xiv
Join $D B$: then the triangle $A D B$ is equal to half the rectangle with $A B$ as base and $F D$ as altitude; that is, to half the square on $A B$.

Now through B draw $G B H$ parallel to $A D$ to meet $A C$ in G and $D E$ in H. Then the rectangle $A D H G$, being equal to twice the triangle $A D B$, is equal to the square on $A B$.

Similarly the rectangle $C G H E$ is equal to the square on $B C$. Thus, on adding, we find that the square on $A C$ is equal to the sum of the squares on $A B$ and $B C$.
T. M. MacRobert.

Note on a Vanishing Determinant.

1. In one of Sir Thomas Muir's more recent historical papers on the theory of determinants (Proc. R.S.Edin., XLIII, 1922, p. 129), is included a result due to V. Jung, commented on as being "verified in an unsuggestive way for the first three cases." The theorem is that the determinant

$$
\left\lvert\, \begin{array}{ccccc}
1 & 1^{2} & \ldots & \mathbf{1}^{n} & 1^{n+1} \\
2 & 2^{2} & \ldots & 2^{n} & 2^{n+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
n & n^{2} & \ldots & n^{n} & n^{n+1} \\
n & \frac{n^{2}}{3} & \cdots & \frac{n^{n}}{n+1} & \frac{n^{n+1}}{n+2} \\
2 & \frac{1}{3} & & n &
\end{array}\right.
$$

vanishes when n is even. Below we give a simple proof.

2. Consider the integral

$$
\begin{align*}
I & \equiv \int_{0}^{n} x(x-1)(x-2) \ldots(x-n) d x \\
& =\left\{\int_{0}^{\frac{n}{2}}+\int_{\frac{n}{2}}^{n}\right\} x(x-1)(x-2) \ldots(x-n) d x ;(\text { Put } y=n-x) \\
& =\int_{0}^{\frac{n}{2}} x(x-1) \ldots(x-n) d x-(-)^{n} \int_{0}^{\frac{n}{2}} y(y-1) \ldots(y-n) d y \\
& =0, \text { if } n \text { is even. } \quad \ldots \ldots \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Now let $x(x-1) \ldots(x-n)=a_{1} x+a_{2} x^{2}+\ldots+a_{n+1} x^{n+1}$. Then if n is even, we have a consistent set of ($n+1$) equations in the a 's,

$$
\begin{aligned}
& 0=a_{1}+a_{2}+\ldots \ldots+a_{n+1} \\
& 0=2 a_{1}+2^{2} a_{2}+\ldots \ldots+2^{n+1} a_{n+1} \\
& \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+\cdots+n^{n+1} a_{n+1} \\
& 0=n a_{1}+n^{2} a_{2}+\ldots \ldots+n^{n+1}
\end{aligned}
$$

and by (1), $0=\frac{n}{2} a_{1}+\frac{n^{2}}{3} a_{2}+\ldots+\frac{n^{n+1}}{n+2} a_{n+1}$,
and hence the determinant of the system is zero, which is Jung's result.
A. C. Aitken.

On the Roots of a Symmetrical Determinant.

The six values of x which make the determinant

$$
\Delta=\left|\begin{array}{cccccc}
x & 1 & . & . & . & . \\
1 & x & 1 & . & . & . \\
. & 1 & x & 1 & . & . \\
. & . & 1 & x & 1 & . \\
. & . & . & 1 & x & 1 \\
. & . & . & . & 1 & x
\end{array}\right|
$$

vanish, are $-2 \cos \frac{\pi}{7},-2 \cos \frac{2 \pi}{7}, \ldots,-2 \cos \frac{6 \pi}{7}$. In general, the n values of x which make the corresponding determinant of order n vanish are given by $-2 \cos \frac{r \pi}{n+1}, \quad r=1,2, \ldots, n$. Each determinant has a diagonal filled with x 's, bordered by adjacent parallels where each element is unity; and all other elements are zero.

