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Abstract

For a two parameter family of C ' diffeomorphisms having a homoclinic orbit of tangency derived from
a horseshoe, the relationship between the measure of the parameter values at which the diffeomorphism
(restricted to a certain compact invariant set containing the horseshoe) is not expansive and the Hausdorff
dimension of the horseshoe associated to the homoclinic orbit of tangency is investigated. This is a simple
application of the Newhouse-Palis-Takens-Yoccoz theory.

1991 Mathematics subject classification (Amer. Math. Soc): primary 54H20, 58F14, 58F15; secondary
11K55, 58F10.
Keywords and phrases: expansive, Henon map, horseshoe, Hausdorff dimension, measure, thickness,
homoclinic orbit of tangency.

0. Introduction

We say that a homeomorphism / of a compact metric space (X, d) is expansive
if there is a constant e > 0 such that for every x, y e X,d(f"(x), /"(y)) < e
(VAZ G Z) implies x = y. This notion is the most fundamental property in the
stability theory of dynamical systems and the property has been investigated by several
researchers. In light of the bifurcation theory, the non-expansivity of the Henon family
Hab{x, y) = (y, y2 — bx — a), (x, y) e R2 was investigated by Milnor [1] and it is
proved that for every determinant b of Hab, there exists a countable set I t c R such
that Hab can be expansive (on a certain bounded invariant set containing the non-
wandering set) only if h{Hu h) e ~Lb. Here h{Hab) denotes the topological entropy of

Ha.b-

In this paper, we construct a C3 two parameter family (/(.,)(,.,|e(-,,,): exhibiting
a homoclinic orbit of tangency derived from a Smale's horseshoe on a sphere S2 in
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Section 1 (see also [4, pp. 93-99]), and investigate the non-expansivity of the family
restricted to a certain compact invariant subset containing the horseshoe. We call the
above family the two parameter horseshoe family for convenience. The two parameter
horseshoe family which is well known as a prototype of the theory developed in [2-5]
satisfies the following properties ([4, Chapter 5]):

• for every s e (—17, rj), there is a (r-independent) hyperbolic basic set (horse-
shoe) A(s) whose Hausdorff dimension HD(A(s)) varies depending only on param-
eters;

• for every s e (—»?, r)), there is a single orbit ff{s) of homoclinic tangency
(associated with A (s)) along t = 0, and this tangency has a quadratic order of contact
and unfolds generically for t > 0 into two transversal intersections;

• for every (s, t) e (—rj, rj)2, there is an /s,-invariant compact subset XSJ of the
non-wandering set of fSJ such that for every s e (—rj, 77), Xv0 = A(s) U @(s) and
XSJ = A(s)ift e (-rj,O).

Thus for every s e (—r\, rj), fs, : XSJ —> X5, is expansive when t G (—rj.O].
Notice that by choosing suitable expanding and contracting rates of a horseshoe, for
any e e (0, 2), we can construct a two parameter horseshoe family l/,.ili.u)E(-ri.rii!

satisfying HD(A(0)) = e.
Our aim is to study the relationship between the measure of the parameter values

t € (0, r]) such that fs, : Xs, —*• Xs, is not expansive and the Hausdorff dimension
of A(s). At first, by using Newhouse's results stated in [2] and [6] we show that
fs.t '• %s.t —> %s.t is n o t expansive for lots of t > 0.

THEOREM A. For any two parameter horseshoe family [fs.^u.im-q.rf- and for any
s e ( — r], rj), there is a sequence of intervals {I,,}^L0 C (0. rj) in t-parameter space
such that /„ —> 0 as n —> 00 and fSJ : Xs, —> XSJ is not expansive for t G /„.

For any family {/,.,}(5,)e(-n.nfi and for any s e (—r], r\), denote by NE(s) the set
of all parameter values t > 0 such that fSJ : XK, —> Xs, is not expansive. Then,
by applying the results proved by Palis and Takens [3] and Palis and Yoccoz [5] the
following is obtained.

THEOREM B. For any two parameter horseshoe family (/j.dd.DEH.^,

(1) if HD(A(0)) < 1, then there exists a constant YJQ > 0 such that for all

s € (-rio, r)Q)>

m(NE(s)n[0,t})
lim = 0,
/-o t

(2) if H D(A(0)) > 1, then there are constants r)0 > 0 and c > 0 such that for
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almost all s e ( — r/0, rj0),

m(NE(s)D[0,t])
hm sup > c.

f-0 t

Here m is the Lebesgue measure.

