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Methods for analysis of network dynamics have seen great progress in the past decade. This article shows

how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random

Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data

context. We also provide practical heuristics for model building and assessment. We illustrate the power of

these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential

election cycle. This is a particularly interesting case because it marks the debut of Internet-based media

such as blogs and social networking web sites as institutionally recognized features of the American political

landscape. Using a longitudinal sample of all Democratic National Convention/Republican National

Convention–designated blog citation networks, we are able to test the influence of various strategic, insti-

tutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political

events on the propensity of blogs to cite one another over time. Using a combination of deviance-based

model selection criteria and simulation-based model adequacy tests, we identify the combination of

processes that best characterizes the choice behavior of the contending blogs.

1 Introduction

Methods for analysis of dynamic network data have seen great progress over the past decade. This
article applies Dynamic Network Logistic Regression (DNR)—a simple family of models for
network panel data—and a special case of the Temporal Exponential-Family Random Graph
Model (TERGM) family—to a temporally evolving network of blog interaction data to illustrate
four methodological contributions: (1) a decision-theoretic framework for hypothesis testing and
interpretation; (2) an example of how to build hypotheses in this framework; (3) model selection
and assessment procedures for this model family; and (4) comparison of a DNR model to a more
general TERG model with simultaneous dependence.

The 2004 US presidential election cycle marked the debut of Internet-based media such as blogs
and social networking web sites as institutionally recognized features of the American political
landscape. Particularly significant was the credentialing of selected blogs as officially designated
media sources for purposes of covering the major political party conventions, an act which gave
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particular legitimacy to two contending groups of partisan blogs (one credentialed for the
Republican National Convention [RNC] and the other for the Democratic National Convention
[DNC]). In the months that followed, these blogs served as significant foci for online journalistic,
promotional, fund-raising, and organizing activities relating to the 2004 election.

In this study, we employ a dynamic logistic choice model to study the dynamics of interaction
within and between these two groups of political blogs. Using a longitudinal sample of all DNC-
and RNC-designated blog citation networks (sampled at six-hour intervals for approximately four
months) from Butts and Cross (2009), we are able to test for the influence of various strategic,
institutional, and balance-theoretic mechanisms—as well as exogenous factors such as seasonality
and political events—on the propensity of blogs to cite (i.e., hyperlink to) one another over time.
Capitalizing on the temporal resolution of our data, we utilize an autoregressive network regression
framework to carry out inference for a logistic choice process closely related to the actor-oriented
framework of Snijders (2001).

This article is structured as follows. We begin by providing some general background from the
relevant social science and social network literatures, with a particular focus on the role of political
blogs during the study period. This is followed by a description of the study data, and an overview
of our modeling approach. The latter includes both a discussion of the general assumptions behind
the modeling of blog evolution as a dynamic decision process, and a treatment of the factors
potentially shaping actors’ payoffs. We follow this with a discussion of our implementation and
inferential framework, data analysis, and findings. Finally, we conclude with a discussion of the
implications of our results for our understanding of the social mechanisms shaping contentious
groups in the online environment.

2 Background

In recent years, the online world has generated a diverse array of new media for social interaction
(Wellman 2001), one of the most successful of which is the weblog (or “blog”). Although a rela-
tively obscure medium for many years, the growing popularity of blogs as a means for information
dissemination, coordination, and political organization through the early to mid-2000s eventually
led to their recognition of and adoption by established institutions. A key landmark in this process
was the 2004 US presidential election cycle, in which the DNC and RNC first granted press cre-
dentials to selected bloggers for coverage of their national political conventions (Adamic and
Glance 2005; Howard 2005; Rainie, Cornfield, and Horrigan 2005; Butts and Cross 2009). This
institutionalized legitimation by the major US political parties constituted a de facto recognition of
the role of blogs (and the online community more broadly) as a durable element of the political
landscape, and arguably marked the debut of the “new media” as a force in electoral politics.

The impact of blogs first gained institutional attention in the US political sphere in the early
phases of the 2004 US electoral cycle, when Democratic presidential candidate and Vermont
Governor Howard Dean rose to prominence partially as a result of his extensive use of online
organizing to compensate for limited conventional resources in garnering media attention and
raising funds (Ammori 2005; Kerbel and Bloom 2005). Dean’s success in utilizing online interaction
to mobilize a widely dispersed base of supporters was quickly noted by political observers, and
(despite his loss of the Democratic nomination to Senator John Kerry) paved the way for other
politicians to incorporate online media into their political campaigns (Cone 2003). Indeed, by the
end of the 2004 electoral cycle blogs and other online resources had been adopted by a number of
presidential contenders, and (via actions such as the above-mentioned credentialing of bloggers as
members of the press) by the major US political parties themselves. These and further developments
in the historical evolution of the online environment over the past decade have set the stage for
academic, governmental, nonprofit, and for-profit interest in blogs and other new media, particu-
larly in political contexts (Drezner and Farrell 2008).

With respect to the role played by blogs per se, Woodly (2008) demonstrates that blogs are
actively used in mobilizing opinions, setting agendas, and generally influencing the elite members of
the political parties. His work demonstrates that the interactions between political blogs are a
particularly important dimension of this phenomenon. Because a distinctive feature of blogs is
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their combination of commentary on current events with hypertext references to primary or sec-
ondary information sources, the constantly evolving network of citations between blogs is at least
as significant (e.g., from an information search standpoint) as the content of the individual blogs
themselves. Within this network of references, blog authors (or “bloggers”) have become a new
form of journalist, in some cases with similar information access and responsibilities to practi-
tioners within traditional media outlets (Wall 2005). As the importance of this medium has
continued to increase in recent years, its growth in size and elaboration has made its study both
relevant and difficult. We thus focus our attention on the initial “watershed” period of the 2004 US
presidential election, when the role of blogs as legitimated media entities was just beginning to
crystallize. In particular, our attention centers on the interactions among the relatively small
number of blogs credentialed for the major-party political conventions, as they jockeyed to
promote their issues, candidates, and arguably themselves in the midst of a rapidly changing pol-
itical and technological landscape. As players with some institutional recognition but little control
from established political actors, these blogs provide an early example of a phenomenon that has
become increasingly common throughout the developed world.

