THE NONEXISTENGE OF CERTAIN FINITE PROJECTIVE PLANES

R. H. BRUCK and H. J. RYSER

1. Introduction. A projective plane geometry π is a mathematical system composed of undefined elements called points and undefined sets of points (at least two in number) called lines, subject to the following three postulates:
$\left(\mathrm{P}_{1}\right)$ Two distinct points are contained in a unique line.
$\left(\mathrm{P}_{2}\right)$ Two distinct lines contain a unique common point.
$\left(\mathrm{P}_{3}\right)$ Each line contains at least three points.
The projective plane π is finite if it consists of a finite number of points. If π is finite, then there exists a positive integer N such that each line of π contains exactly $N+1$ distinct points, and each point is contained in exactly $N+1$ distinct lines. Moreover, π has exactly $N^{2}+N+1$ distinct points and $N^{2}+N+1$ distinct lines (see [3], [6], [13]).

In all known finite geometries the integer N is a power of a prime. Indeed, for every prime p and for every positive integer n, finite geometries with $N=p^{n}$ have been constructed by means of the Galois fields GF[p^{n}] (see [12]). It is still an unsettled question whether or not N must be the power of a prime. In this connection it has been shown that there does not exist a finite geometry for $N=6$ (see [11]). The purpose of our paper is to prove the following more general theorem on the non-existence of finite geometries.

Theorem 1. If $N \equiv 1$ or $2 \bmod 4$ and if the square free part of N contains at least one prime factor of the form $4 k+3$, then there does not exist a finite projective plane geometry with $N+1$ points on a line.

In section 2 finite geometries are studied in connection with matrices whose elements are non-negative integers. The Minkowski-Hasse theory on the equivalence of quadratic forms under rational transformations is discussed in section 3, and the results of sections 2 and 3 are then utilized in section 4 to prove Theorem 1.

It is to be noted that Theorem 1 asserts in particular that a geometry does not exist for $N=2 p$, where p is a prime of the form $4 k+3$. Moreover, a finite plane with $N+1$ points on a line can always be constructed from a given complete set of mutually orthogonal Latin squares of order $N \geqq 3$ (see [1], [8]). Thus for any N of Theorem 1 there does not exist a complete set of mutually orthogonal Latin squares of order N.
2. The Incidence Matrix. An n-rowed square matrix A each of whose elements is zero or one is an incidence matrix provided it satisfies the following three conditions:

Received May 7, 1948.
(I_{1}) If r_{1} and r_{2} are two distinct rows of A, then there is a unique integer j such that the rows r_{1} and r_{2} each have the integer one in the j th column.
(I_{2}) If c_{1} and c_{2} are two distinct columns of A, then there is a unique integer i such that the columns c_{1} and c_{2} each have the integer one in the i th row.
(I_{3}) Each row of A contains at least three ones.
Theorem 2. If π is a finite projective plane geometry with $N+1$ points on a line, then there exists an incidence matrix A of order $n=N^{2}+N+1$. If A^{T} denotes the transpose of the matrix A, then

$$
\begin{equation*}
B=A A^{\mathrm{T}}=A^{\mathrm{T}} A \tag{M}
\end{equation*}
$$

where B is an integral matrix with $N+1$ down the main diagonal and ones in all other positions.

For let the $N^{2}+N+1$ points of π be numbered in any convenient order $1,2, \ldots, N^{2}+N+1$ and listed in a row. Let the $N^{2}+N+1$ lines be numbered similarly $1,2, \ldots, N^{2}+N+1$ and listed in a column. Then let a table of $N^{2}+N+1$ rows and $N^{2}+N+1$ columns be formed by inserting a one in row i and column j if line i contains point j, and a zero in the contrary case. Then by the properties of the geometry π given in section 1, it follows that the table yields an incidence matrix A which satisfies the equation (M).

Theorem 3. If a matrix A with non-negative integral elements and of order $n>1$ satisfies the equation (M), where $N \geqq 2$, then A is an incidence matrix and defines a finite projective plane geometry with $N+1$ points on a line.

