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Abstract

Generalizing von Neumann’s result on type II1 von Neumann algebras, I characterise lattice isomorphisms between
projection lattices of arbitrary von Neumann algebras by means of ring isomorphisms between the algebras of
locally measurable operators. Moreover, I give a complete description of ring isomorphisms of locally measurable
operator algebras when the von Neumann algebras are without type II direct summands.
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1. Introduction

Since the very first work by Murray and von Neumann more than 80 years ago [17], the geometry of
projections has played the central role in understanding the structure of von Neumann algebras (rings
of operators). For a von Neumann algebra " , let P(") denote the projection lattice of " , that is,
P(") := {? ∈ " | ? = ?∗ = ?2}. In this article, I would like to consider the following question: What
is the general form of lattice isomorphisms between projection lattices of von Neumann algebras?

There are several important results related to this question. Let us first think about finite dimensional
factors. The case " = # = M= (C) for = = 1, 2 is not interesting at all. Indeed, if = = 1, then P(M= (C))

is {0, 1}, and a lattice automorphism of it is the identity mapping. If = = 2, then a bijection Φ on
P(M= (C)) is a lattice automorphism if and only if Φ(0) = 0 and Φ(1) = 1. If " = # = M= (C) for
3 ≤ = < ∞, then the fundamental theorem of projective geometry gives an answer to my question.
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Recall that a function 5 : - → . between complex vector spaces is said to be semilinear if it is additive
and there exists a ring homomorphism f : C→ C satisfying 5 (2G) = f(2) 5 (G) for all 2 ∈ C and G ∈ - .

Theorem 1.1 (Fundamental theorem of projective geometry). Let 3 ≤ = < ∞. Suppose that

Φ : P(M= (C)) → P(M= (C)) is a lattice isomorphism. Then there exists a semilinear bijection

5 : C= → C
= such that Φ(? b ) = ? 5 ( b ) for every b ∈ C=, where ? b denotes the projection from

C
= onto Cb for a vector b ∈ C=.

In the case of type I∞ factors, we can make use of a result from [5]. Recall that a projection
? ∈ P(�(�)) can be identified with its range ?�, which is a closed subspace of �.

Theorem 1.2 ([5, Theorem 1]). Let - and. be infinite-dimensional complex normed spaces. Let C(-)

(resp. C(. )) denote the lattice of all closed subspaces of - (resp.. ), ordered by inclusion. Suppose that

Φ : C(-) → C(. ) is a lattice isomorphism. Then there exists a bicontinuous linear or conjugate-linear

bijection 5 : - → . such that Φ(�) = 5 (�) for any � ∈ C(-).

See also the classical result [10, Theorem 1], based on orthocomplementation on the latticeP(�(�)).
For type I factors, we may observe a correspondence between lattices and rings. Let � be a Hilbert

space with dim� ≥ 3. For any lattice automorphism Φ : P(�(�)) → P(�(�)), take a mapping
5 : � → � as above. It is a semilinear bijection if dim� < ∞, and a linear or conjugate-linear bounded
bijection if dim� = ∞. Hence we may construct a ring automorphism Ψ : �(�) → �(�) such that
Φ(; (G)) = ; (Ψ(G)) for every G ∈ �(�) (namely, Ψ(G) := 5 ◦ G ◦ 5 −1), where ; (G) denotes the left
support projection of G. It is easy to see that the converse also holds. That is, any ring automorphism
Ψ : �(�) → �(�) determines a lattice automorphism Φ of P(�(�)) such that Φ(; (G)) = ; (Ψ(G)) for
every G ∈ �(�).

I next consider finite von Neumann algebras. In the 1930s, motivated by the geometry of projection
lattices of type II1 factors, von Neumann produced the beautiful theory on the correspondence between
complemented modular lattices and regular rings. One of his achievements [22, Part II, Theorem 4.2],
applied to the case of arbitrary type II1 von Neumann algebras, reads as follows:

Theorem 1.3 (von Neumann). Let " and # be von Neumann algebras of type II1. Suppose that

Φ : P(") → P(#) is a lattice isomorphism. Then there exists a unique ring isomorphism Ψ : ((") →

((#) between the algebras of measurable operators such that Φ(; (G)) = ; (Ψ(G)) for any G ∈ ((").

See Section 2 for the definition of undefined terms and Section 5 for further details about von
Neumann’s theory.

In the general setting of von Neumann algebras, with an additional assumption, Dye obtained the
following result in 1955:

Theorem 1.4 ([3, Corollary of Theorem 1]; see also [4, Theorem 1]). Let " and # be von Neumann

algebras without type I2 direct summands. Suppose that Φ : P(") → P(#) is a lattice isomorphism

with

?@ = 0 ⇐⇒ Φ(?)Φ(@) = 0

for any ?, @ ∈ P("). Then there exists a real ∗-isomorphism Ψ : " → # that extends Φ.

Each of these results implies that lattice isomorphisms between projection lattices are closely related
to ring isomorphisms. See also McAsey’s survey [14], which discusses projection lattice isomorphisms
in various settings. It is natural to imagine that we can obtain a similar result for arbitrary lattice
isomorphisms in the general setting of von Neumann algebras. The main theorem of this article realises it:

Theorem A. Let " and # be two von Neumann algebras. Suppose that " does not admit type I1 nor

I2 direct summands, and that Φ : P(") → P(#) is a lattice isomorphism. Then there exists a unique

ring isomorphism Ψ : !((") → !((#) such that Φ(; (G)) = ; (Ψ(G)) for all G ∈ !((").
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Here, !((") and !((#) mean the algebras of locally measurable operators of " and # , respectively
(see Section 2.2). We remark that the converse of Theorem A can be verified without difficulty. Namely,
any ring isomorphism Ψ : !((") → !((#) determines a unique lattice isomorphism Φ : P(") →

P(#) such thatΦ(; (G)) = ; (Ψ(G)) for all G ∈ !((") (Proposition 3.1). Therefore, Theorem A naturally
gives rise to the following:

Question. Let " , # be von Neumann algebras. What is the general form of ring isomorphisms from
!((") onto !((#)?

We can answer this question for type I von Neumann algebras using ring isomorphisms of their
centers (Proposition 4.2). Moreover, we obtain the following:

Theorem B. Let ", # be von Neumann algebras of type I∞ or III. If Ψ : !((") → !((#) is a ring

isomorphism, then there exist a real ∗-isomorphism k : " → # (which extends to a real ∗-isomorphism

from !((") onto !((#)) and an invertible element H ∈ !((#) such thatΨ(G) = Hk(G)H−1, G ∈ !((").

I leave the case of type II von Neumann algebras as an open question.
In Section 2, I introduce some tools that I will use later. Section 3 is devoted to the proof of Theorem

A. The proof is based on the combination of von Neumann’s strategy in [22, Part II, Chapter IV] and
a binary relation on the projection lattice which we call LS-orthogonality. After that I give a proof of
Dye’s theorem as an application of Theorem A. I consider the Question in Section 4 and prove Theorem
B. The article ends with a comparison of my result and von Neumann’s theory, and several suggestions
of further research directions (Section 5).

2. Preliminaries

Let " ⊂ �(�) be a von Neumann algebra. We use the symbol ∼ to mean the Murray–von Neumann
equivalence relation on P("). That is, for ?, @ ∈ P("), ? ∼ @ means that there exists a partial isometry
E ∈ " such that ? = EE∗ and @ = E∗E. As usual, for ?, @ ∈ P("), ? ⊥ @ means that ? and @ are
orthogonal. That is, ?@ = @? = 0, or equivalently, ?� ⊥ @� in the Hilbert space �. We use the symbol
?⊥ := 1−? for ? ∈ P("). The symbolZ(") = {G ∈ " | GH = HG for all H ∈ "} means the center of" .

For = ∈ N = {1, 2, . . .}, we say that " has order = if there exists a collection ?1, . . . , ?= of mutually
orthogonal projections in " such that ?1 ∼ ?2 ∼ · · · ∼ ?= and

∑=
:=1 ?: = 1. It is well known that

every von Neumann algebra without finite type I direct summands has order = for any = ∈ N [9, Lemma
6.5.6]. In particular, such an algebra has order 3. It follows that every von Neumann algebra " without
type I1 and I2 direct summands can be decomposed into the (ℓ∞-)direct sum of von Neumann algebras
"=, 3 ≤ = < ∞, such that "= has order = for every =. If " has order = ∈ N, then it can be identified
with the algebraM= ("̂) of = × = matrices with entries in some von Neumann algebra "̂ .