Theorem A is also true for the case when {/s.r)W)€|-,.,): is C2. To see this, we need
to repeat the argument given in [6, Sections 7 and 8] for the C2 family near tf(s). In
this paper, to avoid such a technical routine, we shall assume a C3 differentiability.
On the other hand, for a proof of Theorem B we do not need a C3 differentiability.
The conclusions are proved in Section 3 under the C2 assumption.

1. Two parameter family derived from a horseshoe

In this section, we construct a two parameter horseshoe family on S2 stated in
the introduction by following [8, Section II]. Take a small a0 > 0 and put / =
[0, 1 + aQ] C R. Fix 0 < v < k~] < ( 2 | / | r ' . For p0 sufficiently small so that
0 < 2 A J « 1 — 2A.-', let

Ho = I x [0, X~[ + /30], //, = / x [1 - A"1 - )8o, 1]

be two horizontal strips in R2 and >0 = 1 + Pok/2. Put a horizontal strip H2 =
[0, 1] x [vo - Yo, }'o + /ol and x0 = 1 + ao/2, where 0 < 2y0 «: min{y60A, a0}-
Then [x0 - yQ, x0 + yQ] x [0, 1] c (/ x [0, 1]) \ [0, I]2. Finally, set a vertical line
t = {x0} x [0, 1] and denote (x0, 0) by x0.

Fix 0 < 1 — 2A."1 < c() < 1. Since S2 % R2 U {oo}, for a sufficiently small r\ > 0,
we can construct a two parameter family of C3 diffeomorphisms /s., : S2 -^ S2

((5, f) € (-??, ??)2) (that is, F(x, s, t) : S2 x (-??, ??)2 -^ 52 is a C3 map such that
F(-, s, t) = /,.,(•) is a diffeomorphism) satisfying the following five assertions (for
example [4, pp. 93-99]).

(vesx,ky) if(x,y) € Ho,

fs.,(x,y) = (1 -vesx,X(\ -y)) if (x,y) e // , ,
(A-,, - >'O + y, r - cox - (y - }>o)2/2) if (JC, y) e H2.

• There are a sink pi = /s.,(pi) and a source p2 = /s.,(p2) = {oo} for all
(5, t) €(-JJ, /?)2.

• The non-wandering set f2(/s.,) = A(5) U {p,, p2} of fSJ is hyperbolic for all
t e (—r), 0) and s € (-r), rj), where A(s) c //0 U //, is a horseshoe of /f.,. Note that
A(s) is independent of the parameter t.

= Ms) U {p,,p2} U *?(s) for all s € (-r),r)), where ^(s) =
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V'O

1 -

O ve* - ves

• A(0) U &{0) is the maximal /0.0-invariant set in some neighborhood of it.

The horseshoe A(s) of /,., is a direct product of a horizontal Cantor set A|O) c
[0, 1] x {0} and a vertical Cantor set A2 C {0} x [0, 1] that is, A{s) = A,(s) x A2.
Denote by r(C) a thickness of a Cantor set C c R introduced in [2], and by HD(C)
the Hausdorff dimension of C. Then, these quantities are also independent of t.
Actually,

r(A,(s)) = ve*
- 2ves'

T ( A 2 ) =
X-2

and

HD(Ai(s)) = --
log 2

HD(A2) =
log 2

S + log v' " "' log A

(see [2, pp. 106-107]). Recall that HD(A(s)) = //D(A,(.v)) + HD(A2). Let

r , (s ) = {(x,y0) : U ,0 ) e A,(5)} C [0. 1] x {>•„} (5 e (-rj , r?))

and

: (0,v) e A 2 ) c / .
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Then, these Cantor sets satisfy r(F|(.s)) = T ( A I ( S ) ) and r(F2) = r(A2). Further-
more, since / , , is an affine map on [0, 1] x [y0], we see that r ( / , ,(F|(s))) = r (F | ( i ) )
for all (s, r) e (-(7, r])2.

