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1. Introduction. The object of this paper is to redevelop the classical theory of multi-
pliers of Fuchsian groups [16] and to attempt a classification. The language which appears
most appropriate is that of group extensions and the cohomology of groups. This viewpoint
is not entirely novel [12] but the entire theory has never been based on it before.

A Fuchsian group G is a discrete subgroup of PSL(2 ; R). We shall further assume that
G is finitely generated and that PSL(2 ; R)/G has finite volume. We shall begin by investi-
gating the extensions of PSL(2 ; R). These induce extensions of G.

On the other hand G can be given explicitly by generators and relations. So, in principle
at any rate, its extensions can be classified from the point of view of group theory. There is
then the basic problem of relating these two approaches.

In the case that G has no elliptic elements, this identification can be carried out explicitly
by using Chern characters to identify algebraically and geometrically defined objects. A
partial extension to groups with elliptic elements can be made using the transfer homomor-
phism of group cohomology.

As a first application, we consider the question as to when G can be lifted to SL(2 ; R).
We prove again a theorem of Petersson ([17]) and Bers ([1]) (itself the answer to a question of
Siegel ([22])). Bers' proof was an application of the theory of moduli of Riemann surfaces;
ours, being intrinsic, can be considered rather more satisfying. Further, our results are more
complete than Bers'. Petersson's proof is similar to, but rather more complicated than,
ours.

The second application is a sketch of the theory of weights and multipliers for auto-
morphic forms. This will be treated in two ways; one is the classical approach due to
Petersson while the other is more in keeping with our general philosophy. This also has the
virtue that it shows how the representation theory approach to the Selberg trace formula
(see [6, Ch. 1]) ties up with Selberg's own approach in the case of arbitrary weights.

One of the most famous multiplier systems is that arising from the Dedekind ^-function
on the modular group. The appearance of the >j-function in the Kronecker limit formula
suggests, in view of Selberg's theory of Eisenstein series [20], that a similiar function might be
defined on an arbitrary Fuchsian group. That this is so is shown by Goldstein [8] in terms of
Eisenstein series. We shall give a new and much more general proof which uses the resolvent
of the Laplace-Beltrami operator in place of Eisenstein series. This produces multiplier
systems even when G has no parabolic elements. We conclude by showing that our results
include the Kronecker limit formula.

Notation. G will denote a finitely generated Fuchsian group of the first kind. We shall
write © = PSL(2 ; R) and Cn for the cyclic group with n elements. H will denote the upper
half-plane on which (5 will act in the usual way.

https://doi.org/10.1017/S0017089500002615 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002615


124 S. J. PATTERSON

2. Extensions of PSL(2; R). © = PSL(2 ; R) acts on the upper half-plane. Let M be
the subgroup of elements of the form m(a, b) (a,beR,a> 0), where

m(a, b)(z) = az + b.

Let K be the subgroup of © fixing i. Then the product map

M x K - > © (1)

is well known to be a homeomorphism (" Iwasawa decomposition "). Furthermore /sT=R/Z.
Let us write S =R/Z which we call, as usual, the circle group. Note also that © has a trivial
centre.

M is homeomorphic to R x ] 0, oo [ and is therefore contractible. Hence

Recall that an arbitrary covering manifold of a connected Lie group has a unique Lie
group structure extending the given one. If we let ($>„, be the universal covering space of ©
and let, for n > 1, ©„ be the unique covering space of degree n of ©. Then ©«, and ©„ are
covering groups of ©. We have exact sequences

e ^ Z -» ©„,-»© -*e (2)

e-> Cn->©n -»<5-»e. (3)

Let H* be the group cohomology functor. Then (2) and (3) give rise to elements of
H2 (©, Z) and H2 (©, Cn) respectively. We would like to identify 2-cocycles representing these.

Observe that, as ©M and ©„ are connected, they act trivially on Z and Cn. In particular,
Z(resp. Cn) is the centre of ©«, (resp. ©„).

We shall now define a 2-cocycle on © and verify that this defines ©«,. © acts on H.
Define log as that branch taking its values in {z: 0 ^ Im(z) < 2n}. Choose iveH and define,
for g,he<5,

2ni • a(g, h) = log (gh)'(w) - log g'(h(w)) - log h'(w). (4)

By the chain rule, this is an integer and it is easy to see that it does not depend on the choice of
w. It is also immediate that a is a 2-cocycle.