2.1. Various isomorphisms of von Neumann algebras

For ∗-algebras � and �, a (not necessarily linear) bijection k : �→ � is called

◦ a semigroup isomorphism if it is multiplicative,
◦ a ring isomorphism if it is additive and multiplicative,
◦ a real algebra isomorphism if it is a real-linear ring isomorphism,
◦ an algebra isomorphism if it is a complex-linear ring isomorphism,
◦ a real ∗-isomorphism if it is a real algebra isomorphism and satisfies k(G∗) = k(G)∗ for any G ∈ �,
◦ a ∗-isomorphism if it is a complex-linear real ∗-isomorphism and
◦ a conjugate-linear ∗-isomorphism if it is a conjugate-linear real ∗-isomorphism.

Lemma 2.1. Let " and # be von Neumann algebras. Suppose that k : " → # is a bijection.

1. If " is without type I1 direct summands and k is a semigroup isomorphism, then k is a ring

isomorphism.
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2. If " does not admit a finite-dimensional ideal and k is a ring isomorphism, then k is a real

algebra isomorphism.

3. If k is a real algebra isomorphism, then there exist a real ∗-isomorphism k0 : " → # and an

invertible element H ∈ # such that k(G) = Hk0 (G)H
−1 for any G ∈ " .

4. If k is a real ∗-isomorphism, then there exist central projections ? ∈ " , @ ∈ # , a ∗-isomorphism

k1 : "? → #@ and a conjugate-linear ∗-isomorphism k2 : "?⊥ → #@⊥ such that k(G) =

k1 (G?) + k2 (G?
⊥) for any G ∈ " .

Proof. Each item is easily obtained from known results.
(1) We can take a projection ? ∈ P(") such that both of the central supports of ? and 1 − ? are

equal to 1. It is easy to see that the following hold: (a) If G ∈ " satisfies G" = {0}, then G = 0; (b) if
G ∈ " satisfies ?"G = {0}, then G = 0; (c) if G ∈ " satisfies ?G?"?⊥ = {0}, then ?G? = 0. Hence we
can apply Martindale’s theorem [13, Theorem] to obtain the desired conclusion.

(2) is a consequence of Kaplansky’s result [11, Theorem].
I prove (3) and (4) at the same time. Let k : " → # be a real algebra isomorphism. We know

that k(8)2 = k(82) = k(−1) = −1 and that k(8) is central in # . It follows that k(8) = @8 − @⊥8 for
some central projection @ of # . Set ? := k−1 (@), which is a central projection of " . If k is a real
∗-isomorphism, then k restricted to "? is a ∗-isomorphism from "? onto #@, and k restricted to
"?⊥ is a conjugate-linear ∗-isomorphism from "?⊥ onto #@⊥; hence the proof of (4) is complete. If
k is merely a real algebra isomorphism, then k restricted to "? is an algebra isomorphism from "?

onto #@, and k restricted to "?⊥ determines an algebra isomorphism from "?⊥ onto #@⊥, where
#@⊥ means the complex conjugation of the von Neumann algebra #@⊥. For the definition of complex
conjugation of von Neumann algebras, see, for example, [19, Section 2.3]. Lastly, we can use the result
on the general form of algebra isomorphisms between von Neumann algebras [18, Theorem I] (see also
[6] and [20, Section 4.1]) to obtain the desired conclusion. �

2.2. The algebra of locally measurable operators

Let " ⊂ �(�) be a von Neumann algebra. In this article, the algebra !((") of locally measurable
operators with respect to " , which I briefly describe in the following, plays a crucial role.

A densely defined closed operator G on� is said to be affiliated with" (and we write G[") if HG ⊂ GH

for any H ∈ " ′, where " ′ := {H ∈ �(�) | 0H = H0 for any 0 ∈ "} denotes the commutant of " . An
operator G[" is said to be measurable with respect to " if the spectral projection j(2,∞) (|G |) ∈ P(")

is a finite projection in " for some real number 2 > 0. An operator G[" is said to be locally measurable

with respect to " if there exists an increasing sequence {?=}=≥1 of central projections in " such that
?= ր 1 and G?= is measurable with respect to " for any =. We write ((") (resp. !((")) to mean
the collection of all measurable (resp. locally measurable) operators with respect to " . If G, H ∈ ((")

(resp. !((")), then G∗ and the closures of GH, G + H are in ((") (resp. !((")). Using this fact, we can
consider ((") and !((") as ∗-algebras that contain " . In what follows, I abbreviate the symbol of the
closure of an unbounded operator unless it is confusing. I remark that !((") = " holds if and only
if " is the direct sum of finite number of type I and III factors. I also remark that if " is finite, then
!((") = ((") is the collection of all affiliated operators. See [21, 23] for more details of (locally)
measurable operators.

In [16, Lemma 2.2], the following result was obtained:

Lemma 2.2. Let " be a von Neumann algebra and 0 ∈ "+. Then the following two conditions are

equivalent:

1. The element 0 is invertible in the algebra !((").

2. For any 1 ∈ "+ \ {0}, there exists an G ∈ "+ \ {0} such that G ≤ 0 and G ≤ 1.

For G ∈ !(("), let ; (G) ∈ P(") denote the left support of G. That is, ; (G) :=
∧
{? ∈ P(") | ?G = G}.

Similarly, we write A (G) :=
∧
{? ∈ P(") | G = G?}. Then ; (G) = j(0,∞) (|G

∗ |) and A (G) = j(0,∞) (|G |)

hold. I remark that, for G, H ∈ !(("), we have GH = 0 if and only if A (G); (H) = 0. Indeed, if A (G); (H) = 0,
https://doi.org/10.1017/fms.2020.53 Published online by Cambridge University Press
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then GH = GA (G); (H)H = 0. If GH = 0, then we have |G | |H∗ | = 0, which implies j(Y,∞) (|G |)j(Y,∞) (|H
∗ |) = 0

for every Y > 0. Take the limit Y → 0 in the strong operator topology to obtain A (G); (H) = 0.

2.3. Halmos’s two-projection theorem

In order to play with projection lattices, it is useful to look at the relative position of a pair of projections.
For that, we make use of Halmos’s two-projection theorem [8] from the viewpoint of von Neumann
algebra theory. Here I recapitulate the argument in [15, Lemma 2.2].

Let " ⊂ �(�) be a von Neumann algebra and ?, @ ∈ P("). Set

41 = ? − ? ∧ @ − ? ∧ @⊥, 42 = ?⊥ − ?⊥ ∧ @ − ?⊥ ∧ @⊥

and G := 41(@− ?∧@− ?
⊥∧@)42. By an elementary calculation, we see that ; (G) = 41 and A (G) = 42. By

polar decomposition, we can take a partial isometry E = E?,@ ∈ " such that G = E |G | = |G∗ |E, EE∗ = 41

and E∗E = 42.

We can identify each H ∈ (41 + 42)" (41 + 42) with

(
41H41 41HE

∗

EH41 EHE∗

)
∈ M2(41"41). Then @ − ? ∧ @ −

?⊥ ∧ @ (≤ 41 + 42) is identified with

(
41(@ − ? ∧ @ − ?

⊥ ∧ @)41 41(@ − ? ∧ @ − ?
⊥ ∧ @)E∗

E(@ − ? ∧ @ − ?⊥ ∧ @)41 E(@ − ? ∧ @ − ?⊥ ∧ @)E∗

)

=

(
41(@ − ? ∧ @ − ?

⊥ ∧ @)41 |G∗ |

|G∗ | E(@ − ? ∧ @ − ?⊥ ∧ @)E∗

)
∈ M2 (41"41).

Set 0 := (41 (@ − ? ∧ @ − ?⊥ ∧ @)41)
1/2 and 1 := (E(@ − ? ∧ @ − ?⊥ ∧ @)E∗)1/2, which are positive

injective operators in "?,@ := 41"41. Since

(
02 |G∗ |

|G∗ | 12

)
is a projection, some calculations show that

0, 1 and |G∗ | commute, 02 + 12 = 41 and |G∗ | = 01. Thus @ − ? ∧ @ − ?⊥ ∧ @ corresponds to

(
02 01

10 12

)
.

Therefore, we can decompose ? and @ in the following manner:

? = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕

(
1 0
0 0

)
, @ = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕

(
02 01

01 12

)
,

where � is decomposed as � = (? ∧ @⊥)� ⊕ (?⊥ ∧ @)� ⊕ (? ∧ @)� ⊕ (?⊥ ∧ @⊥)� ⊕ (41 + 42)� and
0 and 1 are positive injective operators in "?,@ (= 41"41) such that 02 + 12 = 1"?,@

.