Let d be a usual metric on S2, and denote the stable manifold and the unstable
manifold of x G A(s) by

Ws(x;.s. t) = {yeS2: d(fs
a,(x), / s",(y)) - * 0 as n -*• 00},

W(x;s, t) = {yeS2: d(f~"(x), / " " ( y ) ) - • 0 as n - » cx>]

for (s, t) € ( — i], r})2. Then Ws(O;s, t) and W(0;s, t) have a quadratic homoclinic
tangency at x() G I along t = 0 for all 5 € (—>j, ?j). Here O = (0, 0).

For our family, since S2 is compact, there are compact sets (a filtration) 0 ^ Mt c
M2 C S2 for /o.o (see [3, p. 365]) such that

(1) pi e Af,, A(0) U ^(0) C M2 \ intAf,, p2 e S 2 \ intM2,
(2) / ( ,o(M,)cintA/ , for / = 1,2,
(3) n-=_^/0"0(M2 \ intM,) = A(0) U <?(0).

Since (7 is small, we may assume that fs.,(M\) C intM], /5~'((intA/2)f) C M,,
fi(/s.f) n Af, = {p,} and Q(fSJ) n M^ = {p2} for all (5, f) e (-r], r))2. Finally, for
all (s, 0 G (—17, ^)2, let X,, be the set of all non-wandering points of fSJ contained
in M2 \ intM,.

2. Non-expansive sequence and proof of Theorem A

Let / be a homeomorphism of a compact metric space (X,d). We say that a
sequence of points {(x,, y,-)},^0 c A " x X \ A i s a non-expansive sequence of f if for
every e > 0 there exists i = i(e) > 0 such that c?(/"(x,), /"(y,)) < e for all n G Z.
Here A is the diagonal set in X x X. Theorem A follows from the next proposition.

PROPOSITION. For any two parameter horseshoe family {/v.,}(.s.;)6(-,,.,,)- and for any
s G ( — r], r\), there is a sequence of intervals {/n}jjlo C (0, r}) in t-parameter space
(/„ —*• 0 as n —> 00) such that for every t G /„, there is a non-expansive sequence

i(x,-,y,)&cx,, xxs,,offs,.
Let {/,./lunei-i).J?): be a two parameter horseshoe family. To prove the proposition,

it is enough to analyse the diffeomorphisms /,., : R2 —> R2 ({s, t) G (—rj, r])2). For
simplicity, we give a proof for the case when 5 = 0 (the other case follows in a similar
way). Denote fQj by /, , A,(0) by A,, W!(x;0, t) by Ws(x;t) and so on. To prove
the proposition, we show that there is a sequence of intervals {In}^L0 in /-parameter
space (/„ —*• 0 as n —>• oo) with the property that for every t G /„, there are two
curves ys = ys(t), y" = y"(t) in the stable manifold WS(A; t) and unstable manifold
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W(A;t) of A = A, x A2 having a quadratic tangency at a point z e y" D y1 and
there is a sequence of curves y" = y"{t) such that

(a) y" is in an unstable manifold W"(A\t), and y" converges to y" as ; —> oo,
(b) y" meets y1 transversely, and y" n ys contains two distinct points x,, y, which

approach z as / —> oo.

Then, from (b) we can see that {(x,, y , )}^0 is a non-expansive sequence of / , . To do
this, we prove a lemma which is a slight modification of [2, Lemma 4]. For basic
definitions on a Cantor set and its thickness see [2, pp. 106-108] or [4, pp. 61-64].

Let C, C" C R be Cantor sets and let {Uj}f=_2, {U'j}f=_2 be the gaps of C, C .
If T ( C ) T ( C ) > 1, then there are defining sequences {C,}^(1, {C,'}^0 of C, C such
that T ( { C , } ^ 0 ) T ( { C , ' } ^ 0 ) > 1. We say that x € C is a right-limit-point (respectively
left-limit-point) of C if there is a sequence {x,, } c C such that xn > x (respectively
xn < x) and xn —>• JC as « —»• oo. Clearly, every x e C is either a right-limit-point or
a left-limit-point of C.

LEMMA 2.1 (see [2, Lemma 4]). Let C and C" foe Cantor sets in R wir/z C ;'« no
C -gap closure and C in no C-gap closure, and let r ( C ) r ( C ) > 1. Then there exists
x € C n C" which is either a right-limit-point of both C and C or a left-limit-point of
both C and C.