Let © (a) be the extension

e -»• Z -» ©(a) -»• © -• e

determined by a. It is easy to verify from (4) that © (a) has a natural structure of a Lie group.
a restricted to K or M is again a 2-cocycle. So there are extensions

e -> Z -> M(a) -+M->e

e -> Z -» K(a) -> K -» e,

where, furthermore, M(a) and K(a) can be considered as subgroups of ©(a). But M is
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contractible and hence cohomologically trivial. Thus M(a) ^ M x Z . S o M can be lifted to a
subgroup of (5 (a). From (1) one deduces that the resulting product map

M x K(a) -> <5(a) (5)

is a bijection.
We must now look at K(a). There is a homomorphism 0 from R into K with kernel Z

given by

0(t) = (w H> (w • cos 7rt + sin nt)/( — wsinxt + cosnt)).

From (4) one sees that, on taking w = /,

(s)-(O (6)

where, if x e R , (x) = x(mod. Z) and (x)e [0, 1[. But this is the 2-cocycle on S defining the'
extension

e -> Z -> R -> S -> e

and so ^T(a) s R. By (5), © (a) is simply connected and so is isomorphic to ©„.
Thus the 2-cocycle a given by (4) determines the extension (2).
We can also consider a as an element of Z/wZ. Likewise we can show that as such it

determines the extension (3).
Finally let us note that

©2 = SL(2;R). (7)

3. Cohomology of Fuchsian groups.. A Fuchsian group G can be generated by a system of
generators of the form

A u . . . , A g , Biy...,Bg, P i , . . . , P . , EU...,E, (8)

sub jec t t o t h e r e l a t i o n s

[AuB1-]...lAg,Bg)-P1...Ps-E1...El = I 1

E$» = 1 J

where e(j) > 1 (1 ^j ^ t) is a positive integer. The Pj(l^j ^ s) are parabolic and any
parabolic element of G is conjugate to some power of one of the Pj. Likewise the Ek are
elliptic and any elliptic element is conjugate to some power of one of the Ek. There may, of
course, be no elliptic or parabolic elements, in which case we set t = 0 or s = 0. See, for
example, [16, §2.3].

If D is a fundamental domain for G on H and a is the hyperbolic area on H we have

a{D) = 2n((2g-2) + s+ £ (1 -</)" ' )) • (10)

In view of this let us write
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This is a rational number which will play an important role. In particular, if H is a subgroup
of finite index in G, it is again a Fuchsian group and, by (10),

t(tf) = [G:H]-T(G). (12)

It is easy to calculate the second cohomology groups of G given the presentation (8), (9).
The method is given in [10, p. 131]. Let M be an abelian group on which G acts trivially. If
we carry out the prescription in [10] we find:

PROPOSITION 1. Ifs>0, then

H2(G,M)^ ®M/eQ)M.

Ifs = 0, H2(G, M) is the cokernel of the map M' -» M'+ 1 given by

{mu . . . , m,)h+(ml+ . . . +mt, e(\)mu . .., e(t)mt).

Let us consider the special case M = Z. If s > 0 then H2 (G, Z) is the finite torsion group

e ce(J).
Now let T(G) be the finite abelian group generated by yu . . . , y, subject to the relations

y?> = I (l=gygO- (13)

COROLLARY: Ifs > 0, then

H2(G, Z) s T(G).

7/5 = 0, then

H2(G,Z)*Z®T(G). (14)
(The appearance of a factor of Z when s = 0 corresponds to the fact that G\H is then

compact.)

Proof. If s 5* 0 the result is already proved. So we may suppose that s = 0. Let
cp : Z' -»Z'+ 1 be the map defined in Proposition 1; then H2 (G, Z) = Coker (<p). Let

F: Z t + 1 ->Z'+1;(m0> mt mr)H>(m0,
Then

Hence
' ) s Z and Z'+1/F(Z'+1) s T(G).