The matrix A must be composed entirely of zeros and ones. For if $a_{i j}$ were an element of A in row i and column j and if $a_{i j}$ were greater than one, then by equation (M) each element in column j of A except $a_{i j}$ would be zero. Moreover, each element in row i of A except $a_{i j}$ would also be zero. But then the matrix $A A^{\mathrm{T}}$ would contain a zero element, and this is impossible if A is to satisfy (M). Since A is composed of zeros and ones and since A satisfies (M) with $N \geqq 2$, it follows that A is an incidence matrix, and this incidence matrix can be used to define the finite projective plane.
3. Congruence of Matrices. Let A and B be two symmetric matrices of order n with elements in the rational field. The matrices A and B are congruent, written $A \sim B$, provided there exists a non-singular matrix C with rational elements such that

$$
A=C^{\mathrm{T}} B C
$$

It is easy to show that congruence of matrices satisfies the usual requirements of an equals relationship.

Suppose now that A is an integral symmetric matrix of order and rank n. It is well known that one can always construct an integral diagonal matrix $D=\left[d_{1}, d_{2}, \ldots, d_{n}\right]$, where $d_{i} \neq 0$ for $i=1,2, \ldots, n$, such that $D \sim A$.

The number of negative terms ι in this diagonal is called the index of A. Sylvester's law of inertia states that ι is an invariant of A (see [7]).

Let $d=(-1)^{c} \delta$, where δ is the square free positive part of the determinant $|A|$ of the matrix A. From the matric equation $B=C^{\mathrm{T}} A C$, it follows that $|B|=|C|^{2}|A|$. Hence d is a second invariant of A.

Minkowski [9] and Hasse [4] have introduced a third invariant c_{p}, which with the preceding two completes the system. Before discussing the invariant c_{p}, we recall now the essentials of the Hilbert norm-residue symbol $(m, n)_{p}$. The norm-residue symbol is defined for arbitrary non-zero integers m and n and for every prime p. Its precise definition as well as complete proofs of the following two theorems can be found in the collected works of Hilbert [5].

Theorem 4. If m and n are integers not divisible by the odd prime p, then

$$
\begin{equation*}
(m, n)_{p}=+1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(n, p)_{p}=(p, n)_{p}=(n \mid p) \tag{2}
\end{equation*}
$$

where $(n \mid p)$ is the Legendre symbol. Moreover, if $n \equiv m \neq 0 \bmod p$, then

$$
\begin{equation*}
(m, p)_{p}=(n, p)_{p} \tag{3}
\end{equation*}
$$

Theorem 5. For arbitrary non-zero integers $m, m^{\prime}, n, n^{\prime}$ and for every prime p,

$$
\begin{gather*}
(-n, n)_{p}=+1 \tag{4}\\
(m, n)_{p}=(n, m)_{p}, \tag{5}\\
\left(m m^{\prime}, n\right)_{p}=(m, n)_{p}\left(m^{\prime}, n\right)_{p}, \tag{6}\\
\left(n, m m^{\prime}\right)_{p}=(n, m)_{p}\left(n, m^{\prime}\right) p \tag{7}
\end{gather*}
$$

At this point it is convenient to prove a Lemma which is useful for the proof of Theorem 1 in section 4.

Lemma. For p an odd prime and for every positive integer n,

$$
\begin{gather*}
(n, n+1)_{p}=(-1, n+1)_{p} \tag{8}\\
\left(n, n^{2}+n+1\right)_{p}=+1 \tag{9}\\
\prod_{i=1}^{n}(i, i+1)_{p}=((n+1)!,-1)_{p} \tag{10}
\end{gather*}
$$

If p does not divide n or $n+1$, then (8) is trivial. If p divides n, then $n+1 \equiv 1 \bmod p$ and if p divides $n+1$, then $n \equiv-1 \bmod p . \quad$ By (3) of Theorem 4 equation (8) is established. If p divides n, then $n^{2}+n+1 \equiv$ $(n+1)^{2} \not \equiv 0 \bmod p$ and if p divides $n^{2}+n+1$, then $n \equiv(n+1)^{2} \neq 0$ $\bmod p$. This establishes (9). Equation (10) is a consequence of (8) and Theorem 5.