3 Data

The data used in this article are a dynamic inter- and intra-group blog citation network collected by
Butts and Cross (2009), consisting of interactions among all blogs credentialed by the DNC or
RNC for their respective 2004 conventions. Specifically, the set of actors (or vertex set) for this
network consists of thirty-four DNC and fourteen RNC credentialed blogs (with one blog creden-
tialed by both groups) providing a combined network of forty-seven nodes observed over a 121-day
period (for a temporal snapshot of this network, see Fig. 1). Network data were obtained by
automatically querying the main page of each blog at six-hour intervals starting at midnight,
Pacific time. The period of observation for this study begins on July 22, 2004 (shortly before the
DNC convention), and ends November 19, 2004 (shortly after the presidential election), leading to
a total of 484 time points. At each time point, the collected data consist of the network of URLs
linking the main page of one blog to any page within another; that is, there is an edge from blog i to
blog j at time t if a link to blog j appears on the main page of i at time t. We may conceive of these
data as an adjacency array, A, such that Aij, t ¼ 1 if i cites (i.e., links to) j at time t, and 0 otherwise.
For purposes of this study, we ignore self-citations (i.e., internal links from a blog to itself).1

In addition to the evolving blog network, Butts and Cross (2009) provide a timeline of major
events during the campaign cycle, dividing the 121-day period into a series of “epochs” based on
salient activities such as the RNC and DNC conventions, the televised presidential debates, and the
election itself (Table 1). In an analysis of volatility within the RNC and DNC networks (taken
separately), Butts and Cross (2009) find that these campaign events are related to the pace of change
within the network (along with daily and weekly seasonal effects). As such, we include these
temporal effects as covariates in our analyses (as described below).

4 Network Evolution as a Decision Process

Blogs of the type studied here are the deliberately constructed and maintained products of indi-
viduals, or small groups thereof. Moreover, those blogs credentialed during the 2004 electoral cycle
represented a small “elite” circle of especially active authors, whose blogs centered on coverage of
politics and current events. As such, it is reasonable to consider modeling the evolving blog network
as arising from a dynamic decision process, in which blog authors select those to whom they link in
response to context and past history. This approach has been most fully developed by Snijders
(1996), Snijders and Van Duijn (1997), and Snijders (2001), who posit an “actor-oriented” model in
which network members change their relationships via a latent continuous-time choice process. We
here employ a somewhat simpler version of this general scheme, which represents network evolu-
tion as a discrete time logistic choice process (McFadden 1974, 1976). Although requiring

1Almquist and Butts (2013a).
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somewhat stricter assumptions on decision simultaneity, this variant facilitates the accommodation

of complex backward-looking behavior, and scales more easily to larger data sets.
Although the inferential aspects of this framework will be described in Section 5, we begin here

by presenting the model from a behavioral point of view. First, we review the notion of edge

updating as a logistic choice process (Snijders 2001), with a specific emphasis on its interpretation

in the present case. As a revealed preference model, the logistic choice framework requires a

parametric utility function; thus, we follow our initial discussion with a consideration of the

payoff elements that may be expected to enter into blog authors’ decision-making processes, as

they decide to whom they will or will not link. These payoff elements will form the core building

blocks for our analysis of the evolving blog network.

Fig. 1 Fifteen time points for the RNC/DNC credentialled blog citation network. White (blue) nodes
represent DNC, black (red) represents RNC, and grey (purple) node is credentialled by both the RNC
and DNC. Time is labeled [Year.Month.Day.Hour].

Table 1 Epochs in the 2004 election cycle from Butts and Cross (2009)

Epoch Description Start time End time

Time

points

PreCon Start of window to DNC Convention 7/22, 00:00 7/25, 18:00 16

DNCCon DNC Convention 7/26, 00:00 7/29, 18:00 16
InterCon End of DNC Convention to start of RNC Convention 7/30, 00:00 8/29, 18:00 124
RNCCon RNC Convention 8/30, 00:00 9/2, 18:00 16
PreDeb End of RNC Convention to first presidential debate 9/3, 00:00 9/20, 12:00 71

Deb First presidential debate to last presidential debate 9/20, 18:00 10/14, 18:00 93
PreElec Post last presidential debate to Election Day 10/14, 00:00 11/1, 18:00 76
Elec Election Day 11/2, 00:00 11/2, 18:00 4

PostElec Post election to end of window 11/3, 00:00 11/19, 18:00 67

Dynamic Network Logistic Regression 433

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pt
01

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpt016


4.1 Edge Updating as Logistic Choice

At its crudest level, a blog is a web page with dynamically updated links to other online resources.
The core decision facing a blog author, then, is that of the other sites to which he or she should link,

and (conversely) the links that can be removed (directly, or by allowing them to “expire” by no
longer being shown on the blog’s front page). Such citations can be controlled on an individual
basis, and are limited only by attentional and/or energetic costs: there is in principle no effective
limit on the number of citations that can be maintained, and no barrier to adding or removing
citations when desired. At the same time, adding or removing links requires attention and effort on
the part of the author, and is thus the result of deliberate action (as opposed, e.g., to the accidental,
incidental, or automatic behaviors that are of considerable importance in face-to-face settings
[Goffman 1959]). Blog authors—particularly active ones, such as those represented in this sam-
ple—can and do spend considerable time monitoring their environment, and may thus be expected
to be aware of and react to the actions of salient alters; moreover, recent citation history is relatively

easily discovered in this environment, potentially facilitating the use of backward-looking
strategies. On the other hand, the complexity and dynamic nature of the online environment
make prediction difficult, suggesting a very limited capacity for forward-looking behavior.

Taken together, the above considerations suggest the following propositions as a reasonable
starting point for modeling the evolution of the blog network. For simplicity of discussion, we will
refer to the “blog” as the unit of decision making, and the links or citations from one blog to
another as “edges” within the associated network.2

1. The state of outgoing edges at each observation of the blog network is assumed to result
from the choices of the sending blog.

2. Each blog in the network may send an edge to any number of other blogs in the network at
any time.

3. The decision of a given blog regarding the state of a given edge is made myopically, and in

isolation (i.e., the decision is considered on its own terms, without factoring in the effects of
other decisions that might be made simultaneously).

4. The decision of a given blog regarding the state of a given edge may depend upon the past
history of the blog network, or of the current external context (e.g., time of day, electoral
cycle events).