PROOF. Let {Uj)f=_2, W))%_2 be the gaps of C, C\ and let {C,},^0, {C;}^0 be
defining sequences of C, C" such that T({C, -}^ 0 )T({C;}~ ( ) ) > 1. Put c0 = Co. Then,
by [2, Gap Lemma] there is a component c, of c0 D C, such that c, is not contained
in Uj for all j > —2. Thus c, n C\ ^ 0. By induction, for every ;' > 0 we can
find a component c, c c,_, fl C, such that c, is not contained in Uj for all y > —2
and c, Pi C; ^ 0. Thus there is x e n,^o(c/ n c, ') C nr=o(C ' n c / ) = C D C
since Q D Cj D CJ D • • •. Suppose that x is a right-limit-point of C but not a
left-limit-point of C. Then there is a gap £/,„ such that Uja = [y, x] for some y. If x is
not a right-limit-point of C", then there is a gap IT such that {/̂  = [x, z] for some z-
Since diam(c,) -> 0 as / —> oo, UJ(] n c, = 0 if / > 0 is large enough. Thus, we can
find i > 0 such that c, c U jt since x e (~Xlo c>- This ' s a contradiction. Therefore x
is also a right-limit-point of C". The other case follows in a similar way. •

LEMMA 2.2. If r (A|)r(A2) > 1, then there is a non-expansive sequence {(x,,
y,)}~0 C X, x X, of f, for all t e (0, >?).

PROOF. Suppose r (Ai)r (A 2 ) > 1. Let T, c [0, 1] x {y0} and r 2 C £ be Cantor
sets as stated in Section 1. Then, for all f € (0, rj), there exists z, e / , ( r , ) n r 2 ^ 0by
Lemma 2.1 since T(£ n / , ( r , ) ) r (£ D T2) > 1. Fix? > 0 and take z, = (z,, 0) € A,,
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z2 = (0, Zi) € A2 such that

Note that f,({z\} x [0, 1 +#)A.]) is a curve (say y") in an unstable manifold of W (A, t)
and / x {ZT\ is a curve (say ys) in a stable manifold of WS(A, t). Then, by Lemma
2.1, we may assume that z, (respectively z2) is a limit point of ([0, Z\] x {0}) n A[
(respectively ({0} x [z2, 1 ]) D A2) (the other case follows in a similar way). Thus, for
every i > 0, there are z\ = (z|, 0) e A, near z, and non-wandering (distinct) points
{x,,y,} e /,({z;}x[0, l + ^ ] ) n ( / x { z 2 } ) n e a r z , such that | / ,"(x,)- / ,"(y,) |R: < l / i
for all « e Z since

< v " | x - y | R , if x , y e / x ( z 2 ) ,

| / -"(x) - fr"(y)\r- < X-"|x - y|RJ if x, y e {z\} x [0, 1 + / U l

for all n > 0. Here | • |R: is a usual metric on R2. Note that f,({z\} x [0, 1 + fiok]) is
a curve (say y") in an unstable manifold of W ( A , /)• The proof is completed. D

PROOF OF PROPOSITION. Let / , : X, -+ X, (t e (-»?, r))) be as before. By the

proof of [6, Section 8, Proposition 8.1] (see also [6, Theorem D]), for every n > 0,
there exist 0 < tn < \/n and a hyperbolic basic set A** c X,:i of /,„ such that

• A C A**,
• TS(A*;)T"(A^) > 1,

• A** has a persistent quadratic tangency of Ws(A**;tn) and W"(A**;tn) at
qn (^ A**); that is, A** is a wild hyperbolic set (see [6, p. 438] for the definition).

