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1. Introduction. A projective plane geometry w is a mathematical 
system composed of undefined elements called points and undefined sets 
of points (at least two in number) called lines, subject to the following three 
postulates: 

(Pi) Two distinct points are contained in a unique line. 
(P2) Two distinct lines contain a unique common point. 
(P3) Each line contains at least three points. 
The projective plane ir is finite if it consists of a finite number of points. 

If 7T is finite, then there exists a positive integer N such that each line of 
7T contains exactly N + 1 distinct points, and each point is contained in 
exactly N + 1 distinct lines. Moreover, ir has exactly iV2 + iV" + 1 distinct 
points and N2 + N + 1 distinct lines (see [3], [6], [13]). 

In all known finite geometries the integer N is a power of a prime. Indeed, 
for every prime p and for every positive integer n, finite geometries with 
N = pn have been constructed by means of the Galois fields GF[pn] (see [12]). 
It is still an unsettled question whether or not N must be the power of a 
prime. In this connection it has been shown that there does not exist a 
finite geometry for N — 6 (see [11]). The purpose of our paper is to prove the 
following more general theorem on the non-existence of finite geometries. 

THEOREM 1. If N = 1 or 2 mod 4 and if the square free part of N contains 
at least one prime factor of the form 4& + 3, then there does not exist a finite 
projective plane geometry with N + 1 points on a line. 

In section 2 finite geometries are studied in connection with matrices whose 
elements are non-negative integers. The Minkowski-Hasse theory on the 
equivalence of quadratic forms under rational transformations is discussed 
in section 3, and the results of sections 2 and 3 are then utilized in section 4 
to prove Theorem 1. 

It is to be noted that Theorem 1 asserts in particular that a geometry 
does not exist for N = 2p, where p is a prime of the form 4& + 3. Moreover, 
a finite plane with N + 1 points on a line can always be constructed from a 
given complete set of mutually orthogonal Latin squares of order N ^ 3 (see 
[1], [8]). Thus for any N of Theorem 1 there does not exist a complete set of 
mutually orthogonal Latin squares of order N. 

2. The Incidence Matrix. An w-rowed square matrix A each of whose 
elements is zero or one is an incidence matrix provided it satisfies the following 
three conditions: 
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(Ii) If ri and r2 are two distinct rows of A, then there is a unique integer j 
such that the rows r'i and r2 each have the integer one in the jth column. 

(12) If c\ and c2 are two distinct columns of Ay then there is a unique 
integer i such that the columns c\ and c2 each have the integer one in the 
ith row. 

(13) Each row of A contains at least three ones. 
THEOREM 2. If TT is a finite projective plane geometry with N + 1 points 

on a line, then there exists an incidence matrix A of order n — N2 + N + 1. 
If AT denotes the transpose of the matrix A, then 

(M) B = AAT = ATA, 

where B is an integral matrix with N + 1 down the main diagonal and ones 
in all other positions. 

For let the N2 + N + 1 points of T be numbered in any convenient order 
1, 2, . . . , N2 + N + 1 and listed in a row. Let the N2 + N + 1 lines be 
numbered similarly 1, 2, . . . , N2 + N + 1 and listed in a column. Then 
let a table of N2 + N + 1 rows and iV2 + N + 1 columns be formed by 
inserting a one in row i and column j if line i contains point jy and a zero 
in the contrary case. Then by the properties of the geometry w given in 
section 1, it follows that the table yields an incidence matrix A which satisfies 
the equation (M). 

THEOREM 3. If a matrix A with non-negative integral elements and of 
order n > 1 satisfies the equation (M), where N ^ 2, then A is an incidence 
matrix and defines a finite projective plane geometry with N + 1 points on a 
line. 

The matrix A must be composed entirely of zeros and ones. For if a a 
were an element of A in row i and column j and if aij were greater than one, 
then by equation (M) each element in column j of A except a^ would be zero. 
Moreover, each element in row i of A except a a would also be zero. But 
then the matrix A AT would contain a zero element, and this is impossible 
if A is to satisfy (M). Since A is composed of zeros and ones and since A 
satisfies (M) with N ^ 2, it follows that A is an incidence matrix, and this 
incidence matrix can be used to define the finite projective plane. 