Now let A be a non-singular and symmetric integral matrix of order n. Let D_{r} denote the leading principal minor determinant of order r, and suppose that $D_{r} \neq 0$ for $r=1,2, \ldots, n$. The invariant c_{p} is then defined for every odd prime p by the equation

$$
c_{p}=c_{p}(A)=\left(-1,-D_{n}\right)_{p} \prod_{i=1}^{n-1}\left(D_{i},-D_{i+1}\right)_{p}
$$

By (1) of Theorem 4, evidently $c_{p}=-1$ for only a finite number of p.

We are now in a position to state the fundamental Minkowski-Hasse theorem, a proof of which can be found in the original paper of Hasse [4]. More recent developments of the theory are discussed in [2] and [10].

Theorem 6. Let A and B be two integral symmetric matrices of order and rank n. Suppose further that the leading principal minor determinants of A and B are different from zero. Then $A \sim B$ if and only if A and B have the same invariants ι, d, and c_{p} for every odd prime p.
4. Proof of Theorem 1. Let N be a positive integer and let B_{n} denote the integral matrix of order n with $N+1$ down the main diagonal and ones in all other positions. If we subtract column one of B_{n} from each of the other columns, and then add to row one each of the other rows, we obtain

$$
\left|B_{n}\right|=N^{n-1}(N+n)
$$

In particular if $n=N^{2}+N+1$, then B_{n} is the matrix B of equation (M) and $|B|$ is the square of an integer.

If row n of B_{n} is subtracted from each of the other rows, and if column n is then subtracted from each of the other columns, the resulting matrix is

$$
Q_{n}=\left[\begin{array}{ccccc}
2 N & N & N & \cdots & -N \\
N & 2 N & N & \cdots & -N \\
N & N & 2 N & \cdots & -N \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
-N & -N & -N & \cdots & N+1
\end{array}\right]
$$

and this matrix is congruent to B_{n}. Hence for every odd prime $p, c_{p}\left(B_{n}\right)=$ $c_{p}\left(Q_{n}\right)$. Moreover, if E_{i} denotes the determinant of order i with $2 N$ down the main diagonal and N in all other positions, then $E_{i}=N^{i}(i+1)$. Thus if $n=N^{2}+N+1$ and if p is an odd prime, then the invariant $c_{p}(B)=$ $c_{p}\left(Q_{n}\right)$ of the matrix B of equation (M) is given by

$$
c_{p}(B)=\left(E_{n-1},-1\right)_{p} \prod_{i=1}^{n-2}\left(E_{i},-E_{i+1}\right)_{p}
$$

In the subsequent computation we prove

$$
\begin{equation*}
c_{p}(B)=(-1, N)_{p}^{\frac{N(N+1)}{2}} \tag{E}
\end{equation*}
$$

By Theorem 5 and (10), and omitting for convenience the subscript p,

$$
\begin{aligned}
& \prod_{i=1}^{n-2}\left(E_{i},-E_{i+1}\right)=\prod_{i=1}^{n-2}\left(N^{i}(i+1),-N^{i+1}(i+2)\right) \\
& \quad=\prod_{i=1}^{n-2}\left(N^{i},-N^{i+1}\right)(i+1,-(i+2)) S \\
& =(N,-1)^{\frac{(n-1)(n-2)}{2}}((n-1)!,-1)(n!,-1) S,
\end{aligned}
$$

where

$$
S=\prod_{i=1}^{n-2}\left(N^{i}, i+2\right)\left(N^{i+1}, i+1\right)
$$

Moreover, by (9)

$$
\begin{gathered}
S=\prod_{i=1}^{n-2}\left(N^{i}, i+2\right) \prod_{i=0}^{n-3}\left(N^{i}, i+2\right) \\
=(N, n)^{n-2}=+1
\end{gathered}
$$