The conclusion follows by the general structure theory of abelian groups.
G is a discrete subgroup of ©. So we have a map

®:tf 2 (©,Z)^/ / 2 (G,Z) .

We have computed the structure of H2 (G, Z) and, in Section 2, we found a special element of
H2 (©, Z). Our immediate problem is to find where the image of this element sits in H2 (G, Z).
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Results similar to those of this section have been found by Godement [7]. His methods
are applicable to a very wide class of discrete groups but the conclusions are not quite so
precise. However, he does calculate the higher cohomology groups of Fuchsian groups.

4. Surface groups. A Fuchsian group will be called a surface group if it has no elliptic or
parabolic elements. In terms of the presentation (8), (9) this becomes s = t = 0. By the
corollary to Proposition 1, H2 (G, Z) = Z. Let a be the element of H2 (©, Z) corresponding to
the 2-cocycle a defined in (4).

PROPOSITION 2. Let G be a surface group. Then there is a generator u of H2 (G, Z) so that

Proof. Let X = G\H be the Riemann surface corresponding to G. Let n : H -*X be the
projection map. Let Qlf0(Ar) be the line bundle of forms of type (1, 0). We shall identify
H2 (X, Z) and H2 (G, Z) and calculate the Chern class of Q1>0 (X) in two different ways. See
[2, p. 33].

Let D be a fundamental domain for G. If, for z e H, we write z; = x+iy, then

da = y~2dxAdy

is the area associated to the Poincare metric. Let fL, f2 be two sections of il110 (X) lifted to H
in the usual way. Then

4
is invariantly defined and defines a Hermitian structure on fili0(A'). By [2, p. 45] the curvature
form of this Hermitian structure is

K = {-il2ni)dd\ogy2.
But if F is any function, then

ddF = - (i/2)(Fxx + Fyy)dx A dy.
Thus

K = (l/2jr)( -da).

K is the representative of the Chern class of Q}'°(X) in the de Rham cohomology group
H 2(X, R) (see [2, p. 49]). But X is a two-dimensional manifold. So H2(X, Z ) s Z and, if [A'] is
the generator of H2(X, Z), then H2(X, Z) is generated by an element ju, so that /J ([X]) = 1.
Thus K=N-{*, where

JV= \ K
JD

= -a{D)jln

= -(20-2) .

Thus the Chern class of nll0(Jr) is -(2g-2)fi.
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Let Fbe a sheaf on Zand let n*Fbe the pull-back to H. Let r(H, n*F) be the G-module of
sections of n*F. This is discussed in detail in [14, pp. 22-24] and we shall assume this dis-
cussion. The conditions there are satisfied and consequently

H*(G,r(H,n*F))-*H*(X,F) (15)

is an isomorphism of cohomology functors.
We shall consider the three sheaves Z, A (X), and A * (X). Z is the constant sheaf, A (X) is

the sheaf of germs of C00 functions on X and A * (X) is the sheaf of germs of invertible C00

functions. Then T(H, n*Z) s Z, r(H, n*A(X)) s C°°(H) and r(H, n*A\X))^ C°(H)* (the
group of units of the ring C°° (H)). The G-action on C°° (H) or C"° (H)x is given by

^• / ) (z )= / (^" 1 (z ) ) . (16)

A line bundle on X is defined by an element of H1 (X, A * (X)) (see [2, p. 31]). The short
exact sequence of sheaves

0 (17)

induces, via the cohomology exact sequence (see [2, p. 33]), an isomorphism

8: H\X, AX(X)) -»H2(X,Z).

The element of H2 (X, Z) corresponding to a line bundle is its Chern class.

Now, using the isomorphism (15), let us mimic this construction in G-modules. We have

H2(G, Z) s H\X, Z) (18)

Hi(G,C°(H)) = Hl(X,Ax(X)) (19)
Corresponding to (17), we have

0-> Z -> C°°(H) -^ C°°(H)X -»0,

where e(/)(z) = exp(2ni/(r)). Again we find an isomorphism 8:H\G, CX(H)X)^ H2(G, Z)
which corresponds to the Chern class isomorphism by (18) and (19).

