in discontinuous changes in velocity at impact. In this book a more sophisti-
cated rigid body theory is developed – a theory in which the changes in velocity are a
continuous function of the normal component of the impulse p at the contact point. This
theory results from considering that the coincident points of contact on two colliding
bodies are separated by an infinitesimal deformable particle – a particle that represents
local deformation around the small area of contact. With this artifice, the analysis can
follow the process of slip and/or slip-stick between coincident contact points if the
contact region has negligible tangential compliance. Rigid body theories are useful for
analyzing two-body impact between compact bodies composed of stiff materials;
however, they have limited applicability for multi-body impact problems.
When applied to multi-body problems, rigid body theories can give accurate results

only if the set of contacts that connect rigid bodies has a local contact compliance that is
either decreasing or increasing with distance from the point of external impact. If the
contact compliances that connect a set of rigid bodies are decreasing with increasing
distance from the point of external impact, then the separate reactions essentially
occur simultaneously. On the other hand, if the set of contacts have increasing local
contact compliance with increasing distance from the point of external impact, then the
reactions occur sequentially, with a delay that increases with distance from the point of
external impact. This second case is essentially one of wave propagation. Generally, the
reaction forces at points of contact arise from infinitesimal relative displacements that
develop during impact; these reaction forces are coupled when they overlap.
If, however, other points of contact or cross-sections of the body have compliance of the

same order of magnitude as that at any point of external impact, then the effect of these
flexibilities must be incorporated into the dynamic model of the system. If the compliant
elements are local to joints or other small regions of the system, an analytical model with
local compliancemay be satisfactory (e.g., see Chapter 8). On the other hand, if the body is
slender so that significant structural deformations develop during impact, either a wave
propagation or a structural vibration type analysismay be required (seeChapters 7 and 10).
Whether the distributed compliance is local to joints or continuously distributed through-
out a flexible structure, these theories require a time-dependent analysis to obtain reaction
forces that develop during contact and affect the changes in velocity in the system.
Hence, the selection of an appropriate theory depends on structural details and the

degree of refinement required to obtain the desired information.
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1.3 Principles of Dynamics

1.3.1 Particle Kinetics

The fundamental form of most principles of dynamics is in terms of dynamics of a
particle. A particle is a body of negligible or infinitesimal size; i.e., a point mass. The
particle is the building block that will be used to develop the dynamics of impact for
either rigid or deformable solids. A particle of mass M moving with velocity V has
momentum MV. If a resultant force F acts on the particle, this causes a change in
momentum in accord with Newton’s 2nd law of motion.

Law II: The momentum MV of a particle has a rate-of-change with respect to time
that is proportional to and in the direction of any resultant force F(t) acting on the
particle.3

d MVð Þ=dt ¼ F (1.1)

Usually the particle mass is constant so that Eq. (1.1) can be integrated to obtain
the changes in velocity as a continuous function of the impulse P(t).

V tð Þ � V 0ð Þ ¼ M�1
ðt
0
F t0ð Þ dt0 � M�1P tð Þ (1.2)

This vector expression is illustrated in Figure 1.4.
The interaction of two particles B and B0 that collide at time t = 0 generates active

forces F tð Þ and F0 tð Þ that act on each particle respectively, during the period of
interaction, 0 < t < tf ; these forces of interaction act to prevent interpenetration. The
particular nature of interaction forces depends on their source, i.e., whether they are due
to contact forces between solid bodies that cannot interpenetrate or are interatomic

Figure 1.4 Change in velocity of particle with mass M resulting from impulse P(t).

3 Newton’s second law is valid only in an inertial reference frame or a frame translating at constant speed
relative to an inertial reference frame. In practice a reference frame is usually considered to be fixed relative to
a body such as the earth which may be moving. Whether or not such a reference frame can be considered to be
inertial depends on the magnitude of the acceleration being calculated in comparison with the acceleration of
the reference body; i.e., whether or not the acceleration of the reference frame is negligible.

12 Introduction to Analysis of Low-Speed Impact
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forces acting between atomic particles. In any case, the force on each particle acts solely
in the radial direction. These interaction forces are related by Newton’s third law
of motion.