2.4. Center-valued norm

Let " be a von Neumann algebra of type I or III and G ∈ !(("). Then there exists a unique minimal
element |||G ||| ∈ !((Z("))+ (⊂ !((")) with |G | ≤ |||G |||. The mapping |||·||| : !((") → !((Z("))+
is called the center-valued norm. Remark that if " is a factor, then Z(") can be identified with C and
we have |||G ||| = ‖G‖ ∈ R for every G ∈ " . Be cautious of the fact that we cannot take such a mapping
for a type II von Neumann algebra; that is why we will need to exclude type II cases in the proof of
Theorem B.

As is expected, the center-valued norm possesses the following properties: For any G, H ∈ !((")

and 0 ∈ !((Z(")), we have (i) |||G ||| = 0 =⇒ G = 0; (ii) |||G + H ||| ≤ |||G ||| + |||H |||; (iii) |||0 ||| = |0 |;
(iv) |||0G ||| = |0 | |||G |||; and (v) |||GH ||| ≤ |||G ||| |||H |||. See [1, Section 2] and references therein for further
information about the center-valued norm.
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3. Lattice isomorphisms of projection lattices

Part of this section heavily depends on von Neumann’s argument in [22, Part II, Chapter IV]. The aim
of this section is to give a proof of Theorem A. But first, we consider the converse of Theorem A.

Proposition 3.1. Let " and # be von Neumann algebras. Suppose that Ψ : !((") → !((#) is

a ring isomorphism. Then there exists a unique lattice isomorphism Φ : P(") → P(#) such that

Φ(; (G)) = ; (Ψ(G)) for any G ∈ !((").

Proof. It is easy to see thatΨ(0) = 0. Let G, H ∈ !((") satisfy ; (G) ≤ ; (H). Then we have {I ∈ !((") |

IG ≠ 0} ⊂ {I ∈ !((") | IH ≠ 0} and hence {I ∈ !((#) | IΨ(G) ≠ 0} ⊂ {I ∈ !((#) | IΨ(H) ≠ 0},
which in turn leads to ; (Ψ(G)) ≤ ; (Ψ(H)). We obtain ; (G) ≤ ; (H) ⇐⇒ ; (Ψ(G)) ≤ ; (Ψ(H)) for any
G, H ∈ !(("). Therefore, the mapping Φ : P(") → P(#) defined by Φ(?) = ; (Ψ(?)), ? ∈ P(")

satisfies the desired condition. �

Remark 3.2. The same proof is valid even if we replace a ring isomorphism with a semigroup isomor-
phism. However, Martindale’s result [13] implies that a semigroup isomorphism Ψ : !((") → !((#)

is automatically a ring isomorphism if " is without type I1 direct summands.

To begin the proof of Theorem A, let us first check the uniqueness of Ψ.

Lemma 3.3. Let " be a von Neumann algebra without type I1 direct summands. For any G ∈ " , there

exists a subset � ⊂ " with #� ≤ 9,
∑

H∈� H = G and the following property: For any H ∈ �, there

exists a pair ?, @ ∈ P(") of mutually orthogonal projections such that ? ∼ @ and either ?H? = H or

?H@ = H.

Proof. It suffices to consider the case where " has fixed order 2 ≤ = < ∞. Then we can identify " with
M= ("̂) for some von Neumann algebra "̂ . We can write G ∈ " as G = (G8 9 )1≤8, 9≤= ∈ M= ("̂). It is easy
to see that we can take integers =0 := 0 ≤ =1 ≤ =2 ≤ = =: =3 such that =1, =2 − =1, =3 − =2 ≤ =/2. For
1 ≤ :, ; ≤ 3, define G:; = (G:;

8 9
)1≤8, 9≤= ∈ M= ("̂) by G:;

8 9
= G8 9 if =:−1+1 ≤ 8 ≤ =: and =;−1+1 ≤ 9 ≤ =; ,

and G:;
8 9

= 0 otherwise. (Here we are decomposing G into 3 × 3 blocks.) Then the nine operators G:; ,
1 ≤ :, ; ≤ 3 (some of which may be 0), satisfy the desired condition. �

Lemma 3.4. Let " be a von Neumann algebra without type I1 direct summands. Suppose that

Ψ : !((") → !((") is a ring isomorphism with ; (Ψ(G)) = ; (G) for all G ∈ !(("). Then Ψ is

the identity mapping on !((").

Proof. Let ? ∈ P("). I prove Ψ(?) = ?. Since ??⊥ = 0, we have Ψ(?)Ψ(?⊥) = 0, which implies
0 = A (Ψ(?)); (Ψ(?⊥)) = A (Ψ(?))?⊥. We obtain A (Ψ(?)) ≤ ?. We also have the equation Ψ(?)2 =

Ψ(?2) = Ψ(?). Hence, we obtain (? − Ψ(?))Ψ(?) = 0, which implies 0 = (? − Ψ(?)); (Ψ(?)) =

(? − Ψ(?))? and ? − Ψ(?) = 0.
In what follows, let ?, @ ∈ P(") be mutually orthogonal mutually Murray–von Neumann equivalent

projections. I next prove that Ψ(G) = G if G ∈ " (⊂ !((")) satisfies ?G@ = G. By additivity, we may
assume ‖G‖ ≤ 1/2. Then there exists a projection 4 ∈ P(") such that 4 ≤ ? + @, ?4@ = G. Indeed, let
G = E |G | = |G∗ |E be the polar decomposition. Take an operator 0 ∈ (?"?)+ such that ‖0‖ ≤ c/4 and
|G∗ | = sin 0 cos 0 = (sin 20)/2. Then

4 := cos2 0 + E∗(sin 0 cos 0) + (sin 0 cos 0)E + E∗ (sin2 0)E

satisfies this property. We obtain Ψ(G) = Ψ(?4@) = Ψ(?)Ψ(4)Ψ(@) = ?4@ = G.
Suppose that G ∈ " satisfies ?G? = G. Take a partial isometry E ∈ " such that EE∗ = ? and E∗E = @.

Then we have ?(GE)@ = GE and @E∗? = E∗, and hence Ψ(G) = Ψ(GEE∗) = Ψ(GE)Ψ(E∗) = GEE∗ = G.
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By the additivity of Ψ and Lemma 3.3, we see that Ψ fixes every element in " . Let G ∈ !((") and
let G = E |G | be its polar decomposition. It is clear that Ψ(1) = 1. Since E, (|G | + 1)−1 ∈ " , we obtain

Ψ(G) = Ψ(E |G |) = Ψ(E)Ψ(|G |)

= E(Ψ(|G | + 1) − 1) = E(Ψ((|G | + 1)−1)−1 − 1)

= E((|G | + 1) − 1) = E |G | = G �

Hence we obtain the uniqueness of Ψ in Theorem A. Indeed, if two ring isomorphisms
Ψ,Ψ′ : !((") → !((#) satisfy ; (Ψ(G)) = ; (Ψ′(G)) for all G ∈ !(("), then we have ; (Ψ−1◦Ψ′(G)) =

; (G) for all G ∈ !(("), and hence Lemma 3.4 implies Ψ−1 ◦ Ψ′(G) = G for all G ∈ !((").

I introduce a binary relation on P("), which is a key to the proof of Theorem A. Let ?, @ ∈ P(")

be two projections with ? ∧ @ = 0. By Subsection 2.3, we decompose ? and @:

? = 1 ⊕ 0 ⊕ 0 ⊕

(
1 0
0 0

)
, @ = 0 ⊕ 1 ⊕ 0 ⊕

(
02 01

01 12

)
. (3.1)

We say that ? is LS-orthogonal to @ if the operator 1 ∈ "?,@ is invertible in !(("?,@).

Lemma 3.5. Let " be a von Neumann algebra and ?, @ ∈ P("). Suppose that ? is LS-orthogonal to @.

Then there exists an invertible element ( = (?,@ ∈ !((") such that ((?∨@)⊥ = (?∨@)⊥( = (?∨@)⊥,

(? = ? and ; ((@(−1) = ? ∨ @ − ?.

Proof. Set ( := 1⊕1⊕1⊕

(
1 −01−1

0 1−1

)
with respect to the decomposition as before. Then ( is an element

in !((") with inverse (−1 = 1 ⊕ 1 ⊕ 1 ⊕

(
1 0

0 1

)
. It is easy to see that

((? ∨ @)⊥ = (? ∨ @)⊥( = (? ∨ @)⊥ = 0 ⊕ 0 ⊕ 1 ⊕

(
0 0
0 0

)
.

We also have

(? = 1 ⊕ 0 ⊕ 0 ⊕

(
1 0
0 0

)
= ?

and

; ((@(−1) = ;

(
0 ⊕ 1 ⊕ 0 ⊕

(
0 0
0 1

))
= 0 ⊕ 1 ⊕ 0 ⊕

(
0 0
0 1

)
= ? ∨ @ − ?.