3. Congruence of Matrices. Let A and B be two symmetric matrices 
of order n with elements in the rational field. The matrices A and B are 
congruent, written A ~ J3, provided there exists a non-singular matrix C 
with rational elements such that 

A = CTBC. 

It is easy to show that congruence of matrices satisfies the usual requirements 
of an equals relationship. 

Suppose now that A is an integral symmetric matrix of order and rank n. 
It is well known that one can always construct an integral diagonal matrix 
D = [di, d2, . . . , dn]t where di ^ 0 for i = 1, 2, . . . , n, such that D ~ A. 
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The number of negative terms t in this diagonal is called the index of A. 
Sylvester's law of inertia states that i is an invariant of A (see [7]). 

Let d = (— l)lô, where ô is the square free positive part of the determin
ant \A\ of the matrix A. From the matric equation B = CrAC, it follows 
that | 5 | = jC|2|^4|. Hence d is a second invariant of A. 

Minkowski [9] and Hasse [4] have introduced a third invariant cp, which 
with the preceding two completes the system. Before discussing the invariant 
cp, we recall now the essentials of the Hilbert norm-residue symbol [m,n)p. 
The norm-residue symbol is defined for arbitrary non-zero integers m and n 
and for every prime p. Its precise definition as well as complete proofs of 
the following two theorems can be found in the collected works of Hilbert [5]. 

THEOREM 4. If m and n are integers not divisible by the odd prime p, then 

(1) (m, n)p = + 1, 

(2) (n,p)p = (p,n)p = (»|/>), 
where (n\p) is the Legendre symbol. Moreover, if n = m ^ 0 mod p, then 

(3) (m, p)p = (n, p)p. 

THEOREM 5. For arbitrary non-zero integers m, m', n, n* and for every 
prime p, 
(4) ( - n, n)p = + 1, 

(5) (m, n)p = (w, m)p , 
(6) (ram', n)p ~ (m, n)p(m

f, n)v, 

(7) {n,mm')p = (n,m)v(n,m')p. 

At this point it is convenient to prove a Lemma which is useful for the 
proof of Theorem 1 in section 4. 

LEMMA. For p an odd prime and for every positive integer n, 

(8) (n,n + l)p = ( - l , » + l)p, 
(9) (n,n2 + n + l)p = + 1, 

(10) I I ( i , i + l)p = ( ( « + 1)1, - l ) p . 
» = l 

If p does not divide n or n + 1, then (8) is trivial. If p divides n, then 
w + 1 s 1 mod p and if £ divides n + 1, then » == — 1 mod £. By (3) 
of Theorem 4 equation (8) is established. If p divides n, then n2 + n + 1 = 
(« + l ) 2 ^ 0 mod £ and if p divides n2 + n + 1, then « = (« + l ) 2 ^ 0 
mod /?. This establishes (9). Equation (10) is a consequence of (8) and 
Theorem 5. 

Now let A be a non-singular and symmetric integral matrix of order n. 
Let Dr denote the leading principal minor determinant of order r, and 
suppose that Dr ^ 0 for r = 1, 2, . . . , n. The invariant cp is then defined 
for every odd prime p by the equation 

Cp = cPG4) = ( - 1, - Dn)pfl (Dif - A + i ) , • 

By (1) of Theorem 4, evidently cp = — 1 for only a finite number of p. 
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We are now in a position to state the fundamental Minkowski-Hasse 
theorem, a proof of which can be found in the original paper of Hasse [4]. 
More recent developments of the theory are discussed in [2] and [10]. 

THEOREM 6. Let A and B be two integral symmetric matrices of order and 
rank n. Suppose further that the leading principal minor determinants of A 
and B are different from zero. Then A ~ B if and only if A and B have the 
same invariants L, d, and cp for every odd prime p. 