The element of H\G, C°°(H)X) corresponding to fi1>0 (X) is represented by the 1-cocycle b,
where

Using (16) and the general theory, we find, for g, heG,

(5b)(g, h) =

where z is a fixed point in H and we take the same branch of log as before. Replacing z by
gh(z) and comparing with (4), shows that 5b = -a. Thus the Chern class of Q0>1(X) is
represented in H2 (G, Z) by a.

Combining the two calculations of the Chern class and using (18), we see that the pro-
position is now proved.

We now would like to extend this to an arbitrary Fuchsian group. Suppose that G has the
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presentation (8), (9). Let L be the least common multiple of e(l),..., e{t). Let CjD be the
expression of T(G) (defined in (11)) as a fraction in lowest terms.

If G has no parabolic elements, by the corollary to Proposition 1, H2(G, Z) = Z©T(G).
Let p\: H2(G, Z) -»Z be the projection onto the first factor.

PROPOSITION 3. Notations being as above,

thenL-Res^(a) = 0,
(J

\
a)\ = O (mod C)

Proof. If s ¥^ 0, by the corollary to Proposition 1, H2 (G, Z) is of exponent L and the first
statement follows at once.

Suppose that 5 = 0. Then by a lemma of Selberg [21, p. 154] there is a normal subgroup N
of finite index in G with no elements of finite order. Suppose that the genus of iVis gl. Then,
by (12),

[G: JV] = (2gi-2)jx(G).

We recall the transfer map (see [11, p. 54])

tr:H2(N,Z)->H2(G,Z).

The characteristic property we require is ([11, p. 56]) if res is the restriction map from G to N
then the composite of

H\G, Z) Z //2(JV, Z) -1 H2(G, Z) (20)

is multiplication by [G : N]. By the corollary to Proposition 1, H2(N, Z) = Z and

H\G, Z) s Z 0 T(G).
Clearly T(G) is of exponent L.

Let a (G) (resp. a (N)) be Res (a) (resp. Res „ (a)). Then res (a (G)) = a (N). By Propo-

sition 2, there is a generator u of H2(N, Z) so that

But
tr(res(a(G))) = [G : JVja(G)

So
tr((26r1 - 2)u) = ((2gy - 2)/t(G))a(G). (21)

https://doi.org/10.1017/S0017089500002615 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002615


130 S. J. PATTERSON

If p(tr(u)) = 0, the composite of maps in (20) would be zero, which is impossible. So
v = />(tr(«)) * 0. By (21),

v=p{a)G))KG).
Writing x(G) = C/D with (C, D) = 1

This proves the proposition.

We now have quite a clear idea of how Res _ (a) sits in H2 (G, Z), except in respect to the

torsion part. We shall now sketch a description of what happens in the torsion part.
Let Gi be the cyclic subgroup of G generated by Et. Then H2(Gh Z) £ G, (see [11, pp. 40-1 ]).

Thus the restriction morphism from H2(G, Z) to H2(Gh Z) gives a homomorphism from
H2 (G, Z) into G^ Combining these we obtain a map

r : H2(G, Z)->- © Gt.
7=1

The right-hand side here is isomorphic to T{G).
If we examine the method of Section 3 closely and follow the proofs in [10], we find that r

is the projection of H2 (G, Z) onto the factor T(G) given in the corollary to Proposition 1.
We can assume, without loss of generality, that Gt is a subgroup of K. By (6), we find an

explicit form for the restriction of a to G> The resulting element is a generator of H2(Gh Z).

Thus A Res _(a) J is a generator of each factor of © Gt.

5. Liftings. In this section we shall consider the problem of whether G can be lifted to a
subgroup of (52 = SL(2;R). The following theorem was originally proved by Petersson
([17]) but was later posed as a problem by Siegel [22]. Bers solved Siegel's problem in [1] in a
special case by the theory of Teichmiiller spaces. Both Bers and Siegel seem to have been
unaware of Petersson's earlier work. The same problem was recently reconsidered in [3].

THEOREM 1. G can be lifted to a subgroup ofSL(2 ; R) if and only if it has no elements of
order 2.

Proof. The only element of order 2 in SL (2 ; R) is - /. So if G had an element of order
2, it would lift to - / . But this projects to the identity of (5. This is a contradiction and it
shows that G cannot be lifted.