�

Lemma 3.6. Let " be a von Neumann algebra and ?, @ ∈ P(") be two projections with ? ∧ @ = 0.

Then the following are equivalent:

1. The projection ? is LS-orthogonal to @.

2. There exists a lattice automorphism Φ of P(") such that Φ(?) ⊥ Φ(@).

3. If a projection ?0 ∈ P(") satisfies ?0 ≤ ? and ?0 ∨ @ = ? ∨ @, then ?0 = ?.

4. The projection @ is LS-orthogonal to ?.

Proof. (1) ⇒ (2) Take ( ∈ !((") as in Lemma 3.5 and let Φ be the unique lattice isomorphism such
that Φ(; (G)) = ; ((G(−1), G ∈ !((-).

(2) ⇒ (3) is clear.
(3) ⇒ (1) We use the decomposition (3.1). By Lemma 2.2, if (1) does not hold, then there exists

an element 3 ∈ "?,@+ \ {0} such that {G ∈ "?,@+ | G ≤ 1, G ≤ 3} = {0}. Take the nonzero spectral
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projection ?1 := j( ‖3 ‖/2, ‖3 ‖] (3) ∈ P("?,@). It follows that

{G ∈ "?,@+ | G ≤ 1, G ≤ ?1} = {0}. (3.2)

Indeed, if G ∈ "?,@+ satisfies G ≤ 1 and G ≤ ?1, take a positive real number 2 with 2 ≤ 1 and
2 ≤ ‖3‖/2 and then 2G ≤ 21 ≤ 1 and 2G ≤ 2?1 ≤ 3; hence, 2G = 0 and we obtain G = 0. Set

?0 := 1 ⊕ 0 ⊕ 0 ⊕

(
1 − ?1 0

0 0

)
∈ P("). Then ?0 ≤ ? and ?0 ≠ ?. I prove that ?0 ∨ @ = ? ∨ @, or

equivalently,

(
1 − ?1 0

0 0

)
∨

(
02 01

01 12

)
= 1M2 ("?,@ ) , which is in turn equivalent to

(
?1 0
0 1

)
∧

(
12 −01

−01 02

)
= 0M2 ("?,@ ) . (3.3)

We have

(
1 0
0 0

) ((
?1 0
0 1

)
∧

(
12 −01

−01 02

)) (
1 0
0 0

)

≤

(
1 0
0 0

) (
?1 0
0 1

) (
1 0
0 0

)
=

(
?1 0
0 0

)

and

(
1 0
0 0

) ((
?1 0
0 1

)
∧

(
12 −01

−01 02

)) (
1 0
0 0

)

≤

(
1 0
0 0

) (
12 −01

−01 02

) (
1 0
0 0

)
=

(
12 0
0 0

)
.

Since the square-root mapping preserves the order of positive operators, (3.2) implies that the square
root of the operator (

1 0
0 0

) ((
?1 0
0 1

)
∧

(
12 −01

−01 02

)) (
1 0
0 0

)

is equal to 0. Hence (
1 0
0 0

) ((
?1 0
0 1

)
∧

(
12 −01

−01 02

)) (
1 0
0 0

)
= 0,

or equivalently,

(
?1 0
0 1

)
∧

(
12 −01

−01 02

)
≤

(
0 0
0 1

)
holds. However, we know

(
0 0
0 1

)
∧

(
12 −01

−01 02

)
= 0, so

we finally obtain (3.3).
Exchanging the roles of ? and @, we also obtain (2) ⇔ (4). �

Let us recall the setting of Theorem A: ‘Let " , # be von Neumann algebras. Suppose that " is
without type I1 and I2 direct summands and Φ : P(") → P(#) is a lattice isomorphism.’ By Lemma
3.6, we see that Φ preserves LS-orthogonality in both directions, that is, for any ?, @ ∈ P("), ? and @
are LS-orthogonal if and only if Φ(?) and Φ(@) are LS-orthogonal.
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In what follows, I show the existence of Ψ as in the statement of Theorem A in the case that " has
order 3. Thus " can be identified withM3 ("̂) for some von Neumann algebra "̂ . Set

4"1 :=
©­«
1 0 0
0 0 0
0 0 0

ª®¬
, 4"2 :=

©­«
0 0 0
0 1 0
0 0 0

ª®¬
, 4"3 :=

©­«
0 0 0
0 0 0
0 0 1

ª®¬
∈ P(M3 ("̂)).

Set 41 := Φ(4"1 ), 42 := Φ(4"2 ), 43 := Φ(4"3 ). We know that 41 ∨ 42 is LS-orthogonal to 43, and
41 is LS-orthogonal to 42. In addition, we know 41 ∨ 42 ∨ 43 = 1. Take (41∨42 ,43 and (41 ,42 as in the
statement of Lemma 3.5. Consider the lattice automorphism i : P(#) → P(#) determined by the
condition i(; (G)) = ; ((41 ,42(41∨42 ,43G(

−1
41∨42 ,43

(−1
41 ,42

) (= ; ((41 ,42(41∨42 ,43G)), G ∈ !((#). A moment’s
calculation shows that i(41), i(42), i(43) are mutually orthogonal and i(41) + i(42) + i(43) = 1# .

Lemma 3.7. We have i(41) ∼ i(42) ∼ i(43) in # .

Proof. Subsection 2.3 implies that for ?, @ ∈ P(#), if ? ∨ @ = 1 and ? ∧ @ = 0, then ?⊥ ∼ @. Since
i ◦Φ is a lattice isomorphism, we obtain

i(41) = i ◦Φ(4"1 ) ∼
©­«
i ◦Φ

©­«
1

2
©­«
1 1 0
1 1 0
0 0 2

ª®¬
ª®¬
ª®¬
⊥

∼ i ◦Φ(4"2 ) = i(42).

Similarly, we obtain i(41) ∼ i(43). �

It suffices to consider i ◦ Φ instead of Φ. Hence we can identify # with M3 (#̂) for some von
Neumann algebra #̂ , and we can assume Φ(4"1 ) = 4#1 , Φ(4"2 ) = 4#2 and Φ(4"3 ) = 4#3 , where

4#1 :=
©­«
1 0 0
0 0 0
0 0 0

ª®¬
, 4#2 :=

©­«
0 0 0
0 1 0
0 0 0

ª®¬
, 4#3 :=

©­«
0 0 0
0 0 0
0 0 1

ª®¬
∈ P(M3 (#̂)).

Let G ∈ !(("̂). Suppose that "̂ ⊂ �( ). Viewing G as a closed operator, we see that the collection



©­«
b

Gb

0

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G




is a closed subspace in  ⊕  ⊕  . Take the projection %12 [G] ∈ P(�( ⊕  ⊕  )) onto this subspace.
Then we have

%12 [G] =
©­«
(1 + G∗G)−1 (1 + G∗G)−1G∗ 0
G(1 + G∗G)−1 G(1 + G∗G)−1G∗ 0

0 0 0

ª®¬
(3.4)

and hence %12 [G] ∈ P(M3 ("̂)). Similarly, let %13 [G], %23 [G] ∈ P(M3 ("̂)), respectively, denote the
projections onto



©­«
b

0
Gb

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G



,



©­«

0
b

Gb

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G



.

Lemma 3.8. Let & ∈ P(M3 ("̂)). Then the following conditions are equivalent:

1. There exists an G ∈ !(("̂) such that & = %12 [G].

2. & ∨ 4"2 = 4"1 ∨ 4"2 , and & is LS-orthogonal to 4"2 .
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Proof. (1) ⇒ (2) Let & = %12 [G]. Since (1 + G∗G)−1 is a positive injective operator, we have & ∨ 4"2 =

4"1 ∨ 4"2 by (3.4). Let G = E |G | be the polar decomposition. By (3.4), we have

& = %12 [G] =
©­«

(1 + |G |2)−1 (1 + |G |2)−1 |G |E∗ 0
E |G | (1 + |G |2)−1 E |G | (1 + |G |2)−1 |G |E∗ 0

0 0 0

ª®¬
.

Hence we have

& ∧ 4"2 ≤
©­«
0 0 0
0 E |G | (1 + |G |2)−1 |G |E∗ 0
0 0 0

ª®¬
.

Since 1 − E |G | (1 + |G |2)−1 |G |E∗ is a positive injective operator, we see that & ∧ 4"2 = 0. As in (3.1), we
can decompose 4"2 and & in the following form:

4"2 = 1 ⊕ 0 ⊕ 0 ⊕

(
1 0
0 0

)
, & = 0 ⊕ 1 ⊕ 0 ⊕

(
02 01

01 12

)
.