Here

rs(A;*) = limsup{T()/E n Ws(A**;tn))}

is the stable thickness of A**, y is any C1 arc transverse to Ws(A**;tn) at q and ye

is the arc of length e in / centered at q. The unstable thickness, r"(A**), is defined
in a similar manner (for example [2, 4 and 6]). Newhouse [2] shows that rs(A**)
and r"(A**) are independent of q and y. We can find a C1 curve £„ around qn

such that W'(A**;tn) and W(A**;tn) have a quadratic tangencies along £„ (see [6,
p. 457]). Then for a small enough curve tnt around qn, x{lne n Ws(A**;tn))x(lne n
W(A**;tn)) > 1. Note that two Cantor sets lne D W!(A**; rn) and £ne n W"(A**; /„)
overlap around qn (see [6, p. 456, (8.2b)]). Since A** is a wild hyperbolic set, these
properties are persistent with respect to C2 topology. Hence, by the same technique
used in the proof of Lemma 2.2 we can find an interval /„ c (0, rj) containing t,,
such that the situations (a) and (b) hold for / , and A** for all t e In Here A** is the
continuation of A**. Thus for every t e /„, there is a non-expansive sequence of / , in
X,. If necessary, by arranging an index n we may suppose that {/n}JJl0 is a sequence
of intervals decreasing towards 0 as n —> oo. •
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3. Proof of Theorem B

As stated above we prove the conclusions under the C2 assumption. Let M be
a closed surface and Diff^M) be the set of all C2 diffeomorphisms of M endowed
with a C2 topology. We say that / e Diff2(M) is persistently hyperbolic if there is a
neighborhood <W(f) C Diff^M) such that for every g e :J?/(f), the non-wandering
set of g is hyperbolic.

PROOF OF (1). Let/^., be a two parameter horseshoe family and A (s) = A](s)xA2

be as before. Notice that fsl is linear near O. Clearly, / , , satisfies [3, Conditions
(i), (ii) and (iii), pp. 339-340] for 5 e ( — r), iq). For all s e ( —fj, rj), we denote by
B(s) the set of all parameter values t > 0 such that /,., is not persistently hyperbolic.
Since //£>(A,(0)) + HD(A2) < 1 and //D(A,(.s)) depends continuously on 5, by
[3, Theorem, p. 340] there exists % > 0 such that for all s e (—170, i?o),

,. m(B(s)n[0,t]) nhm = 0.
/-o t

Herew denotes the Lebesgue measure. Fix 5- e (—rj0, r)0). Then, for every 0 < t < rj0

and t' e B(s)' H [0, t], fs.,> is persistently hyperbolic and thus / , , : Xs.,< -> Xs.,• is
expansive. Hence NE(s) c B(s) and assertion (1) is proved. •

To prove (2), we need to introduce some notation. Let r] > 0 and /,., : R: —> R2

(C$,0 € (—r), rj)2) be as before. For every z, = (z,, 0) € A ,(0), there is a C2 function
zt(s) : (-??, JJ) -^ Rsuchthatz, = z,(0) and (z,(s),0) € A,(5) fors e ( - J J , r)). We
denote (z,(s), 0) by Zi(5). Forz2 = (0, zi) € A2, Ietz2(5) = (0, zj) (s e ( -^ , JJ)) for
convenience. Let U\ (respectively U2) be a neighborhood of O e A1 (0) (respectively
A2). Pick a sufficiently small e > 0 and put

G, (Z i ) (* ,S , r ) = ( X + X O , ? -C 0 Zi (5) - X 2 ) (X € [-£,£])

and

G2(Z2)(X, 5, t) = (X + X0, Z2) (X € [ -£ , £])

for z, e f/, (i = 1,2) and (5 ,0 e (->?, ??)2. Then G, : U, -+ C 2 ( [ -e ,e ] x
(-T], rj), [—e, e]) is a continuous map for / = 1, 2 and

Gi(z , ) ( [ -e , s],s,t) C W"(z,(5);5,/) and G2(z2)([-s . e], 5, f) C Wv(z:;^, r).

Set r(Zi,z2)(s) = cozi(5) + zi for (z,,z2) € U\ x U2 and 5 G ( — rj, r]). Then
T : U] x U2 —> C2(( — r), rj), ( — r), r])) is a continuous map such that
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• if t < 7"(Z|, z2)(.v). then the function x H-> G|(Z| ) (JC, s, t) — G2(z2)(x, s, t) is
strictly positive in [—s, s],

• if t — T(z\, z2)(.v), then the same function is positive with a single zero in
l-e.e].

Hence W'(/,.,(zi(s));s. t) and Ws(z2\s, t) have a quadratic tangency if t = 7"(zi,
z2)(s) for .9 e ( — rj, rj). For the results for the Lebesgue measure of the set of all these
parameter values t, see [7] and its references.