Subject to the above, we further presume that blog citation behavior follows a weakly consistent
pattern of preferences, in the sense that there exists a utility function, u, such that for the two
alternative states Aij, t ¼ 0 and Aij, t ¼ 1, the odds that i will choose Aij, t ¼ 1 are strictly increasing in
uiðAjAij, t ¼ 1Þ=uiðAjAij, t ¼ 0Þ. Such a pattern of behavior is typically referred to as a stochastic

choice process, and can be viewed as a form of bounded rationality. Although many stochastic
choice models exist, we here use the common logistic choicemodel. In the present case, this amounts
to the assumption that

PrðAij, t ¼ 1Þ ¼
exp ui AjAij, t ¼ 1

� �� �

exp ui AjAij, t ¼ 1
� �� �

þ exp ui AjAij, t ¼ 0
� �� � , ð1Þ

or, equivalently, that

logit PrðAij, t¼1Þ ¼ ln
PrðAij, t ¼ 1Þ

PrðAij, t ¼ 0Þ
¼ ui AjAij, t ¼ 1

� �
� ui AjAij, t ¼ 0

� �
: ð2Þ

2Note that this could be further extended as a two-step decision process; that is, a blogger first decides whether to blog
and second proceeds to make a decision as to who to link to, if anyone. Further, Almquist and Butts (Forthcoming)
suggest an analytic framework in which this two-stage logistic choice process could be embedded; however, in the case
observed in this article the bloggers are extremely active. There are only ten time points (out of 484) where not every
blogger observed is posting, and of those only one time point where more than a single blogger is not posting. It is
worth pointing out that in this framework it is possible to have isolates (i.e., individuals who blog, but do not cite any
other blogs).
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That is, the log-odds that i will choose to cite j at time t is equal to the utility difference associated
with sending (versus not sending) an edge. Where the utility of one option is substantially
greater than the other, then, actor behavior is nearly deterministic: the utility-increasing choice is
selected with very high probability. As the actor approaches indifference, however, choice behavior
becomes increasingly random (an effect interpretable either as difficulty in determining the prefer-
able option or as reflecting the influence of various small, idiosyncratic payoffs). When the actor is
entirely indifferent between citing and not citing another, the choice becomes fully arbitrary (i.e., a
coin flip).

To put this scheme into practice, we must make some further assumptions regarding the nature
of the utility function. From our list of propositions, we have assumed that decisions are made
myopically, depending on the past (and on general context), but not on simultaneous or future
decisions. As such, we require that u depend upon the network history, A, only through its prior
states, and through the conjecturally perturbed state associated with a single decision (i.e., for the
Aij, t decision, ui may depend upon A��, t�k where k > 0, and on A��, t such that Agh, t ¼ Agh, t�1 for all
g, h 6¼ i, j). u may also depend upon t, and on exogenous covariates (denoted by X). Finally, we will
assume in general that u can be written as a sum of linearly separable payoff elements, s, such that
uiðAjAij, tÞ ¼ �

TsðA,Aij, t, i, j, t,XÞ. Intuitively, s expresses the factors potentially driving i’s behavior,
whereas the parameter vector � expresses the direction and magnitude of the effect these factors
have on the propensity to send or refrain from sending a tie.

As a model of boundedly rational dynamics, the logistic choice framework is quite general: a
wide range of factors can potentially enter into the utility function, and the choice of possible
candidates must be made based on substantive considerations. With that in mind, we now turn to a
consideration of the payoff elements that may plausibly drive behavior within the blog network.

4.2 Potential Payoff Elements

We apply three core hypotheses to the construction of the potential payoff elements that might
influence this network. The first hypothesis is built around the long-standing notion of preferential
mixing (McPherson, Smith-Lovin, and Cook 2001) (e.g., homophily); the second set of hypotheses
center around balance theory (Cartwright and Harary 1956; Heider 1958) and its predictions for
interaction between two opposing groups; and the last set of hypotheses are constructed via the
natural cyclic rhythms of modern society (Shumway and Stoffer 2006).

The sampling frame employed by Butts and Cross (2009) guarantees two distinct groups, spe-
cifically DNC-designated blogs and RNC-designated blogs. In this context, these groups represent
two contentious factions competing for very real and tangible stakes in the US political arena (see
Drezner and Farrell 2008, etc.). We may view these two groups as halves of an adversarial rela-
tionship (Hargittai, Gallo, and Kane 2008), and in doing so may further characterize their inter-
action through the lens of balance-theoretic notions (Cartwright and Harary 1956; Heider 1958).
This allows us to test different influences of dynamic notions of balance: Is a DNC blog more likely
to cite another DNC blog? Is a DNC blog citing an RNC blog less likely to cite an RNC blog at the
next time step? and so forth. In this article, we will assume that blogs designated by the DNC
represent a cohesive group, blogs designated by the RNC represent a cohesive group, and the
interaction between the two groups represents a negative relation.

4.2.1 Mixing

In the social network literature, a priori group partitioning in the model and group interaction is
often known as mixing or nonrandom mixing. Hargittai, Gallo, and Kane (2008) hypothesize that
bloggers cluster ideologically and thus will only link to other blogs with the same ideology. We may
re-express this hypothesis as a type of assortative mixing process where blogs have an almost
exclusive propensity to cite within-group and not across-group.

A counter-hypothesis arises from our a priori grouping of nodes along political lines, and the
assumption that these two parties represent competing organizations. A reasonable assumption,
given our population, is that between-group citations represent a negative relation, such that if a
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blog from the DNC cites a blog from the RNC it is an action performed to criticize or refute a claim
made by the RNC (and vice versa). Under this assumption, it is natural to hypothesize that cross-
group mixing reflects rivalry, and that the rate of such citations during the study period will be high.
At the extreme limit in which blog citations are being primarily deployed to damage opponents
rather than to boost allies, such cross-group citations should dominate within-group citations.

Thus, we propose two contending hypotheses for mixing:

Mixing Hypothesis 1: Bloggers prefer to support allies

Ceteris paribus, in-group ties will have significantly higher payoffs than cross-group ties.

Mixing Hypothesis 2: Bloggers prefer to attack opponents

Ceteris paribus, cross-group ties will have significantly higher payoffs than in-group ties.