We also have

4"1 = 0 ⊕ 1 ⊕ 0 ⊕

(
0 0
0 1

)

with respect to the same decomposition. Recall that (1 + G∗G)−1 is invertible in !(("̂), or equivalently,
4"1 &4

"
1 is invertible in !((4"1 "4"1 ). This means that

0 ⊕ 1 ⊕ 0 ⊕

(
0 0
0 12

)

is invertible in !((4"1 "4"1 ), which in particular implies the invertibility of 1 in !(("4"2 ,&).

(2) ⇒ (1) As in (3.1), we can decompose 4"2 and & in the following form:

4"2 = 1 ⊕ 0 ⊕ 0 ⊕

(
1 0
0 0

)
, & = 0 ⊕ 1 ⊕ 0 ⊕

(
02 01

01 12

)
.

Note that 1 is invertible as a locally measurable operator. It follows that

4"1 = 0 ⊕ 1 ⊕ 0 ⊕

(
0 0
0 1

)
.

Consider the partial isometry

F = 0 ⊕ 1 ⊕ 0 ⊕

(
0 0
0 1

)
.

We have FF∗ = 4"1 and F∗F = &. Moreover, 4"1 F4
"
1 is a positive invertible element in !((4"1 "4"1 ).

Thus a moment’s reflection shows that there exist F1, F2 ∈ "̂ such that F1 ≥ 0, F1 is invertible in

!(("̂) and F =
©­«
F1 F2 0
0 0 0
0 0 0

ª®¬
∈ M3("̂). (Here F1 corresponds to 4"1 F4

"
1 .) Set G = F∗

2F
−1
1 . Since

FF∗ = 4"1 , we obtain F2
1 + F2F

∗
2 = 1"̂ . Hence,

1 + G∗G = 1 + F−1
1 F2F

∗
2F

−1
1 = 1 + F−1

1 (1 − F2
1)F

−1
1 = F−2

1 .
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It follows by (3.4) that

%12 [G] =
©­«
(1 + G∗G)−1 (1 + G∗G)−1G∗ 0
G(1 + G∗G)−1 G(1 + G∗G)−1G∗ 0

0 0 0

ª®¬
=

©­«
F2

1 F1F2 0
F∗

2F1 F
∗
2F2 0

0 0 0

ª®¬
= F∗F = &.

�

Corollary 3.9. Let : ∈ {12, 13, 23}. There exists a bijection k: : !(("̂) → !((#̂) such that

Φ(%: [G]) = %: [k: (G)]. Moreover, G ∈ !(("̂) is invertible in !(("̂) if and only if k: (G) is invertible

in !((#̂)

Proof. Since Φ is a lattice isomorphism with Φ(4"1 ) = 4#1 and Φ(4"2 ) = 4#2 , the first half of the case

: = 12 follows from Lemma 3.8. For G ∈ !(("̂), let %21 [G] ∈ P(M3 ("̂)) denote the projection onto



©­«
Gb

b

0

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G




;

thus,

%21 [G] =
©­«
G(1 + G∗G)−1G∗ G(1 + G∗G)−1 0
(1 + G∗G)−1G∗ (1 + G∗G)−1 0

0 0 0

ª®¬
.

It is easy to see that for G, H ∈ !(("̂), the equation %12 [G] = %21 [H] holds if and only if G is invertible
in !(("̂) and H = G−1. Therefore, Lemma 3.8 implies that an operator G ∈ !(("̂) is invertible in
!(("̂) if and only if %12 [G] is LS-orthogonal to 4"1 and %12 [G] ∨ 4

"
1 = 4"1 ∨ 4"2 . Thus k12 preserves

invertibility. The other cases can be shown similarly. �

In particular, the operatorsk12(1), k13 (1) are invertible in !((#̂). Consider the lattice automorphism

q of P(M3 (#̂)) determined by q(; (G)) = ; ((G(−1), where ( =
©­«
1 0 0
0 k12 (1)−1 0
0 0 k13 (1)−1

ª®¬
. We see that

q(4#
8
) = 4#

8
, 8 = 1, 2, 3, and

q ◦Φ(%12 [1"̂ ]) = %12 [1#̂ ], q ◦Φ(%13 [1"̂ ]) = %13 [1#̂ ] .

Considering q ◦Φ instead of Φ, we can assume Φ(%12 [1"̂ ]) = %12 [1#̂ ] and Φ(%13 [1"̂ ]) = %13 [1#̂ ],
or equivalently, k12 (1) = k13(1) = 1.

Lemma 3.10. For any G, H ∈ !(("̂), we have

%13 [GH] = (%23 [−G] ∨ %12 [H]) ∧ (4"1 ∨ 4"3 ).

Proof. Let "̂ ⊂ �( ). We know that the range of %23 [−G] ∨ %12 [H] is the closure of

+ :=



©­«

[

b + H[

−Gb

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G, [ ∈ dom H



.

In particular, we have
©­«
[

0
GH[

ª®¬
∈ + for any [ ∈ dom H with H[ ∈ dom G. Since the collection {[ ∈ dom H |

H[ ∈ dom G} is a core of the operator GH ∈ !(("̂), we have %13 [GH] ≤ (%23 [−G]∨%12 [H])∧(4"1 ∨4"3 ).
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We claim that the orthogonal complement +⊥ of + is



©­«
−H∗G∗Z

G∗Z

Z

ª®¬
∈  ⊕  ⊕  

������ Z ∈ dom G∗, G∗Z ∈ dom H∗


.

It is clear that any
©­«
−H∗G∗Z

G∗Z

Z

ª®¬
is an element in +⊥. If

©­«
Z1

Z2

Z3

ª®¬
∈ +⊥, then

0 =

〈©­«
Z1

Z2

Z3

ª®¬
,
©­«

0
b

−Gb

ª®¬
〉
= 〈Z2, b〉 − 〈Z3, Gb〉

for any b ∈ dom G, and hence we obtain Z3 ∈ dom G∗, Z2 = G∗Z3. By the equation

0 =

〈©­«
Z1

Z2

Z3

ª®¬
,
©­«
[

H[

0

ª®¬
〉

for [ ∈ dom H, we obtain the claim. Let
©­«
ℎ1

ℎ2

ℎ3

ª®¬
belong to the range of (%23 [−G] ∨ %12 [H]) ∧ (4"1 ∨ 4"3 ),

which is equal to the orthogonal complement of+⊥∪



©­«
0
:

0

ª®¬
∈  ⊕  ⊕  

������ : ∈  




. Then we have ℎ2 = 0

and

0 =

〈©­«
ℎ1

0
ℎ3

ª®¬
,
©­«
−H∗G∗Z

G∗Z

Z

ª®¬
〉
= −〈ℎ1, H

∗G∗Z〉 + 〈ℎ3, Z〉

for any Z ∈ dom G∗ with G∗Z ∈ dom H∗. We know that {Z ∈ dom G∗ | G∗Z ∈ dom H∗} is a core of the
operator H∗G∗ ∈ !(("̂). Thus we obtain ℎ1 ∈ dom(H∗G∗)∗ = dom(GH) and ℎ3 = (GH)ℎ1 (here we view
GH as a closed operator in !(("̂)). �

Lemma 3.11. We have k12 = k13 = k23 =: k. Moreover, k : !(("̂) → !((#̂) is multiplicative.

Proof. Let G, H ∈ !(("̂). By Lemma 3.10, we have

%13 [GH] = (%23 [−G] ∨ %12 [H]) ∧ (4"1 ∨ 4"3 )

and hence

%13 [k13 (GH)] = Φ(%13 [GH]) = Φ

(
(%23 [−G] ∨ %12 [H]) ∧ (4"1 ∨ 4"3 )

)
= (Φ(%23 [−G]) ∨Φ(%12 [H])) ∧ (Φ(4"1 ) ∨Φ(4"3 ))

= (%23 [k23 (−G)] ∨ %12 [k12 (H)]) ∧ (4#1 ∨ 4#3 ).

It follows by Lemma 3.10 again (applied to # instead of ") that

(%23 [k23 (−G)] ∨ %12 [k12 (H)]) ∧ (4#1 ∨ 4#3 ) = %13 [−k23 (−G)k12 (H)] .

Thus we obtain %13 [−k23 (−G)k12 (H)] = %13 [k13 (GH)], which implies −k23(−G)k12 (H) = k13(GH).
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In particular, setting G = H = 1, we obtain k23 (−1) = −1. Setting G = 1, we obtain −k23(−1)k12 (H) =

k13 (H), hence k12(H) = k13(H). Moreover, setting H = 1, we obtain −k23(−G)k12 (1) = k13 (G), hence
−k23 (−G) = k13 (G). Thus k12(G)k12 (H) = −k23 (−G)k12 (H) = k13 (GH) = k12 (GH). Therefore, k12 is
multiplicative. It follows that k12 (−1) is central in !((#̂), k12 (−1)2 = 1 and k12 (−1)H ≠ H for any
H ≠ 0, and hence we obtain k12 (−1) = −1. We reach the equation k13 = k12 = k23. �

Lemma 3.12. The mapping k is additive.