Law III: Two interacting bodies have forces of action and reaction that are equal in
magnitude, opposite in direction and collinear; i.e.,

F0 ¼ �F: (1.3)

Laws II and III are the basis for impulse-momentum methods of analysing impact.
Let particle B have mass M, and particle B0 have mass M0. Integration of Eq. (1.3) gives
equal but opposite impulses �P0 tð Þ ¼ P tð Þ so that equations of motion for the relative
velocity v � V� V0 can be obtained as

v tð Þ ¼ v 0ð Þ þ m�1P tð Þ, m�1 ¼ M�1 þM0�1 (1.4)

where m is the effective mass. The change of variables from velocity V(t) in an
inertial reference frame to relative velocity v(t) is illustrated in Figure 1.5. The limit of
Eq. (1.4) as the period of contact approaches zero, tf ! 0, gives the basis of smooth
dynamics of collision for particles and rigid bodies.

Example 1.1 A golf ball has mass M = 46 g. When hit by a heavy club the ball acquires
a speed of 44.6 ms–1 (100 mph) during a contact duration tf = 0.4 ms (milliseconds).
Assume that the force-deflection relation is linear and calculate an estimate of the
maximum force Fmax acting on the ball.

Solution
effective mass m = 0.046 kg
initial relative velocity v(0) = –v0 = –44.6 ms–1

Figure 1.5 (a) Equal but opposite normal impulses P on pair of colliding bodies with massesM and
M 0 result in velocity changes M�1P and �M�1P respectively. (b) Thin lines are initial and final
velocity for each body while the thick lines are initial relative velocity v 0ð Þ, the final relative
velocity v Pð Þ and the change in relative velocity m�1P.
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(i) linear spring ) simple harmonic motion for relative displacement δ at frequency
ω where ωtf ¼ π.

(ii) change in momentum of relative motion = impulse, Eq. (1.4)

mv0 ¼
ðtf
0
F tð Þdt ¼

ðtf
0
Fmax sinωt dt ¼ Fmax 1� cosω tf

� �
ω

) Fmax ¼ 8:06 kNð� 0:8 tonsÞ

1.3.2 Kinetics for Set of Particles

For a set of n particles where the ith particle has mass Mi and velocity Vi the equations
of translational motion can be expressed as

d

dt

Xn
i¼1

MiVi ¼
Xn
i¼1

Fi þ
Xn
i¼1

Xn
k¼1

F0
ik, k 6¼ i

where Fi is an external force acting on particle i and F0
ik is an internal interaction force of

particle k on particle i. Since the internal forces are equal but opposite F0
ik ¼ �F0

ki, the
sum of these forces over all particles vanishes; hence

d

dt

Xn
i¼1

MiVi ¼
Xn
i¼1

Fi (1.5)

The moment of momentum hO of particle i about point O is defined as
hO � ρi �MiVi where ρi is the position vector of the particle from O and Mi is the
mass of the particle. Thus, the set of particles has a moment of momentum about O,

hO ¼
Xn
i¼1

ρi �MiVi

For a set of n particles the rate of change of moment of momentum about O is related to
the moment about O of the external forces acting on the system,

dhO
dt

¼ d

dt

Xn
i¼1

ρi �MiVi ¼
Xn
i¼1

ρi � Fi (1.6)

If the configuration of the system does not change during the period of time t, integra-
tion of (1.6) with respect to time gives

hO tð Þ � hO 0ð Þ ¼
Xn
i¼1

ρi �
ðt
0
Fi t

0ð Þdt0 ¼
Xn
i¼1

ρi � Pi tð Þ (1.7)

1.3.3 Kinetic Equations for Rigid Body

A rigid body can be represented as a set of particles located at positions a fixed
distance apart. When the body is moving the only relative velocity between different
points on the body is due to angular velocity of the body ω and the distance between
the points.
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Suppose a body of mass M is composed of particles with mass Mi, i ¼ 1, � � � ,n
where the position vector of each particle is ρi in an inertial reference frame with origin
at O. The center of mass of this set of particles is located at position ρ̂ where

ρ̂ ¼ M�1
Xn
i¼1

Miρi, M ¼
Xn
i¼1

Mi

as illustrated in Figure 1.6. The center of mass has velocity V̂ � dρ̂=dt ¼
M�1Pn

i¼1MiVi. Hence for the set of particles that comprise this body, the translational
equation of motion Eq. (1.5) can be expressed as

d

dt
MV̂
� � ¼ Xn

i¼1

Fi (1.8)

Translational Momentum and Moment of Momentum
Themoment ofmomentumabout O for the body can be expressed in terms of themoment of
the translational momentum of the bodyMV̂ plus the couple from the rotational momentum
of the body. First note that the position of a particle ρi can be decomposed into the position
vector of the center of mass ρ̂ plus the position vector of the ith particle relative to the center
of mass ri; i.e., ρi ¼ ρ̂ þ ri. Thus, the moment of momentum about O becomes

hO ¼ ĥ þ
Xn
i¼1

ρ̂ �MV̂

where ĥ is the moment of momentum for the system about the center of mass G,

ĥ ¼
Xn
i¼1

ri �Mi Vi � V̂
� � ¼ Xn

i¼1

Miri � ω� rið Þ � Î �ω

and Î is the inertia dyadic for the center of mass G.4

Figure 1.6 Elementary rigid body consisting of particles B1 and B2 that are linked by a light rigid
bar. The particles have massesM1 andM2 respectively; the particles are subject to forces F1 and F2.