4. Proof of Theorem 1. Let N be a positive integer and let Bn denote 
the integral matrix of order n with N + 1 down the main diagonal and ones 
in all other positions. If we subtract column one of Bn from each of the other 
columns, and then add to row one each of the other rows, we obtain 

\Bn\ = Nn~i(N + n). 
In particular if n = N2 + N + 1, then Bn is the matrix B of equation (M) 
and \B\ is the square of an integer. 

If row n of Bn is subtracted from each of the other rows, and if column n 
is then subtracted from each of the other columns, the resulting matrix is 

2N N N - N 
N 2N N ... - N 
N N 2N ... - N 

Qn = 

-N - N - N . . . N+ 1 J 
and this matrix is congruent to Bn. Hence for every odd prime p, cp(Bn) = 
Cp(Qn)- Moreover, if £»• denotes the determinant of order i with 2N down 
the main diagonal and N in all other positions, then Ei = Nl(i + 1). Thus 
if n = N2 + N + 1 and if p is an odd prime, then the invariant cp(B) = 
cp(Qn) of the matrix B of equation (M) is given by 

cp(B) = (En„i, - l)p I I (Eif - Ei+1)p. 

In the subsequent computation we prove 

N(N+1) 
2 (E) cp(B) = (-l,N)p 

By Theorem 5 and (10), and omitting for convenience the subscript p, 

" n (Ei, - Ei+1) = " n (&(* + 1 ) , - JV*+ I(* + 2) ) 
> • = 1 « = 1 

= I I (N\ - Ni+Ï) (i + 1, - (i + 2) ) 5 
«= x 

( » - l ) ( n - 2 ) 

= (N, - 1) ((« - 1) ! , - 1) (» !, - 1) S, 
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where 

Moreover, by (9) 

M - 2 

S = U (N\ i + 2) (Ni+\ i + 1). 

5 = "il (N\ i + 2) n\l (N\ i + 2) 
i = 1 i = 0 

Thus 

- (N,n)n-* = + 1. 

< « - i ) ( « - -2) 

cp(B) = (tf»"1*, - 1) (TV, - 1) 2 
(», - 1) 

f» - 1) (* - 2) N(N+1) 

: (N, ~ l ) " " 1 ^ , - 1) 2 = (JV, - i ) 2 

and this establishes equation (E). 
Suppose now that T is a finite projective plane with N + 1 points on a line. 

Then by equation (M) of section 2, the matrix B is congruent to the identity 
matrix J. Since cp(I) = + 1 for every odd prime p, it follows that if x 
exists, then for every odd prime p, 

N(N+1) 

cp(B) = (-l,N) 2 = + 1 . 

# ( # + 1) 
If now N = 1 or 2 mod 4, then the exponent r is odd. Moreover, 

Jj 

if a prime £ of the form 4& + 3 divides the square free part of N, then 
( — 1 , iV)p = — 1. This is a contradiction and completes the proof of 
Theorem 1. 

POSTSCRIPT (November 13, 1948) 

(a) In a letter to one of the authors, dated May 11, 1948, Marshall Hall 
pointed out that the w-rowed symmetric matrix B of section 4 (n — N2 + N + l) 
is the matrix of a quadratic form which can be written as 

X2+™ J +..'. + ^ ( ^ + ^ ) ' 

Hall's remark demonstrates concretely that B is rationally congruent to 
the diagonal matrix D = (1, AT, TV, . . . ,iV) and thus permits a simpler deri
vation of equation (E). 

(b) In 1782 Euler conjectured that a pair of orthogonal latin squares (or 
a graeco-latin square) of order N cannot exist if N has the form 4& + 2. The 
truth of Euler's conjecture would ensure (see [l], [8]) the non-existence of pro
jective planes with N = 2 mod 4 and hence would both imply and improve 
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one half of Theorem 1. For this reason the authors have decided to add to 
the bibliography a paper by H. F. MacNeish [14] containing a "proof" of 
Euler's conjecture. The correctness of this proof, however, has been questioned 
by F. W. Levi. In this connection see [6] (Second Lecture); Jahrbuch der 
Math., vol. 48 (1921), 71; Jahrbuch der Math., vol. 49 (1923), 41-42. 
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