Now suppose that G, with the presentation (8), (9), has no element of order 2. Then all
the eO) are odd. Thus L, the least common multiple of e ( l ) , . . . , e(t), is odd.

Let us consider first the case when G has parabolic elements; that is when s > 0. In this
case, in H2(G, Z),

L-Res®(a) = 0. (22)
(j
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Let a be the 2-cocycle defined in (4). By (22) there is a function b : G -> Z so that, for g, heG,

L-a(g,h) = b(gh)-b(g)-b(h). (23)
As L is odd, we find]

a(g, h) = b(gh) - b(g) - b(h) (mod 2). (24)

Thus the image under restriction in H2 (G, C2) of a is zero.
In Section 2 we indicated that a (mod 2) induces the double cover ©2 of ©. G is a sub-

group of © and so we obtain an extension G2 of G which is a subgroup of ©2. But> by (24), the
extension is trivial and so G2 = G x C2. Hence G can be realized as a sugbroup of (52. This
is the assertion of the theorem.

Now let us consider the case in which G has no parabolic elements; that is, when s = 0.
Let a be the same cocycle as above. As H2(G, Z) s Z©T(G), we can write an element of
H\G, Z) as {x, y) with x e Z and y e T(G). Suppose that a represents the element (q, u). By
Proposition 3, q = C-q0, where qoeZ and T(G) = C/D in lowest terms. As

T(G) = 20-2+£(1-</)- ')

and as all the e(J) are odd, C is even. Let C = 2C0.
On the other hand T(G) is of exponent L and so LM = 0. Thus L • a represents

2 (L • Co • q0, 0). Let a' be a 2-cocycle representing (LCoqo, 0). Then there is a function
fa : G -> Z so that

L-a(<7, ft) = 2- a'fo

As L is odd, for g, heG,
a(g, h) = &(**)-6fo)-6(fe) (mod 2).

This is the same congruence as (24) and the deduction of the theorem is just as before. Thus
the theorem is proved.

We have restricted our attention to one particular extension, that of (5 to ©2. Clearly the
method is more generally applicable but the results are neither of such interest nor of such
simplicity.

6. The theory of weights. In this section we shall sketch a version of Petersson's theory of
weights and multipliers for an arbitrary Fuchsian group. It should be pointed out at the start
that Petersson works with discrete subgroups of SL(2 ; R) rather than of PSL(2; R). Conse-
quently his theory is not directly comparable. A discussion of Petersson's theory from a point
of view closer to our own is given by Roelcke in [18].

Let a (n) be the class of a (mod n) in H2 (©, Cn). We allow n to be oo in which case a is the
class of a in H2 (©, Z). In future if n = oo we understand Cn to be Z. a(/i) determines the
extension

e -» Cn -> ©„ -> © -v e. (25)
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Let N be an integer. Then let ©„ (iV) be the group defined'by the extension

e -> Cn -• ©n(A
T) -> © -> e (26)

determined by No. (n). ©„ (AO is not necessarily connected. In fact it has («, jV) (N if n = oo)
connected components. The component of the identity is isomorphic to ©,,, where
d = nftn, N)(d = oo if n = oo and N ^ 0). These facts may easily be verified by the methods
of Section 2 by means of checking them first for K. The structure of ©„ (N) depends only on
n and (n, N). Let <51 n and set

Then ©n 3 has njd components and the identity component is isomorphic to ©,,. In fact we can
describe ©n>a completely. The centre of ©^ is isomorphic to Cs. Let y be a generator of this
group. We construct the group generated by ©3 and another symbol e which commutes with
every element of ©a and is such that

enls = y .

The resulting group is isomorphic to ©n^.
Let G be a Fuchsian group. We say that 5 is a divisor of G if there is a non-zero integer n

such that

From the discussion above and the general theory we have:

PROPOSITION 4. Ifd is a positive integer or oo then 5 is a divisor ofG if and only ifG can be
lifted to some group of the form (5,,^.

The central proposition which both justifies the notation and shows the connection with
Petersson's theory is the following:

PROPOSITION 5. Let S = R/Z and let d be a non-zero integer. Let (a/5) be the class of 8 ~ 1a
in H2 (G, S). Then 8 is a divisor ofG if and only if (a/8) = 0.