4 For body-fixed Cartesian coordinates aligned with mutually perpendicular unit vectors nj, j ¼ 1,2,3 and an
origin at G, the inertia dyadic is expressed as Î � Î jknjnk where subscripts denote Cartesian coordinate
directions. This rotational inertia of the body has coefficients obtained by integrating over the mass of the
body, Î jj ¼

Ð
r�r� rj rj
� �

dM and Î jk ¼ � Ð
rj rk dM, j 6¼ k where rj is the jth component of the position

vector r in a Cartesian coordinate system and no summation is implied by repeated subscripts.
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Thus, the equation of motion (1.6) can be expressed as

dhO
dt

¼ d

dt
ρ̂ �MV̂
� �þ d

dt
Î �ω� � ¼ Xn

i¼1

ρ̂ þ rið Þ � Fi (1.9)

This decomposition of the particle position vector ρi ¼ ρ̂ þ ri has separated the equa-
tion for rate of change of moment of momentum about O into a term for the moment of
translational momentum of the body acting at the center of mass and a second term for
the moment of momentum relative to the center of mass G.
Noting that the differential of an applied impulse dPi ¼ Fidt we obtain from (1.8) and

(1.9) that for a rigid body there are three independent equations of motion in terms of
the applied impulse dP ¼ Pn

i¼1dPi.

d MV̂
� � ¼ dP (1.10a)

d ρ̂ �MV̂
� � ¼ ρ̂ � dP (1.10b)

d Î�ω� � ¼ Xn

i¼1
ri � dPi (1.10c)

Equation (1.10b) is the differential of the moment abut O of translational momentum of
the body.

Kinetic Energy
For some problems it is preferable to use a scalar measure of activity of a body; e.g. the
kinetic energy T rather than the vectorial representation (1.10). Consider a body
composed of n particles so that the kinetic energy T is expressed as

T ¼ 1
2

Xn
i¼1

MiVi�Vi

A rigid body has kinetic energy T that can be resolved into translational kinetic energy
Tv and rotational kinetic energy Tω,

Tv � 1
2
MV̂�V̂ ¼ 1

2
M V̂ 1�V̂ 1 þ V̂ 2�V̂ 2 þ V̂ 3�V̂ 3
� �

(1.11a)

Tω � 1
2
ω�̂I �ω

¼ 1
2

ω2
1 Î 11 þ ω2

2 Î 22 þ ω2
3 Î 33 þ 2ω1ω2 Î 12 þ 2ω2ω3 Î 23 þ 2ω3ω1 Î 31

� �
(1.11b)

where V̂ is the velocity of the center of mass, ω is the angular velocity of the body and
dTω ¼ ω�Pn

i¼1ri � dPi is the inertia dyadic for the center of mass.
Taking the scalar product of (1.10a) with V̂ and (1.10c) with ω we obtain the

equation of motion,

dTv ¼ V̂�dP, dTω ¼ ω�
Xn
i¼1

ri � dPi (1.12)

These equations of motion have a right-hand side that is the differential of the rate-of-
work of applied impulses and the differential of the rate-of-work of applied torques
about the center of mass, respectively. Expressions (1.12) are scalar equations for the
change of state of a rigid body subject to a number n of active impulses Pi
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Example 1.2 A cube is resting on a flat level plane; it has massM and sides of length 2a.
The sides are slightly convex so only the edges touch the plane. One edge of the cube is
raised slightly and then released so that when the opposite edge C strikes the surface,
the cube is rotating with angular velocity ω�. The impact is perfectly plastic so there
is no bounce of edge C. Find the angular velocity ωþ immediately after impact at C and
calculate the part of the initial kinetic energy T� that is lost at impact, (T– – T+)/T–.

moment of momentum about C:

polar moment of inertia for G:

×+=

=

w

velocity of center of mass:

V̂� ¼ VB� þ ω� � rG=B ¼ aω� �n1 � n2ð Þ
V̂þ ¼ VCþ þ ωþ � rG=C ¼ aωþ �n1 þ n2ð Þ

moment of momentum about impact point C:

hC� ¼ 2Ma2

3
ω�n3 þ a n1 þ n2ð Þ �Maω� �n1 � n2ð Þ ¼ 2Ma2ω�

3
n3

hCþ ¼ 2Ma2

3
ωþn3 þ a n1 þ n2ð Þ �Maωþ �n1 þ n2ð Þ ¼ 8Ma2ωþ

3
n3

no moment of impulsive forces about impact point C during impact (Eq 1.6):

hCþ ¼ hC� ) ωþ=ω� ¼ 1=4

kinetic energy (planar motion):

T ¼ 1
2
MV̂ � V̂ þ 1

2
Î 33ω �ω

T� ¼ Ma2ω2
� þ 1

3
Ma2ω2

� Tþ ¼ Ma2ω2
þ þ 1

3
Ma2ω2

þ

part of initial kinetic energy absorbed in impact:

T� � Tþð Þ=T� ¼ 15=16

Equation 1.6 relates the moment of forces about the origin to the rate of change of
moment of momentum about the origin. Is there a similar relation for moment of forces
about a point that is moving?

1.3.4 Rate of Change for Moment of Momentum of System about Point Moving
Steadily Relative to Inertial Reference Frame

Let point A be coincident with point O but moving steadily at velocity VA relative to an
inertial reference frame and denote the position vector of the ith particle relative to A by
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ρi. If hA denotes the moment of momentum of the system of n particles with respect to
A, then Eq. (1.6) gives the following theorem.

For a system of particles, the rate of change of moment of momentum with respect to
point A is equal to the moment of external forces about A if and only if

(i) VA ¼ 0 so that point A is fixed in an inertial reference frame; or
(ii) VA and V̂ are parallel.

In either case,
dhA
dt

¼
Xn
i¼1

ρi � Fi (1.13)

During a period t in which the configuration of the system does not vary, Eq(1.13)
can be integrated with respect to time to give

hA tð Þ � hA 0ð Þ ¼
Xn
i¼1

ρi � Pi tð Þ (1.14)

Example 1.3 A system consists of two particles A and B that are connected by a light
inextensible string. Particle A with mass 2M is located at ρA ¼ 1; 1; 0ð Þ and has velocity
VA ¼ 1; 0; 0ð Þ in a Cartesian reference frame while particle B with mass M is located at
ρB ¼ 3; 2; 0ð Þ and has velocity VB ¼ 1=2; _y; 0ð Þ. Find (i) the component of velocity _y
and the angular velocity ω of the string and (ii) the moment of momentum of the system
about the origin 0.

Solution
relative position of B from A, ρB=A � ρB � ρA ¼ 2; 1; 0ð Þ

relative velocity of B from A, VB=A � VB � VA ¼ �1=2; _y; 0ð Þ

inextensible string requires, 0 ¼ VB=A � ρB=A ¼ �1þ _y

(i) velocity of B, ∴ VB ¼ 1=2; 1; 0ð Þ
angular vel. ω causes VB/A,

VB/A = ω� ρB=A ¼ 0; 0;ωð Þ � 2; 1; 0ð Þ
¼ ω �1; 2; 0ð Þ

∴ ω ¼ 1=2
(ii) moment of momentum about O, hO ¼ P

ρi �MiVi

¼ 2M(0, 0, ‒1) þ M(0, 0, 2) ¼ 0

1.4 Decomposition of a Vector

Any vector v can be decomposed into a component vnn in direction n and a component
vte in a direction perpendicular to n.

v ¼ v �nnþ n� vð Þ � n ¼ vnnþ vte
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where

vn ¼ n � v, vt ¼ n� vj j, e ¼ v�1
t n� vð Þ � n

This relation is particularly helpful for analyzing oblique impact of rigid bodies; it is
used to resolve the relative velocity and impulse at the contact point into components
normal and tangential to the surfaces of colliding bodies.