4.2.2 Balance-theoretic influences

Cartwright and Harary (1956) introduced the concept of structural balance based on Heider’s
(1958) theory of cognitive balance, which suggests a number of possible mechanisms that could
plausibly affect actors’ choices regarding the formation or dissolution of ties in a contentious
environment. Heider’s theory stems from Gestalt psychology, and posits that individuals attempt
to maintain a specific set of consistency conditions among the valances they associate with indi-
viduals, objects, and relations (these collectively constituting a state called balance). Violations of
balance are posited to be aversive, with actors attempting to resolve the violations by some com-
bination of changed subjective perceptions (e.g., re-evaluating a positive association as a negative
one) and objective changes to their environment (e.g., dissolving a positive relationship with a
negatively viewed alter). In structural balance theory (BT), it is standard to make the additional
assumptions that (1) there is a consensus view of the valance associated with particular objects or
relations by each individual (e.g., there is agreement by all parties about whether a given tie is
positive or negative), and (2) that effective resolution of imbalance occurs only through manifest
actions (generally, tie formation, dissolution, or valance change).

Although we cannot directly measure the valance of citations in our network, both the nature of
the milieux and the authors’ inspection of blog content suggest that links among bloggers
with common party affiliation are generally positive in nature, and those crossing party lines are
generally negative. Given the highly visible, institutionalized nature of blog party affiliations and
the very public nature of bloggers’ interactions during the period, it is also reasonable to assume
a high level of consensus among the actors involved regarding link valance. Given these assump-
tions, we may propose four hypotheses regarding actors’ link utilities based on structural balance
(BT 1–4):

BT Hypothesis 1: Ally of an ally (in-group two paths)

We hypothesize that the presence of an ði, jÞ, ðj, kÞ two path will, ceteris paribus, increase i’s utility for linking

to k when i, j, and k have the same party affiliation. This follows from the BT prediction that a positive ði, jÞ
interaction associated with a positive ðj, kÞ interaction should lead to a positive ði, kÞ evaluation, and increase

the motivation for i to direct positive action toward k.

BT Hypothesis 2: Opponent of an ally/opponent of an opponent (cross-group two paths)

We hypothesize that the presence of an ði, jÞ, ðj, kÞ two path will, ceteris paribus, increase i’s utility for linking

to k when i has the same party affiliation as exactly one of j and k, with the other belonging to the opposing

party. This follows from BT predictions under two scenarios:

. If i and j are allies and k a mutual opponent, a positive ði, jÞ interaction associated with a negative ðj, kÞ

interaction should lead to a negative ði, kÞ evaluation, and increase the motivation for i to direct negative

action toward k. (By assumption, cross-group links are negative.)

. If i and k are allies and j a mutual opponent, a negative ði, jÞ interaction associated with a negative ðj, kÞ

interaction should lead to a positive ði, kÞ evaluation, and increase the motivation for i to direct positive

action toward k. (By assumption, within-group links are positive.)

BT Hypothesis 3: Reciprocity (ally)

We hypothesize that the presence of a ðj, iÞ edge will, ceteris paribus, increase i’s utility for linking to j when i
and j have the same party affiliation. This follows from the BT prediction that a positive ðj, iÞ interaction will

lead to a positive ði, jÞ evaluation, and increase the motivation for i to direct positive action toward j.

Zack W. Almquist and Carter T. Butts436
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BT Hypothesis 4: Reciprocity (hostile)

We hypothesize that the presence of a ðj, iÞ edge will, ceteris paribus, increase i’s utility for linking to j when i
and j have the opposite party affiliation. This follows from the BT prediction that a negative ðj, iÞ interaction

will lead to a negative ði, jÞ evaluation, and increase the motivation for i to direct negative action toward j.

We note that whereas, for example, within-group and between-group reciprocity are both pre-
dicted by BT under our assumptions, the specific mechanisms posited (e.g., mutual positivity versus
mutual negativity) are nonidentical. If, for example, within-group ties are not viewed as strongly
positive (or, variously, between-group ties are not viewed as strongly negative) by the bloggers,
balance-theoretic mechanisms may encourage reciprocity or closure in some contexts but not
others. By testing these hypotheses independently, we retain the ability to distinguish between
balance-theoretic effects involving in-group and out-group ties.

4.2.3 Context and seasonality

Networks tend to have certain basic structural characteristics which should be accounted for in any
network analysis (e.g., sender and receiver effects; Wasserman and Faust [1994]).

In a time-series context, it is known that there are certain seasonal and period effects that occur
in any temporally collected data (Shumway and Stoffer 2006). Common seasonal effects in behav-
ioral data collected within developed societies include daily and hourly effects (e.g., Monday,
Tuesday, etc., and midnight versus midday). Below, we posit several temporally motivated
hypotheses, which take into account the interaction between structural properties of the network
under question and the daily fluctuations of human interaction, such as a differential propensity to
update one’s links (an effortful procedure) over the course of the day.

Seasonality Hypothesis 1

Butts and Cross (2009) found that the volatility of the blog networks changes with time of day, day of

week, and period in the electoral cycle. Translating their notion of “volatility” into the present modeling

framework, we posit that the degree of inertia in network structure (i.e., the lag effect) will vary

systematically with time.

Seasonality Hypothesis 2

We suspect that overall propensity to send links will vary over time. We argue that ego’s linking to others

involves a search process, and is consumptive of attentional/energetic resources. Resource availability

varies over time, and with it perhaps the total number of links maintained by each blog.

Seasonality Hypothesis 3

We propose that behavioral factors might change with time and context. Specifically, we hypothesize a

mechanism of selective salience, in which the propensity to create ties within or across groups increases

during important events in the election cycle (Table 1).

5 Methodology

This work employs the DNR methodology elaborated by Almquist and Butts (Forthcoming) for
large dynamic data sets, which builds on the Exponential-Family Random Graph (Holland and
Leinhardt 1981a, 1981b; Strauss and Ikeda 1990; Snijders et al. 2006; Butts 2008a; Cranmer and
Desmarais 2011), TERGs (Robins and Pattison 2001; Hanneke, Fu, and Xing 2010; Desmarais
and Cranmer 2011; Desmarais and Cranmer 2012), and network regression (Krackhardt 1987a,
1987b, 1988) literatures. This model family is particularly appealing in our context because it is very
natural to model citation dynamics as a binary choice process, and this framework allows us to
explore the mechanisms that predict whether one blogger chooses to cite another blogger.