For a sufficiently small r > 0 and s e ( — 17, r]), define B's(r) = {z, e (/, :
|c,-(5)| < r}for/ = 1,2. Herez, = (z,, 0), z2 = (0, z2). Then 0 < 7(z,,z2)(.s) =
cozt(s) +z2 < (c,)+ \)r for(z,,z2) e ^ ' ( r ) x fi;(r) and 5 € (-17, )?).

PROOF OF (2). From //D(A,(0)) + HD(A2) > 1, we prove that there are three
constants rj0 > 0, c' > 0 and r\ > 0 satisfying the following two properties (i) and
(ii) for almost all s € ( — r],u ^0);

(i) for every 0 < r < rt, there is a subset T^(r) C [0, (CQ + l)r] in /-parameter
space such that

m(T'(r))
hm sup : > c ,

(ii) for every t e T{(r), there is a non-expansive sequence {(x,, y,-)}*l0 of /,., in

Here m is the Lebesgue measure of the set. If the above properties are established, then
by setting t = (c0 + 1 )r, assertion (2) is easily checked because sup T^(r) < (c0 + 1 )r
and r ;(r) C NE(s).

Let us prove (i) and (ii). For every r > 0 , — r] < s0 < rj and a subset Lr of
Bl(r) x Bl(r), put

Ts(r)= | J r(z,,z2)(i) (5 € (-JJ,

Since / /D(A|(0)) + HD(A2) > 1 and our family possesses three transversality
conditions required in [5. pp. 93-95], by following the proof of the theorem stated in
[5, Section 2], we have three constants % > 0, r, > 0 and c > 0 with the property
that for any 0 < r < r, and s0 £ ( — 'Jo. 1o), there exist subsets L[o C S^(r) x B^(r)
and Ar

Sii C | s e (—??(), ^0) : \s — sQ\ < \ log r |~'} satisfying

m(A\ ){ inf m(Ts{r))} > cr\ logrp1

(see [5, p. 95, Theorem]). The above assertion is established for a two parameter
family of C^ diffeomorphisms possessing the three transversality conditions. In our
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case, however, we can see that the assertion holds for /,., because it is linear near O.
Recall that W"(O;0, t) n A|(0) and Ws(O;0, t) n A2 are countable sets independent
oft. LetL';n = L; \{ iy" (O;0 ,0)n A,(0)} x {Ws(O;0, 0) n A2) and put

7 » = (J T(z\,z'2)(s) C TAr).
<z;.z;)ef/;o

Then m(T{(r)) = m(TAr)) for ^ € ( — r?0< *7o) since r ,(r) \ r,'(r) is a countable
set. Thus we have w(A^){infs6A; m(T^(r))} > cr\\ogr\~[. Therefore, by the same
method stated in [5, pp. 95-96], there is a constant c' > 0 such that

m(T;(r))
(*) hmsup : > c

r^o r

for almost all s s ( — rj0, rj0) and so (i) is proved.
To prove (ii), fix s e (—rjo, r]0) such that (*) is satisfied. We show that for every

t e r / ( r ) , there is a non-expansive sequence {(x,, y , )}^0 of / , , in X5, x X,,. Let
r , O ) and T2 (C I) be the Cantor sets defined in Section 1. Pick t € 7"s'(r). Then
there is

z, € f5Arl(s))nr2\(W
s(O;s,t)nw"(O\s,t)).

Take z, = (z,,0) € A{(s) and z2 = (0, z2) e A2 such that z, e fs.,([z\} x [0, 1 +
A)A])n(/ x{z2}). Clearly, z, ^ W"(O;5, r) orz2 ^ W"(O:.v.r). It is easy to see that
z, is a limit point of ([0, z,] x {0}) D At(s) for the case when z, ^ W"(0\s. t). Thus,
for every i > 0, there are z\ = (zj, 0) e A 1(5) near z, and distinct points {x,, y,} e
A,(U',} x [0, 1 + fak]) n (/ x {z2}) nearz, such that |/;',(x,) - /;;,(y,)|R= < l / i for
all n € Z. For the case when z2 ^ WS(O;5, / ) , we can see that z2 is a limit point
of ({0} x [0, z2]) H A2, and so there is a non-expansive sequence. The proof of the
theorem is completed. •
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