It is worth noting that the vector v has a component perpendicular to n that can be
expressed as alternatively,

vt e ¼ n� vð Þ � n ¼ v� v �nn (1.15)

1.5 Vectorial and Indicial Notation

Frequently, there is a need to express a vector variable such as velocity V of a point in
terms of the components of velocity in some reference frame. Let ni be a set of mutually
perpendicular unit vectors fixed in reference frame ℜ. The components of velocity
in this reference frame have magnitudes that can be expressed as Vi � V�ni, i ¼ 1,2,3.
In vectorial notation the vector is expressed in terms of its components
V ¼ P3

i¼1V�nini � Vini where the last equality follows from repeated subscripts
implying summation over the range of spatial coordinates. On the other hand, in indicial
or shorthand notation V � Vi (i.e., unit vectors) are implied rather than written expli-
citly. Similarly, if r denotes the position of C relative to a point O fixed in ℜ, then in
vectorial notation r � rini or in indicial notation r � ri.

As a consequence of these definitions, the inner or dot product can be expressed in
alternative forms,

r �V ¼ riV i �
X3
i¼1

riVi (1.16)

where a repeated subscript (e.g. i) implies summation over the range of spatial coordin-
ates. Likewise, the vector or cross product can be expressed as,

r� V ¼ εijkrjVk �
X3
j¼1

X3
k¼1

εijkrjVk (1.17)

where εijk is the permutation tensor which has values εijk ¼ þ1 if indices are in
cyclic order, εijk ¼ �1 if indices are in anticyclic order and εijk ¼ 0 if an index is repeated.

Problems

1.1 An initially stationary wood block of mass M is struck at the center of one side by
a bullet of mass M0 that strikes at a normal incident speed V0. The bullet is captured by
the block. Find the final speed of the block and calculate an estimate the fraction of the
bullet’s initial kinetic energy T0 that is transformed to heat.

1.2 Direct impact of a body with mass M(g) against a rigid wall at an incident velocity
V0(ms–1) results in a contact duration tf (ms). For a collision conditions (M, V0, tf.),
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calculate an estimate of the maximum force Fmax(N) during a collision of each of the
following bodies: tennis ball (45, 44, 4.0); golf ball (46, 44, 0.6); ping-pong ball (2.5,
44, 0.5), steel hammer (103, 1, 0.2).

1.3 For the two-particle system in Section 1.6.4, find the center of mass of the system
ρ̂, the velocity VG for the center of mass, the inertia dyadic Î and moment of momentum
ĥ relative to the center of mass. Verify that these relations satisfy ĥ ¼Îω.

1.4 A rigid uniform bar of massM and length 3L lies across two parallel rails B and B0

that are separated by width L. The bar is transverse to the rails and centered. The end
closest to B0 is raised a small distance and then released so that the bar is rotating with
angular speed ω� when it strikes B0.
a. Find the ratio of angular speeds of the bar ωþ=ω� at the instant immediately

after impact if the impact with rail B0 is perfectly plastic.
b. Find the ratio of angular speeds of the bar ωþ=ω� at the instant immediately

after impact if the impact with rail B0 is elastic.
c. Obtain the fraction of the incident kinetic energy T– that finally is lost as a result

of collision (a).

1.5 A prismatic cylinder with polygonal cross-section has n equal sides where n � 4.
Between adjacent sides a regular polygon has an included angle 2α where α ¼ π=n. Let
the prismatic cylinder of mass M have a radius a from the center O to each vertex Ci.
Find that this prismatic cylinder has a polar moment of inertia Î for the center of mass
O where Î ¼ Ma2 2þ cos 2αð Þ=6.

If the cylinder is rolling on a flat and level surface and before vertex Ci impacts
with the surface it has angular speed ω �ð Þ. Obtain an expression for the angular speed
ω þð Þ the instant after vertex Ci strikes the surface. Assume that after impact, vertex Ci

remains in contact with the surface.

1.6 A wheel of radius a and radius of gyration for the center of mass k̂ r rolls upon a
rough horizontal surface which may be idealised as a series of uniform saw-toothed
serrations of pitch 2b. The wheel rolls without slip or elastic rebound on the tips of the
serrations under the action of a constant horizontal force F applied at its center.
(a) Show that at each impact the ratio of angular speed at separation to that at

incidence satisfies

ωþ=ω� ¼ k̂
2
r þ a2 � 2b2

� �
= k̂

2
r þ a2

� �
¼ Mb2 2þ cos 2αð Þ=6

(b) Find that when steady conditions are reached the wheel moves with a fluctuating
forward velocity and

F ¼ mbv21
a2 � b2

k̂
2
r þ a2 � b2

a2 þ k̂
2
r

where v1 is the maximum forward component of velocity in each cycle.

1.7 For vectors r ¼ r1; r2; r3f gT andV ¼ V1; V2; V3f gT verify that r� V ¼ εijkrjVk.
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