Proof. Suppose that 8 is a divisor of G. Then there is an integer n and a function
b : G'-> Z SO that, for g,heG,

n • a(g, h) = b(gh) - b(g) - b(h) (mod nS).
Thus

a(g, h)IS = (b(gh)ln8)-(b(g)ln8)-(b(h)ln8)(mod 1).

So (a/8) = 0 in H2 (G, S).
Conversely suppose that there is B : G -* R so that

a(g, h)j8 = B(gh)-B(g)-B(h) (mod 1).

Let V be the subgroup of R generated by {B(g): geG} and 8~1. Let g j , g2,..., gK be a set of
generators of G. By the congruence above, V is generated by Big^),..., B(gK) and 8'1.
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Thus V is a finitely generated torsion-free abelian group. From the general theory of abelian
groups it follows that there is a projection of Fonto VnQ. Call this projection p and suppose
that Vn Q generated by/" 1 (it must be generated by such an element as 1 e V). Then

a(g, h)/5 = p(B(g,h))-p(B(g))-p(B(h))(mod 1).

If we set b(g) = J5p(B(g)), then b (g) is an integer and

J • a{g, h) = b(gh) - b(g) - b(h) (mod J5).

Thus 5 is a divisor of G and the proposition is proved.

COROLLARY Ifd is a divisor ofG and d± \ d then dt is a divisor of G. If du d2 are divisors of
G and (dlt d2) = 1 then dxd2 is a divisor ofG.

Proof. This is obvious from Proposition 5.

This corollary justifies the use of the word divisor. The following examples are conse-
quences of the results of Section 3. As usual, G has the presentation (8), (9) and L is the least
common multiple of e(l), . . . , e(t).

EXAMPLES, (i) If s = t = 0, the divisors of G are the divisors of 2g — 2.
(ii) If s # 0, then every integer and oo is a divisor of G.
(iii) If s = 0, then any divisor of C (defined above) is a divisor of G.

In this connection it is worth noting that, by Proposition 1, H2(G, S) = Sifs = 0 and
#2(G,S) = 0 i f s ^ 0 .

Suppose that G can be lifted to (5n5. Then it is clearly of interest to study functions on
G\©n>5 in the style of [6], [19] and the interpretation of such functions as automorphic forms
should also be useful ([18]). This is too large a topic for us to embark on here.

We shall now review Petersson's theory. If u # 0 and v are complex numbers, we shall
write u" for exp (v log u), where we use the same branch of log as before. Let V be a complex
vector space and let m : G -* End(K) be a function. We say that / : H -* Kis an automorphic
form of weight A:(eR) and multiplier m if

f(g(z))-g'(z)k = m(g)f(z). (27)
For g, he<5, let

q(g,h) = exp(2nika(g,h)). (28)

Then a necessary and sufficient condition for (27) to be consistent is that, for g, h e G,

q(g, h) • Idr = m(gh)m(h)- 'm{9r K (29)

A full study of (29) seems difficult but interesting. It is connected with the theory of
vector bundles on a Riemann surface and the reader may be referred to [24], [15]. We shall
consider only the case when V is 1-dimensional and | m (•) | = 1, in which case m is said to be
unitary.

q is a 2-cocycle with values in the circle group S. Suppose in the presentation (8), (9) that
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s -£ 0. As H2 (G, S) is trivial, (29) can be solved for any real weight k. On the other hand, if
s = 0, then k must be a multiple of 5~1 where 8 is a divisor of G and thus take on a finite set of
values (mod 1). In the special case s = t = 0 all weights are multiples of (20 -2 )" 1 . In any
case there is an integer Nsuch that every weight is a multiple ofN~l.

In the next section we shall construct forms of various weights which show more directly
how the phenomena noted in this section occur.

7. Construction of functions. Let G be a Fuchsian group of the first kind acting on H.
We are going to construct automorphic forms, in Petersson's sense. The method we shall
follow is much more intrinsic than the use of Poincare series.