Thus

$$
\begin{aligned}
& c_{p}(B)=\left(N^{n-1} n,-1\right)(N,-1)^{\frac{(n-1)(n-2)}{2}}(n,-1) \\
& =(N,-1)^{n-1}(N,-1)^{\frac{(n-1)(n-2)}{2}}=(N,-1)^{\frac{N(N+1)}{2}},
\end{aligned}
$$

and this establishes equation (E).
Suppose now that π is a finite projective plane with $N+1$ points on a line. Then by equation (M) of section 2 , the matrix B is congruent to the identity matrix I. Since $c_{p}(I)=+1$ for every odd prime p, it follows that if π exists, then for every odd prime p,

$$
c_{p}(B)=(-1, N)^{\frac{N(N+1)}{2}}=+1
$$

If now $N \equiv 1$ or $2 \bmod 4$, then the exponent $\frac{N(N+1)}{2}$ is odd. Moreover, if a prime p of the form $4 k+3$ divides the square free part of N, then $(-1, N)_{p}=-1$. This is a contradiction and completes the proof of Theorem 1.

Postscript (November 13, 1948)
(a) In a letter to one of the authors, dated May 11, 1948, Marshall Hall pointed out that the n-rowed symmetric matrix B of section $4\left(n=N^{2}+N+1\right)$ is the matrix of a quadratic form which can be written as

$$
\left(x_{2}+\ldots+x_{n}\right)^{2}+N\left(x_{2}+\frac{x_{1}}{N}\right)^{2}+\ldots+N\left(x_{n}+\frac{x_{1}}{N}\right)^{2}
$$

Hall's remark demonstrates concretely that B is rationally congruent to the diagonal matrix $D=(1, N, N, \ldots, N)$ and thus permits a simpler derivation of equation (E).
(b) In 1782 Euler conjectured that a pair of orthogonal latin squares (or a graeco-latin square) of order N cannot exist if N has the form $4 k+2$. The truth of Euler's conjecture would ensure (see [1], [8]) the non-existence of projective planes with $N \equiv 2 \bmod 4$ and hence would both imply and improve
one half of Theorem 1. For this reason the authors have decided to add to the bibliography a paper by H. F. MacNeish [14] containing a "proof" of Euler's conjecture. The correctness of this proof, however, has been questioned by F. W. Levi. In this connection see [6] (Second Lecture); Jahrbuch der Math., vol. 48 (1921), 71; Jahrbuch der Math., vol. 49 (1923), 41-42.

References

[1] R. C. Bose, "On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares," Sankhya, Indian Journal of Statistics, vol. 3 (1938), 323-338.
[2] W. H. Durfee, "Quadratic forms over fields with a valuation," Bull. Amer. Math. Soc., vol. 54 (1948), 338-351.
[3] M. Hall, "Projective planes," Trans. Amer. Math. Soc., vol. 54 (1943), 229-277.
[4] H. Hasse, "Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen," J. reine angew. Math., vol. 152 (1923), 205-224.
[5] D. Hilbert, Gesammelte Abhandlungen, I' (Berlin, 1932), 161-173.
[6] F. W. Levi, Finite geometrical systems (University of Calcutta, 1942).
[7] C. C. MacDuffee, The theory of matrices (New York, 1946), 56.
[8] H. B. Mann, "On orthogonal Latin squares," Bull. Amer. Math. Soc., vol. 50 (1944), 249-257.
[9] H. Minkowski, Gesammelte Abhandlungen, I (Leipzig and Berlin, 1911), 219-239.
[10] G. Pall, "The arithmetical invariants of quadratic forms," Bull. Amer. Math. Soc., vol. 51 (1945), 185-197.
[11] G. Tarry, "Le problème de 36 officiers," Compte Rendu de l'Association Française pour l'Avancement de Science Naturel, vol. 1 (1900), 122-123, vol. 2 (1901), 170-203.
[12] O. Veblen and W. H. Bussey, "Finite projective geometries," Trans. Amer. Math. Soc., vol. 7 (1906), 241-259.
[13] O., Veblen and J. H. M. Wedderburn, "Non-Desarguesian and non-Pascalian geometries," Trans. Amer. Math. Soc., vol. 8 (1907), 379-388.
[14] H. F. MacNeish, "Euler squares," Ann. of Math., vol. 23 (1921-22), 221-227.

The University of Wisconsin