We begin by discussing the necessary statistical details needed to connect our inferential frame-
work with our theoretical framework. We then follow this discussion with the operationalized
version of the mechanisms discussed in Section 4.2.

5.1 Inferential Framework: DNR

A standard inferential framework for network analysis is that of Exponential-Family Random
Graph Modeling (ERGMs) (Holland and Leinhardt 1981a; Cranmer and Desmarais 2011, etc.).

Dynamic Network Logistic Regression 437

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pt
01

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

s
 while
e.g.
-
 e.g.
Dynamic Network logistic-Regression (
)
;Butts
,
2008a
;Strauss andIkeda,1990
Temporal Exponential-family Random Graph
;Hanneke, Fu andXing
,
2010;Robins andPattison
,
2001;Desmarais andCranmer
,
2011
Dynamic Network Logistic-Regression
https://doi.org/10.1093/pan/mpt016


Sometimes misconstrued as referring to a narrow class of models, the ERGM framework is better
understood as a general approach to the representation of statistical models for network data. In
the case of networks on a fixed set of individuals, we may write the likelihood of observing a given
network in exponential family form as

P�ðA ¼ ajXÞ ¼
expf�Ttða,XÞg

cð�,XÞ
IAðaÞ; ð3Þ

where A is a random network (represented by its adjacency matrix) on n nodes, drawn from some
set A of potentially observable networks. (In the present context, A is the set of all directed
networks on the set of RNC and DNC blogs.) X is then a set of covariates, � is a vector of real-
valued parameters, t is a vector of graph statistics on a and X (e.g., structural properties and
covariate effects), and IAðaÞ is an indicator function that returns 1 if a is in the set of potentially
observable graphs, and 0 otherwise. cð�,XÞ ¼

P
a02A expf�

Ttða0,XÞg is simply the sum of the numer-
ator over all observable networks; a normalizing factor, cð�,XÞ, ensures that the total probability of
all potentially observable graphs sums to 1.

In the dynamic context, temporal ERGMs (TERGMs) extend the above by modeling each point
in a network time series in ERGM form. Almquist and Butts (Forthcoming) demonstrate that if
one assumes the network only depends upon the past history and/or on exogenous factors (i.e., the
covariate set X), one can show that the above model form simplifies to logistic network regression.
Drawing on ERG theory, they show that this allows us to write the conditional log-odds of an edge
in logistic form; that is,

logit PrðAij, t ¼ 1Þ ¼ �T tijðAjAij, t ¼ 1,XÞ � tijðAjAij, t ¼ 0,XÞ
� �

: ð4Þ

In Section 4, we introduced the notation and theory of a dynamic logistic choice model. Under
the assumptions of a logistic choice framework (equations (1) and (2)) and the independence
assumptions of Section 4.1, it is clear that in our case the logistic choice model is indeed
dynamic logistic network regression, where the inferred parameters represent the weights each
blogger places on the elements of his or her payoff function (i.e., utilities). Thus, we can implement
our decision theoretic model for blog dynamics by expressing our hypothesized mechanisms (payoff
function components) in terms of model statistics (t), and fitting the resulting lagged-logistic re-
gression model to estimate the unknown components of the utility function.

5.2 The Dynamic Decision Model

To operationalize our boundedly rational choice model of blog network dynamics, we must express
our hypothesized mechanisms in terms of statistics that measure the inputs to each actor’s payoff
function. Here, we consider each group of mechanisms, and discuss how they are implemented
within the model.

5.2.1 Mixing terms

Methods for modeling nonrandom mixing have been known for some time; for our purposes, we
employ a method similar to Morris (1991), and use a type of block model to represent the two
groups (see Wasserman and Faust [1994] for a full review of the literature on block modeling). In
doing so, we impose four parameters on the model: one parameter for each group’s internal inter-
actions, and one parameter for each group’s tendency to send ties to the other. (Note that, since this
is a directed network, RNC! DNC is different than DNC! RNC.) We assume these two groups
represent competing organizations and thus expect to see a higher propensity for within-group
citation than between-group citation.

The mixing terms are modeled as a block matrix, such that the model contains a variable for the
number of edges in each of the four categories: DNC! DNC edges, RNC! RNC edges, DNC
! RNC edges, and RNC!DNC edges. This set of terms is jointly identifiable, taking the place of
the standard edge (count of the number of edges in the model) or density (number of edges divided
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by the total number of possible edges) terms frequently encountered in ERG models (Goodreau
et al. 2008).

Expressed in the language of mixing terms, our competing interaction hypotheses can be restated
as follows:

Mixing Hypothesis 1

The weights of the in-group effects will be large and positive and cross-group effects will be small or

negative; that is, the model will favor in-group but not cross-group mixing.

Mixing Hypothesis 2

The weights of the in-group effects will be smaller than the cross-group effects; that is, the model will

favor cross-group mixing.

5.2.2 Heiderian terms

Balance Theory is naturally testable in a dynamic network context and may be constructed from
classic network decompositions such as two-stars and reciprocal links (see Wasserman and Faust
1994). Our balance-theoretic hypotheses can then be restated in operational terms as follows:

BT Hypothesis 1: Ally of an ally (in-group two paths)

A count of the number of in-group two paths from i to k is employed as a predictor of the ði, kÞ edge in

the subsequent time period. We expect the weight on this term to be positive and significant.

BT Hypothesis 2: Opponent of an ally/opponent of an opponent (cross-group two paths)

A count of the number of cross-group two paths from i to k is employed as a predictor of the ði, kÞ edge in

the subsequent time period. We expect the weight on this term to be positive and significant.

BT Hypotheses 3 and 4 Reciprocity (friendly/hostile)

Indicators for ðj, iÞ edges are employed as predictors of the ði, jÞ edge in the subsequent time period;

distinct parameters are employed for in-group versus cross-group edges. We expect these terms to have

positive signs.

5.3 Network Effects and Seasonality

It is often hypothesized that structural factors may increase or decrease the payoffs associated with
edge formation. Two oft-studied structural effects are those of alter indegree and outdegree (this is
sometimes known as preferential attachment; see Merton [1968]). We also include a clique
comembership term to account for potential clustering effects3 (see, e.g., Wasserman and Faust
1994). As these mechanisms require actors to attend to broader events in the social network, we
posited above that we might expect the nature of these effects to change dynamically with the time
of day. This may be interpreted as an interaction effect between the seasonality dummy and the
structural parameters. Below, we will discuss the details of the seasonality terms employed in this
article.