Proof. Let G, H ∈ !(("̂). Consider the projections

5 = (%12 [G] ∨ 4
"
3 ) ∧ (%13 [1] ∨ 4

"
2 ) and 6 = (%12 [H] ∨ %13 [1]) ∧ (4"2 ∨ 4"3 ).

By an argument similar to that in the proof of Lemma 3.10, we can check the following: The range of
5 is equal to



©­«
b

Gb

b

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G




and the range of 6 is equal to



©­«

0
−H[

[

ª®¬
∈  ⊕  ⊕  

������ [ ∈ dom H



,

hence ( 5 ∨ 6) ∧ (4"1 ∨ 4"2 ) = %12 [G + H]. Apply Φ to both sides to obtain the desired conclusion. �

Define a mapping Ψ : !((M3 ("̂)) → !((M3 (#̂)) by Ψ((G8 9 )8 9 ) := (k(G8 9 ))8 9 , G8 9 ∈ !(("̂),
8, 9 = 1, 2, 3. The preceding lemmas imply that Ψ is a ring isomorphism from !((M3 ("̂)) onto
!((M3 (#̂)).

Lemma 3.13. We have Φ(; (G)) = ; (Ψ(G)) for any G ∈ !((M3 ("̂)).

Proof. I partly imitate Dye’s argument in the proof of [3, Lemma 7]. By Lemma 3.4, it suffices to
show that the lattice isomorphism Φ′ : P(M3 ("̂)) → P(M3 (#̂)) determined by ; (Ψ(G)) = Φ′(; (G)),
G ∈ !((M3 ("̂)), satisfies Φ = Φ′. For G ∈ !(("̂), we have

Φ(%12 [G]) = %12 [k(G)] = ;
©­«

1 0 0
k(G) 0 0

0 0 0

ª®¬
= ;

©­«
Ψ

©­«
1 0 0
G 0 0
0 0 0

ª®¬
ª®¬
= Φ

′ ©­«
;
©­«
1 0 0
G 0 0
0 0 0

ª®¬
ª®¬
= Φ

′(%12 [G]).

Similarly, we see that Φ(?) = Φ′(?) for any ? ∈ {%: [G] | G ∈ !(("̂), : = 12, 23, 13}.
Let G2, G3 ∈ !(("̂). Consider the projection %G2 ,G3 ∈ P(M3 ("̂)) onto the closed subspace



©­«
b

G2b

G3b

ª®¬
∈  ⊕  ⊕  

������ b ∈ dom G2 ∩ dom G3



.

It is not difficult to see that this projection is equal to (%12 [G2] ∨ 4
"
3 ) ∧ (%13 [G3] ∨ 4

"
2 ). It follows that

Φ(%G2 ,G3) = Φ′(%G2 ,G3 ).
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Consider an arbitrary nonzero projection ? = (?8, 9 )1≤8, 9≤3 ∈ P(M3 ("̂)). By Zorn’s lemma, to
show that Φ(?) = Φ′(?), it suffices to find a nonzero subprojection (? ≥) @ ∈ P(M3 ("̂)) such that
Φ(@) = Φ′(@). Note that ?88 =

∑
1≤:≤3 ?8: ?

∗
8:

, hence we see that ?88 ≠ 0 for some 8 ∈ {1, 2, 3}.

If ?11 ≠ 0, set 4 := j( ‖?11 ‖/2, ‖?11 ‖] (?11) ∈ P("̂) \ {0} and G1 := ?−1
11 4 ∈ "̂ . It follows that the

projection @ ∈ P(M3 ("̂)) onto the subspace



©­«
?11b

?21b

?31b

ª®¬
∈  ⊕  ⊕  

������ b ∈ 4 



=



©­«

[

?21G1[

?31G1[

ª®¬
∈  ⊕  ⊕  

������ [ ∈ 4 




is a nonzero subprojection of ?. Since @ = %?21G1 , ?31G1 ∧ ((%12 [4
⊥] ∧ 4"1 ) ∨ 4"2 ∨ 4"3 ), we obtain

Φ(@) = Φ′(@).
If ?11 = 0 and ?22 ≠ 0, we have ? ≤ 4"2 ∨ 4"3 . Then a similar discussion applies. If ?11 = ?22 = 0,

then ?33 ∈ P("̂). Use the equation (%13 [1] ∨ %13 [?
⊥
33]) ∧ 4

"
3 = ?, which can be verified easily, to

obtain the desired conclusion. �

Therefore, the proof of Theorem A is complete in the case where " has order 3. The same discussion
with a slight modification is valid in any case where " has order = with 3 ≤ = < ∞. We know that a
projection lattice isomorphism preserves central projections because a projection ? in a von Neumann
algebra " is central if and only if {@ ∈ P(") | ? ∨ @ = 1, ? ∧ @ = 0} = {?⊥}. Since every von
Neumann algebra without type I1 and I2 direct summands decomposes into the direct sum of algebras
of order 3 ≤ = < ∞, now it easy to complete the proof of Theorem A in the general case.

In what follows, I give a proof of Theorem 1.4 by Dye (in the case the von Neumann algebras are
without commutative direct summands) as an application of Theorem A. The following proof is partly
based on Feldman’s argument [4, Proof of Theorem 3].

Let " and # be von Neumann algebras without type I1 and I2 direct summands, and suppose that
Φ : P(") → P(#) is a lattice isomorphism. Suppose further that we have ?@ = 0 if and only if
Φ(?)Φ(@) = 0 for any pair ?, @ ∈ P("). By Theorem A, there exists a unique ring isomorphism
Ψ : !((") → !((#) such that Φ(; (G)) = ; (Ψ(G)) for any G ∈ !((").

Then we have Ψ(?) = Φ(?) ∈ P(#) for every ? ∈ P("). Indeed, since ?2 = ? and ??⊥ = 0,
we have Ψ(?)2 = Ψ(?) and Ψ(?)Ψ(?⊥) = 0. Thus we have A (Ψ(?)); (Ψ(?⊥)) = 0. The assumption
implies ; (Ψ(?⊥)) = Φ(?⊥) = Φ(?)⊥ = ; (Ψ(?))⊥, and thus we obtain A (Ψ(?)) ≤ ; (Ψ(?)). By the
equation (; (Ψ(?)) − Ψ(?))Ψ(?) = 0, we obtain 0 = (; (Ψ(?)) − Ψ(?)); (Ψ(?)) = ; (Ψ(?)) − Ψ(?).
Hence Ψ(?) = ; (Ψ(?)) = Φ(?) ∈ P(#).

Consider the ring automorphism G ↦→ Ψ−1(Ψ(G∗)∗) of !(("). This fixes every projection, hence
Lemma 3.4 implies that G = Ψ−1(Ψ(G∗)∗), or equivalently, Ψ(G)∗ = Ψ(G∗) for each G ∈ !(("). It
follows that Ψ maps the self-adjoint part of !((") onto that of !((#). Since Ψ preserves squares, Ψ
restricted to self-adjoint parts preserves order in both directions. Since Ψ(1) = 1, Ψ restricts to a real
∗-isomorphism from " onto # and extends Φ, which is the desired conclusion.

4. Ring isomorphisms of locally measurable operator algebras

By Section 3, lattice isomorphisms between projection lattices are in one-to-one correspondence with
ring isomorphisms between the algebras of locally measurable operators. Hence the following question
is well motivated:

Question. Let " , # be von Neumann algebras. What is the general form of ring isomorphisms from
!((") onto !((#)?
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Lemma 4.1. Let ", # be general von Neumann algebras. Let

" =

(⊕
=≥1

"I=

)
⊕ "I∞ ⊕ "II1 ⊕ "II∞ ⊕ "III,

# =

(⊕
=≥1

#I=

)
⊕ #I∞ ⊕ #II1 ⊕ #II∞ ⊕ #III

be the type decompositions, where " 9 , # 9 are von Neumann algebras of type 9 . Suppose that

Ψ : !((") → !((#) is a ring isomorphism. Then there exist ring isomorphisms k 9 : !((" 9 ) →

!((# 9 ) such that Ψ(G) = k 9 (G) for any G ∈ !((" 9 ) (⊂ !((")).

Proof. It is easy to see that Ψ maps the collection of central projections in " onto that in # . Hence
it suffices to show that if " , # are of type 9 , : ∈ {I= | = ≥ 1} ∪ {I∞, II1, II∞, III}, respectively, then
9 = : . Consider the lattice isomorphism Φ : P(") → P(#) as in Proposition 3.1. It is easy to see
that a projection ? ∈ P(") is abelian (namely, ?"? is an abelian von Neumann algebra) if and only
if Φ(?) is abelian. Moreover, a projection ? ∈ P(") is finite if and only if Φ(?) ∈ P(#) is finite.
Indeed, if ? is not finite, then there exist mutually orthogonal nonzero subprojections ?1, ?2, ?3 of
? such that ?1 ∼ ?2 ∼ ?3 ∼ ?1 + ?2. The same argument as in the proof of Lemma 3.7 implies
Φ(?1) ∼ Φ(?3) ∼ Φ(?1 + ?2), which shows that Φ(?) is not finite. Similarly, if Φ(?) is not finite, then
? is not finite. The rest of the proof is a standard argument of von Neumann algebra theory, and I omit
the details (see, e.g., [9, Chapter 6]). �

Therefore, the Question reduces to the case where both " and # are of type 9 , 9 ∈ {I= | = ≥ 1}
∪ {I∞, II1, II∞, III}.

First consider the Question in the case where ", # are von Neumann algebras of type I=. Suppose
that !((") is ring isomorphic to !((#). Since the central projection lattices of " and # are lattice
isomorphic, we see that the center of " is ∗-isomorphic to that of # . Hence there exists a commutative
von Neumann algebra � such that " � # � M= (�). Therefore, it suffices to think about ring
automorphisms of !((M= (�)), which can be identified with the collection of all = × = matrices with
entries in !((�). Note that � can be identified with the algebra !∞ (`) of all complex-valued essentially
bounded measurable functions (modulo almost-everywhere equivalence) for some measure `. Then
!((�) corresponds to !0 (`), which denotes the collection of all complex-valued measurable functions.
Note that any ring automorphism k of !((�) determines a ring automorphism k ′ of !((M= (�)) by
the formula k ′((G8 9 )) = (k(G8 9 ))8 9 . The following proposition slightly generalizes (but can be shown
by exactly the same argument as in) [1, Theorem 3.3].

Proposition 4.2. Let = ≥ 1 be an integer and � be a commutative von Neumann algebra. Suppose that

Ψ is a ring automorphism of !((M= (�)). Then there exist a ring automorphism k : !((�) → !((�)

and an invertible element H in !((M= (�)) such that Ψ(G) = Hk ′(G)H−1, G ∈ !((M= (�)).

Proof. Note that Ψ restricts to a ring automorphism k of the center of !((M= (�)), which is canonically
isomorphic to !((�). Then Ψ ◦ k ′−1 fixes every element in the center of !((M= (�)). We can apply
[1, Theorem 3.1] to obtain the desired conclusion. �

There exist highly nontrivial examples of ring automorphisms of !((�) = !0 (`) for a commutative
von Neumann algebra �. For example, consider the case � = C = !((�). There are many ring
automorphisms of C that are far from real-linear. Consider the case where ` is an atomless measure. It
is known [12, (1)⇔ (6) of Theorem 3.4] (see also [12, Remark 6.3]) that there exists a (complex-linear)
algebra automorphism k of !0 (`) such that k(?) = ? for any ? ∈ P(�) but k ≠ id!0 (`) . It seems that
these examples are beyond the scope of the theory of operator algebras.

In contrast, we can give a purely operator algebraic solution to the Question for type I∞ or III as
Theorem B. This improves on [1, Theorem 3.8], in which algebra isomorphisms of the case of type I∞
were considered.
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Proof of Theorem B. Beware of the fact that Ψ restricts to a lattice isomorphism between the central
projection lattices of " and # . I first prove:

Claim There exists an operator 0 ∈ !((Z(#))+ such that |||Ψ(G) ||| ≤ 0 for any G ∈ " (⊂ !(("))

with ‖G‖ ≤ 1.

Assume that this claim does not hold. I will obtain a contradiction in Step 4.

Step 1 I prove that there exists a central projection 4 in " such that for any = ≥ 1 there exists some
G ∈ " with ‖G‖ ≤ 1 and |||Ψ(G) ||| ≥ =Ψ(4).

Assume for a while that the center Z(") of " admits a faithful normal state g : Z(") → C. For
each positive integer =, consider the collection

�= := {4 ∈ P(Z(")) | there exists G ∈ " with ‖G‖ ≤ 1 and |||Ψ(G) ||| ≥ =Ψ(4)}.

Suppose that 4, 5 belong to this collection. Take G, H ∈ " such that ‖G‖, ‖H‖ ≤ 1 and |||Ψ(G) ||| ≥ =Ψ(4),
|||Ψ(H) ||| ≥ =Ψ( 5 ). Then the element G ′ := G4 + H4⊥ satisfies ‖G ′‖ ≤ 1 and

|||Ψ(G ′) ||| =
������Ψ(G4 + H4⊥)

������
=

������Ψ(G)Ψ(4) + Ψ(H)Ψ(4)⊥
������

= |||Ψ(G) |||Ψ(4) + |||Ψ(H) |||Ψ(4)⊥

≥ =Ψ(4) + =Ψ( 5 )Ψ(4)⊥

= =Ψ(4) ∨ Ψ( 5 ) = =Ψ(4 ∨ 5 ).

Hence we have 4 ∨ 5 ∈ �=, which implies that �= is upward directed. Set 2= := sup{g(4) | 4 ∈ �=}.
We can take an increasing sequence {4 (:) } ⊂ �= such that g(4 (:) ) → 2= as : → ∞. For each : , take
G (:) ∈ " such that ‖G (:) ‖ ≤ 1 and

������Ψ(G (:) )
������ ≥ =Ψ(4 (:) ). Some calculations show that the element

G ′′ := G (1)4 (1) +
∑
:≥2

G (:) (4 (:) − 4 (:−1) ) ∈ "

satisfies ‖G ′′‖ ≤ 1 and |||Ψ(G ′′) ||| ≥ =Ψ(4 (:) ) for every : . This implies that for the projection 4= :=∨
�= ∈ P(Z(")) there exists G= ∈ P(Z(")) such that ‖G=‖ ≤ 1 and |||Ψ(G=) ||| ≥ =Ψ(4=).
Clearly, {4=} is a decreasing sequence. Assume that 4= → 0 as = → ∞; then the element 0 =

Ψ(1 +
∑

=≥1 4=) ∈ !((Z(#))+ satisfies the property of the Claim, which contradicts our assumption.
Hence we have 4= → 4 ∈ P(Z(")) \ {0} as = → ∞, and 4 satisfies the desired property. Since every
von Neumann algebra can be decomposed into the direct sum of von Neumann algebras whose centers
admit faithful normal states, the same holds for arbitrary " and # .

Considering the restriction of Ψ to a ring isomorphism from !(("4) onto !((#Ψ(4)), we can
assume that for any = ≥ 1 there exists some G ∈ " with ‖G‖ ≤ 1 and |||Ψ(G) ||| ≥ =.

Step 2 I prove that for any 0 ∈ !((Z(#))+ there exists some G ∈ " with ‖G‖ ≤ 1 and |||Ψ(G) ||| ≥ 0.
Let 0 ∈ !((Z(#))+. We can take a sequence of mutually orthogonal central projections { 5=} such

that 0 ≤
∑

=≥1 = 5=. For each =, take G= ∈ " such that ‖G=‖ ≤ 1 and |||Ψ(G=) ||| ≥ = 5=. Some calculations
show that the element G :=

∑
=≥1 G=Ψ

−1( 5=) satisfies ‖G‖ ≤ 1 and |||Ψ(G) ||| ≥
∑

=≥1 = 5= ≥ 0.

Step 3 I prove that for any ? ∈ P(") with ? ∼ ?⊥ and any 0 ∈ !((Z(#))+, there exists an element
G ∈ " with ?G? = G, ‖G‖ ≤ 1 and |||Ψ(G) ||| ≥ 0.

Take a partial isometry E ∈ " such that EE∗ = ? and E∗E = ?⊥. Since Ψ is a ring isomorphism, for
any G ∈ " we have

Ψ(G) = Ψ(?G? + ?G?⊥ + ?⊥G? + ?⊥G?⊥)

= Ψ(?G?) + Ψ(?GE∗)Ψ(E) + Ψ(E∗)Ψ(EG?) + Ψ(E∗)Ψ(EGE∗)Ψ(E).
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For a given 0 ∈ !((Z(#))+, set

1 := 40 + 40 |||Ψ(E) ||| + 40 |||Ψ(E∗) ||| + 40 |||Ψ(E) ||| |||Ψ(E∗) ||| ∈ !((Z(#))+.