5.3.1 History and seasonality

The effects of past interaction history and seasonality are hypothesized to act as follows:

Seasonality Hypothesis 1

There will be substantive and large inertial effect; that is, the lag term will be large and significant.

Seasonality Hypothesis 2

We test the hypothesis that the overall propensity to send links will vary over time via an interaction

between hourly fixed effects and receiver effect and hourly fixed effects and the inertia term. We expect

these to be important terms in the model, to be large and significant.

Seasonality Hypothesis 3

We test the “selective salience” hypothesis with nine period effects; specifically, we expect there to be

increase in activity during PreCon, DNCCon, RNCCon, Deb, Elec and decrease in activity during

InterCon, PreDeb, PreElec, and PostElec (see Table 1 for details).

3For algorithmic details, see Eppstein, Löffler, and Strash (2010).
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To model hourly seasonality, we employ three dummy variables for each hour (06, 12, and 18 in
the day, with hour 0 as the reference group (�06, �12, �18).

To model weekly seasonality, we employ techniques from Harmonic Regression (Shumway and
Stoffer 2006).4 This amounts to assuming the influence of a given week in a month is periodic (see
Section 6.2 for more details).

5.4 Computational Considerations

All code for this article was written and executed in the R environment (R Development Core Team
2010). Although one advantage of the logistic framework is that one can implement it with
standard statistical software such as R, STATA, SPSS, etc., for small networks, scalability
usually requires a special-purpose implementation. Naive implementation of the logistic form
simply involves vectorizing the adjacency matrix at each time point; this vector will grow with
N2, however, often becoming larger than most stand-alone logistic regression functions are capable
of handling. In order to manage this difficulty, we take advantage of the additive nature of the log-
likelihood, decomposing it into a series of manageable chunks and then optimizing the combined
values using trust-region methods (Geyer 2009) in order to obtain the maximum log-likelihood
parameter estimates. All sufficient statistics are either built directly or employ modifications of the
tools made available in the R package sna (Butts 2008b).5

6 Analysis

We begin by employing standard model selection techniques (selection by Bayesian information
criterion [BIC]) and adequacy selection to determine the mechanisms that appear to be active in
shaping actors’ choice processes; after identifying the relevant mechanisms, we examine the par-
ameters of the best-fitting model to interpret the implied utility function. A natural way to begin
our analysis is to first construct a simple, baseline model which contains only the mixing terms and
seasonal effects (Model 1). We then add a single lag term (Model 2), followed by network control
effects (Model 3). Next, we add in the Heiderian mechanisms (Model 4); finally, we add in period
effects (Model 5), and hourly interaction terms with sender and inertia (Model 5). The parameter
estimates and BIC scores for each of these models may be found in Table 2.

6.1 Model Adequacy Check

We start by employing the BIC model selection criterion (Schwarz 1978) to evaluate competing
models, where the model with the lowest BIC is chosen as the preferred model. The relative per-
formance of our candidate models provides us with the first evidence regarding our hypotheses: if a
given effect does not appear in the preferred model, then the data suggest that the associated
mechanism is not influential in the actors’ choice processes. Hypothesized effects not found in
the best-fitting model are thus rejected.

Although likelihood-based model selection criteria such as the BIC are effective in evaluating the
relative performance of competing models within a specified set, they do not evaluate the adequacy
of the selected model in substantive terms. To verify that our selected model is adequately able to

4Equation (5) is used to model daily seasonality (days within the week). We assume a classic “signal in noise” with a
hidden periodic signal. If we assume there is a single sinusoid, we can model the weekly cycles as follows:

R cosð2�!dtþ�Þ:

Using the classic trigonometric formula cosðaþ bÞ ¼ cosðaÞ cosðbÞ � sinðaÞ sinðbÞ, we can derive the terms we place in the
model (equation (5)):

R cosð�Þ cosð2�!dtÞ þ �R sinð�Þ sinð2�!dtÞ

�1 cosð2�!dtÞ þ �2 sinð2�!dtÞ:
ð5Þ

5Almquist and Butts (2013a).
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reproduce the basic features of our data set, we follow model selection with simulation-based
adequacy assessment (Hunter, Goodreau, and Handcock 2008; Almquist and Butts
Forthcoming). The method employed is as follows. First, we choose a set of Graph Level
Indices (GLI) (Anderson, Butts, and Carley 1999) capturing various structural features of the
blog networks. Given this set of network measures, we use the best-fitting model at each time
step to simulate (forecast) the blog network to be observed at the next time step. The distribution
of the network properties under the predicted networks are then compared with the values actually
observed. Although we do not expect to perfectly forecast network evolution, we expect our model
to produce predictions which are generally compatible with the evolving data.

For present purposes, we evaluate model performance with respect to the following graph-level
indices: density (known to be a very important graph statistic; see Wasserman and Faust [1994]);
Krackhardt’s connectedness index (a measure of reachability and to what extent information might
flow through the network; see Krackhardt [1994]); mean indegree (receiver) and mean outdegree
(sender) (a common graph statistic, involved in theories of preferential attachment [receiver] and
expansiveness [sender]; see Wasserman and Faust [1994]); the “null” or “empty” triad (designated
as type 003 in Holland and Leinhardt’s typology a measure of isolates or actors not engaged in a
given period, Fig. 2; see Wasserman and Faust [1994]); and finally the number of triangles or cliques

Table 2 Five models for dynamic logistic choice of inter- and intra-group blog citation networks in the

2004 US presidential election ordered by BIC

Model 1 Model 2 Model 3 Model 4 Model 5

BIC 598094.826 42209.8184 41863.9425 41246.5485 40310.1217
DNC �1.7960* �5.8729* �5.9459* �6.0266* �4.5198*

RNC �0.9401* �4.0849* �4.1857* �4.4320* �3.2081*
DNC ! RNC �3.9527* �6.9714* �6.9960* �6.9992* �5.4081*
RNC ! DNC �3.3602* �5.2977* �5.4960* �5.7088* �4.5039*

At�1 10.8933* 10.7390* 10.4363* 10.3164*
Cluster 0.3402*
Receiver 0.0633* 0.0353* 0.0470*

Sender �0.0523* �0.0321* �0.0231*
Group-2-Path 0.2165* 0.2125*
Cross-Group-2-Path 0.5393* 0.3316*

Group-Reciprocity �0.5401* �0.5108*
Between-Group-Reciprocity 0.3752 0.6299*
�1 0.0016 0.0604* 0.0580* 0.0525* 0.1048*
�2 0.0363* 0.1593* 0.1450* 0.1228* �0.1584*

�06 �0.0933* �0.5516* �0.5128* �0.4488* �0.1209*
�12 �0.0922* �0.5899* �0.5507* �0.4841* �0.3459*
�18 �0.0936* �0.6887* �0.6496* �0.5791* �0.4670*

Receiver � �06 �0.1169*
Receiver � �12 �0.1826*
Receiver � �18 �0.1102

At�1 � �06 0.2045*
At�1 � �12 �0.2980*
At�1 � �18 0.0704
DNCCon �1.9237*

InterCon �1.9549*
RNCCon �1.9511*
PreDeb �1.8196*

Deb �1.8898*
PreElec �1.9294*
Elec �2.4212*

PostElec �1.9480*

Notes. Significant at “*” 0.05 p-value level under a z-test unless otherwise specified. � represent daily effects and � represent hourly effects.

Dynamic Network Logistic Regression 441

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pt
01

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

; Hunter, Goodreau andHandcock
,
2008
to
While 
(
)
(
)
)
lastl
https://doi.org/10.1093/pan/mpt016


(the complete triad, 300 in Holland and Leinhardt’s typology, an indicator of clustering or local
interaction, Fig. 2; see Wasserman and Faust [1994]). The realized and forecast values for these
statistics are shown in Fig. 3.

We can see from Fig. 3 that Model 5 is very effective in capturing the basic trend for density,
mean indegree/outdegree, triangles, and connectedness (Fig. 3 and Table 2), with observed values
generally close to or within the forecast interval. The model forecast for null triads also tracks the
trend, although the predicted value is somewhat higher than the observed. Overall, the adequacy
checks suggest that the model captures the main features of the blog dynamics, and we therefore
move forward with our analysis.

6.2 Findings

Parameter estimates for Model 5 are shown in Table 2. It is important when interpreting the
parameters of Model 5 to recall that many effects are necessarily simultaneous, and should be
viewed as a group. Take, for example, the mixing terms: although two of the mixing terms are

003 012 102 021D

021U 021C 111D 111U

030T 030C 201 120D

120U 120C 210 300

Fig. 2 Leinhardt’s typology of the triad isomorphism classes labeled by the number of Mutual,
Asymmetric, and Null dyads within the triad and letters represent orientation (this is referred to as the
MAN labeling). See Wasserman and Faust (1994, 564–9) for full details.
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negative, they cannot be interpreted without taking into account the lag term, which is larger than
any one of the mixing terms and positive. Thus, although citation is costly in general, there is still a
net tendency to cite those one has cited in the previous time step. We see that the base propensity
for within-group blog-to-blog citation is higher for the RNC than DNC, and that the two groups
are about equally likely to send cross-group ties (on an edgewise basis).

In terms of our hypotheses, we confirm Mixing Hypothesis 1 that within-group linking is more
likely than between-group linking and refute Mixing Hypothesis 2 (positing the opposite). The two
groups have similar levels of between-group linking. Payoffs to in-group citations are higher than
cross-group citations; note that this is less true for the RNC on a per-tie basis, with the likelihood of
interaction increasing from 0.01 to 0.04 for DNC and RNC, respectively. Since there are more
DNC than RNC blogs, this may reflect the lower substitutability of RNC blogs than their DNC
counterparts.

We confirm our balance-theoretic hypotheses of ally-of-ally and opponent-of-ally/opponent-of-
opponent connections; two-path embeddedness acts as a citation incentive both within and across
groups (Table 2: Group-2-Path, Cross-Group-2-Path), in line with what would be expected from
the structural balance. In contrast with this result, we find that reciprocity does not follow a classic
balance-theoretic pattern. Ceteris paribus, incoming ties from one’s own allies tend to reduce
the propensity of a returning citation, whereas those of one’s opponents increase this propensity
(Table 2: Group-Reciprocity, and Between-Group-Reciprocity; with an increased likelihood of
interaction from 0.38 to 0.652, significantly different under a z-test). Although the former result
is inconsistent with a positive, exchange-theoretic notion of citation, this is compatible with the
notion that (1) citation within groups is redundant (or event deferential), and hence poorly
reciprocated, whereas (2) citation between groups tends to take the form of critique or conflict,
in which “returning fire” is highly incentivized. This finding underscores the importance of con-
sidering group or institutional context when theorizing the nature and role of reciprocating
mechanisms.

We confirm Seasonality Hypothesis 1, finding that inertia is a strong and persistent effect in this
network. To interpret the baseline payoff effects of the seasonal components and their interaction

Fig. 3 Graph-level index comparison for one-step one-lag network logistic regression for Model 5 with
hundred simulations at each time point.
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effects, we have plotted the hourly and weekly baseline (Figs. 4 and 5). Figure 4 demonstrates that
the baseline propensity to form an edge evolves in a systematic and periodic fashion as a super-
position of daily and weekly cycles. The propensity to form ties to others is highest at the start of
the day, and declines as the day goes on; the effect also builds and recedes during the week, and is at
its lowest during the weekend. Figure 5 allows us to see how other mechanisms interact with daily
seasonality: inertia is at its highest in the early/mid-morning, and in the early evening. Sensitivity to
others’ popularity is at its highest at night (when tie formation tendencies are also their strongest);
this suggests that bloggers’ activities do not reflect a uniform pattern of behavior, but instead show
a pattern of attention shift tied to daily and weekly activity patterns. The specific pattern observed is
consistent with an “information processing cycle,” in which actors begin the day by reactively
posting ties to other blogs widely attended to by peers, then shift into a period of media consump-
tion (and low posting activity), a period of link purging and posting ties to new primary sources
(rather than other blogs), and finally a period of quiescence before the cycle begins anew. This
regular shift in the nature of activity leads to a network that does not evolve in a uniform, even
manner, but that instead “pulses” as new information is drawn in, old ties are removed, and new
ties are formed in response to the day’s events. Such a pattern is a marked departure from the
temporally uniform behavior assumed by most current models of group dynamics.