Step 2 implies that there exists G ∈ " with ‖G‖ ≤ 1 and

1 ≤ |||Ψ(G) |||

≤ |||Ψ(?G?) ||| + |||Ψ(?GE∗) ||| |||Ψ(E) ||| + |||Ψ(E∗) ||| |||Ψ(EG?) ||| + |||Ψ(E∗) ||| |||Ψ(EGE∗) ||| |||Ψ(E) |||.

Hence there exists a quadruple 51, 52, 53, 54 of central projections in # such that 51 + 52 + 53 + 54
= 1, |||Ψ(?G?) ||| 51 ≥ 1 51/4, |||Ψ(?GE∗) ||| |||Ψ(E) ||| 52 ≥ 1 52/4, |||Ψ(E∗) ||| |||Ψ(EG?) ||| 53 ≥ 1 53/4 and
|||Ψ(E∗) ||| |||Ψ(EGE∗) ||| |||Ψ(E) ||| 54 ≥ 1 54/4. Set

G ′ := ?G?Ψ−1 ( 51) + ?GE
∗
Ψ

−1( 52) + EG?Ψ
−1 ( 53) + EGE

∗
Ψ

−1( 54).

Then we have ?G ′? = G ′, ‖G ′‖ ≤ 1 and

|||Ψ(G ′) ||| = |||Ψ(?G?) 51 + Ψ(?GE∗) 52 + Ψ(EG?) 53 + Ψ(EGE∗) 54 |||

= |||Ψ(?G?) ||| 51 + |||Ψ(?GE∗) ||| 52 + |||Ψ(EG?) ||| 53 + |||Ψ(EGE∗) ||| 54

≥
1

4
1( 51 + |||Ψ(E) |||−1 52 + |||Ψ(E∗) |||

−1
53 + |||Ψ(E) |||−1 |||Ψ(E∗) |||

−1
54) ≥ 0.

(Note that |||Ψ(E) |||, |||Ψ(E∗) ||| are invertible in !((Z(#)).)

Step 4 Since " is properly infinite, we can take a sequence {?=}=≥1 of mutually orthogonal projections

in " such that ?= ∼ ?⊥= , = ≥ 1. By Step 3, for each = ≥ 1 we can take an element G= ∈ " with
?=G=?= = G=, ‖G=‖ ≤ 1 and |||Ψ(G=) ||| ≥ =|||Ψ(?=) |||. Set G :=

∑
=≥1 G= ∈ " (which is well defined,

since ?=, = ≥ 1, are mutually orthogonal). For every = ≥ 1, we have

|||Ψ(G) ||| |||Ψ(?=) ||| ≥ |||Ψ(G)Ψ(?=) ||| = |||Ψ(G?=) ||| = |||Ψ(G=) ||| ≥ =|||Ψ(?=) |||.

Since |||Ψ(?=) ||| is invertible in !((Z(#)), we obtain |||Ψ(G) ||| ≥ = for all = ∈ N, a contradiction. This
completes the proof of the Claim.

Step 5 It follows that there exists an element 0 ∈ !((Z(#))+ such that |||Ψ(G) ||| ≤ 0 for any G ∈ " with

‖G‖ ≤ 1. By the same discussion applied to Ψ−1, we also obtain an element 0′ ∈ !((Z("))+ such that������Ψ−1(H)
������ ≤ 0′ for any H ∈ # with ‖H‖ ≤ 1. We can take a sequence 4= of central projections in " such

that 4= ր 1 and Ψ restricts to a norm-bicontinuous ring isomorphism Ψ= from "4= onto #Ψ(4=),
= ≥ 1. By Lemma 2.1 we can verify the statement for each Ψ=, which suffices to complete the proof. �

Corollary 4.3. Let ", # be von Neumann algebras of type I∞ or III. Suppose that Φ : P(") → P(#)

is a lattice isomorphism. Then there exist a real ∗-isomorphism k : " → # and an invertible element

H ∈ !((#) such that Φ(?) = ; (Hk(?)), ? ∈ P(").

5. Questions

I skeptically conjecture that Theorem B also holds for type II von Neumann algebras:

Conjecture 5.1. Let " and # be von Neumann algebras of type II. Suppose that Ψ : !((") → !((#)

is a ring isomorphism. Then there exist an invertible operator H ∈ !((#) and a real ∗-isomorphism

k : " → # such that Ψ(G) = Hk(G)H−1 for any G ∈ !((").

Not much is known about the structure of the algebra !((") for a type II (in particular, II1) von
Neumann algebra " . I do not know whether or not such a Ψ is automatically real-linear even in the
case where " and # are (say, approximately finite-dimensional) II1 factors. Note that !((") cannot
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have a Banach algebra structure because of the fact that an element of !((") can have an empty
or dense spectral set. Hence it seems difficult to make use of automatic continuity results on algebra
isomorphisms as in [2]. However, I suspect that at least the following weaker statement holds:

Conjecture 5.2. Let " and # be von Neumann algebras of type II. If P(") and P(#) are lattice

isomorphic, or equivalently, if !((") and !((#) are ring isomorphic, then " and # are real ∗-

isomorphic (or equivalently, " and # are Jordan ∗-isomorphic).

In another direction, I compare Theorem A with von Neumann’s theory of complemented modu-
lar lattices and regular rings. Von Neumann axiomatised projection lattices of type II1 von Neumann
algebras and completed the amazing theory on the correspondence between the vast classes of comple-
mented modular lattices and regular rings. Let us briefly recall this theory from [22, Part II].

Definition 5.3. A lattice ! with greatest element 1 and least element 0 is complemented if for each
0 ∈ ! there exists 1 ∈ ! such that 0 ∨ 1 = 1, 0 ∧ 1 = 0. A lattice ! is modular if the equation
(0 ∨ 1) ∧ 2 = 0 ∨ (1 ∧ 2) holds for any 0, 1, 2 ∈ ! with 0 ≤ 2.

Let ! be a complemented modular lattice. Two elements 0, 1 ∈ ! are said to be perspective if there
exists 2 ∈ ! such that 0 ∨ 2 = 1 = 1 ∨ 2 and 0 ∧ 2 = 0 = 1 ∧ 2. Let = be a positive integer. We say !
has order = if there exist pairwise perspective elements 01, 02, . . . , 0= ∈ ! with 01 ∨ 02 ∨ · · · ∨ 0= = 1
and

(∨
8∈�1

08
)
∧

(∨
9∈�2

0 9

)
= 0 for any disjoint �1, �2 ⊂ {1, 2, . . . , =}.

Definition 5.4. A (von Neumann) regular ring is a ring ' with unit such that for each G ∈ ' there exists
H ∈ ' such that GHG = G.

Let ' be a regular ring. A right ideal a of ' is principal if it is generated by one element of '.

Let " be a von Neumann algebra. Then P(") is a complemented lattice. It is not difficult to show
that the following three conditions are equivalent:

◦ The von Neumann algebra " is finite.
◦ The lattice P(") is modular.
◦ The ring !((") is regular.

Theorem 5.5 (von Neumann). If ' is a regular ring, then the collection ! of all principal right ideals

of ', ordered by inclusion, forms a complemented modular lattice.

We call ! in the statement of this theorem the right ideal lattice of '.

Theorem 5.6 (von Neumann). Let '1, '2 be regular rings with right ideal lattices !1, !2, respectively.

Suppose that !1 has order = ≥ 3. If Φ : !1 → !2 is a lattice isomorphism, then there exists a unique

ring isomorphism Ψ : '1 → '2 such that Φ(a) = Ψ(a), a ∈ !1.

Theorem 5.7 (von Neumann). Let ! be a complemented modular lattice with order = ≥ 4. Then there

exists a regular ring ' such that the right ideal lattice of ' is lattice isomorphic to !.

Let " be a finite von Neumann algebra and a ⊂ !((") a principal right ideal generated by
0 ∈ !(("). It is an easy exercise to show that a = {G ∈ !((") | ; (G) ≤ ; (0)}. Hence we obtain an
identification of the right ideal lattice of !((") with the projection latticeP("). In particular, Theorem
1.3 is a corollary of von Neumann’s results. See also [7], which deals with the history of the study of
regular rings in connection with functional analysis.

Von Neumann’s theory, applied to the setting of von Neumann algebras, is valid only for finite von
Neumann algebras. In this article, I prove that there exists a complete correspondence between lattice
isomorphisms and ring isomorphisms in the general setting of von Neumann algebras. Hence I believe
that one might be able to generalize von Neumann’s theory to a broader class of lattices that covers
projection lattices of any von Neumann algebras (of fixed order = ≥ 3 or 4). This is left as a research
programme in the future.
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