Finally, we obtain mixed results for the Selective Salience Hypothesis (recalling that we have to
interpret the associated terms in relation to the lag term). We see that the propensity to form ties is
greatest during the PreCon and DNCCon periods, being generally stable during much of the rest of
the electoral cycle (the exception being election day, when there is a noticeable decrease in edge
creation). We thus see little to no evidence of “important” events fostering edge indication, and
some suggestion that very important events (e.g., the election) may reduce citations within the blog
network. Interpreted in terms of the “information processing cycle” described above, this may
reflect increasing emphasis during such periods on attention to external sources, and a concomitant
reduction in intra-network activity.

7 DNR Compared to TERGMs with Dependence

A common critique of conditional logistic analysis is that the conditional independence assump-
tions required fail to capture important dependence within actors. To this end, we compared the
best-fitting DNR model to a full TERGMwith all the terms in the DNR plus four standard ERGM
terms commonly used in the social network literature. The TERG model we use for comparison
with the best-fitting DNR model includes effects for Geometrically Weighted Indegree,
Geometrically Weighted Outdegree, Geometrically Weighted Shared Partners, and a three-cycle
term (Snijders et al. 2006; Robins et al. 2007; Goodreau, Kitts, and Morris 2009). To fit the full
TERG model, we use the bootstrap pseudo-likelihood approach suggested by Cranmer and
Desmarais (2011) and Handcock et al. (2008) for computing the sufficient statistics and performing
the one-step-ahead prediction/simulation.6 We compare the one-step-ahead prediction for the four
statistics proposed in Section 6.1 (Fig. 3) for the DNR model to the full TERG model (Fig. 6). The
prediction results are strikingly similar; however, the DNR model performs slightly better for mean
degree, and we fail to attain a boost in the count of three cliques (Triad Census: 300) that we might
expect to obtain via full TERG modeling. Our results suggest that while modeling dependence may
be important for many social network models, especially in the static case, it is not so obvious that
the gains in estimation/simulation/prediction for the temporal models are always justified, given the
added complexity in estimation and interpretation of a TERGM with simultaneous dependence.
Indeed, the poorer predictive performance of the dependence model in this case suggests that
researchers should avoid employing models with conditional dependence terms without first
checking them against a conditionally independent baseline. Although this caution is contrary to

6Because pseudo-likelihood methods do not have an agreed-upon model selection criterion (Cranmer and Desmarais
2011)—that is, we cannot assess model fit using information-theoretic parametric measures of fit such as the BIC or
Akaike information criterion (AIC)—we chose our model based first on preferred sufficient statistics used in the
literature, and second that each of the terms was statistically significant.
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the usual intuition that the introduction of dependence terms will lead to superior performance, our
experience is not unprecedented. Notably, Franzese, Hays, and Kachi (2012) showed that the logit
model performed better in prediction for dynamic network analysis when compared with the Actor
Oriented Models for many cases of interest. Determining when and where dependence terms are
called for is clearly an important problem for further research.

8 Discussion and Conclusion

In this work, we have modeled the evolution of an online political interaction network as a logistic
choice process, treating blog authors as boundedly rational actors engaged in choices regarding
their outgoing citations (a discrete-time analog of Snijders [2001]). To implement this model, we
have employed a type of lagged logistic network regression (see Almquist and Butts Forthcoming)
that arises as a natural consequence of our assumed decision-making process. Drawing on existing
ideas from the group behavior literature, we have identified a number of candidate mechanisms of
potential relevance to the choice process. By fitting our decision model to the observed network
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data, we have been able to determine which of these mechanisms do, in fact, seem to influence
individual choices, and to determine the nature of the influences in question. The result provides us
with a composite picture of social behavior that, although familiar in many respects, highlights the
need for a deeper conceptualization of the role of context effects—particularly temporal con-
text—on group dynamics.

Among the anticipated findings, we see that our two groups of respective allies (the RNC and
DNC credentialed blogs) have a greater propensity for in-group citation than between-group
citation (consistent with Hargittai, Gallo, and Kane [2008]). We also find a tendency toward
triadic closure within groups (the “ally of an ally” mechanism), as expected on balance-theoretic
grounds. Interestingly, triadic closure is also observed across groups, an effect predicted by balance
theory only where cross-group ties carry negative valance. On the other hand, reciprocity dynamics
behave quite differently than balance would suggest: although bloggers reciprocate ties from op-
ponents, they tend not to reciprocate ties from allies, as would be the case if within-group ties had
uniformly positive implications. A potential resolution of these otherwise puzzling effects can be
found in the differing nature of within-group and cross-group interaction. Cross-group interaction
in our setting is generally rivalrous, and reciprocity generally an act of self-defense (with the “ally-
of-an-opponent” akin to an act of “piling on” to an opponent attacked by an ally). On the other
hand, within-group citation appears to have a more functional role, and may reflect an underlying
hierarchy of information dissemination (accounting for both lower reciprocity and a tendency
toward transitive closure). Fundamentally, our findings are consistent with the observation that
the social meaning of a tie is dependent on group and/or institutional context, and that the dynamics of
network evolution are sensitive to these distinctions. Developing a richer set of theoretical propos-
itions to predict precisely when, and how, these distinctions will be made would seem to be an
important topic for future work.

An even more basic lesson of our findings, however, is that individual behavior and group
dynamics are not uniform, but governed by regular cycles that affect both the nature and extent of
activity. Although we are used to thinking of nonhuman animals as being governed by diurnal and
seasonal cycles, social scientists have been slow to recognize the role of cyclic influences on choice
behavior and the dynamics of interaction. Although theorists as wide ranging as Sorokin (1957),
Mayhew (1980), and Elder (1974) have argued for greater attention to the role of temporal and
environmental context as determinants of social outcomes, these calls are at best poorly reflected in
current social science research. Our findings suggest the seriousness of this gap: without considering
temporal context, one is at a loss to account not only for individual choices, but for the evolution of

Fig. 6 Graph-level index comparison for one-step one-lag TERGM with a hundred simulations at each
time point.
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the social system as a whole. To the extent that phenomena such as the “information processing
cycle” posited here hold in other settings, omission of seasonal effects likewise hinders our ability to
understand the functional characteristics of social systems, and thus to anticipate the effects of
planned or unplanned interventions. Even online, the physical realities of daily life and the insti-
tutional settings in which persons and groups are embedded provide a powerful and dynamic
influence on social evolution.
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