Let D = y2 (d2/dx2 + d2/dy2) be the Laplace-Beltrami operator on H. For Re (s) > 1, let
G(zu z2, s) be the resolvent kernel for D on C\H. This is constructed in [4]. G(zu z2, s)
satisfies

(i) if Zj ^ z 2 then D2iG(zuz2,s) = -s(l-s)G(zuz2,s),

(ii) G(zu z2, s) = G(z2, zu s),

(iii) if geG, G(5(zi), z2. s) = G(zu z2, s),

(iv) if the order of the subgroup of G fixing z2 is e(z2), then

G(z1( z2, s) + {.e{z2)j2n) log | zl - z21

is real-analytic as a function of zt near z2.

Suppose that G has no parabolic elements. Let q>0, (pu ... be a complete orthonormal
system of eigenfunctions of D invariant under G. Let

D(Pj ~ -PjVj-

Suppose that the \ii are so ordered that n0 ^ /it ^ n2 ^ . . . . Then it is known (see [13]) that
Ho = 0 and that /ix > 0. Furthermore cp0 is a constant and so

/ 2 . (30)

It also follows from the general theory that £ fij2 <oo. Let sQ be an arbitrary complex

number with Re(j0) > 1. Then for any s we have the eigenfunction expansion, on setting
li = s(l -s) and n' = JO(1 -S0),

00

G(zu z2,s)-G(zuz2,s0) = £ (fi-n'tyjizJcpjizJKiij-n)(nj-n').
j=o

The right-hand side converges to an L2 function analytic in s except when s(l - s) e {fij}. Also,
at s = 1 there is a pole of residue cp0

2 = 1/27IT(G).

If G has parabolic elements, it follows from the decomposition of L2 (G\H) by Eisenstein
series (see [5], [18] and [20]) that G{zu z2, s) — G{zu z2, s0) is analytic in s as an L2 function,
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except for a possible finite set of simple poles on lm(s) = 0. Furthermore, as the continuous
spectrum only contributes if Re(s) = 1/2, the pole at s = 1 is as before.

Suppose that G(z,, z2, s) has the following expansion

Let C be a small circle around 1 so that C lies in Re(s) > 1/2 and there is no pole of G(zu z2, s)
other than s = 1 inside C. Let e,- = 1 if j = 0 and e, = 0 if j > 0. Then, for; ^ 0,

a/zi, z2)-EjG(zu z2, s0) = (1/2«Q (G(zu z2, s)-G(zu z2, so){s-\yJ~ Ms.
Jc

By conditions (i), (ii) and (iv), the integrand is a real-analytic function of zt and z2. Thus if
j > 0,aj(zuz2) is a real-analytic function of z,, z2, whereas

aO(z i. z2) + (e(z2)l2n) log | z t - z2 |
is real-analytic in z, near z2.

The integral above could have been used as a definition of aj (zj, z2). From property (i)
above it follows at once that

We have now shown

PROPOSITION 6. There exists a function a on H x H with the following properties:

(i) IfgeG, then a{g(zi), z2) = a(zlt z2).
(ii) fl(z1)z2) = a(z2, zx).
(iii) IfZi $G {z2}, then a(w, z2) is real analytic in w in a neighbourhood of zY. Otherwise

a(w,z2) + e(z2)-log | w-z21

is real analytic with w in a neighbourhood of z2.

(v) As s -> 1,

G(z1(z2)s) = (2;r)-1(T(G)-1(s-l)-1 + a(zlJ

Suppose now that G has parabolic elements. Let p be a parabolic fixed point of G and let
Ep(z, s) be the Eisenstein series associated to p ([20]). This has an analytic continuation to
Re(j) > 1/2 except for a finite set of poles on the real axis ([18], [20]). There is a pole of
multiplicity 1 at s = 1. The residue at such a pole is a square-integrable eigenfunction of D;
if the pole is at s = st then the eigenvalue is — j t (1 —Si). In particular the residue at s = 1 is a
constant. As before, we may expand Ep{z, s) as

and again we find that a0 is real analytic and Da0 = c. The value of c may be calculated from
the MaaB-Selberg relations (see [8], [20]). The result is that

c = l/(2nt(G)).
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Define now the Poisson " kernel " for H as follows:
if zeH, xeR, set

P(z,x) = Im(z)l\z-x\2

and
P(z, oo) =

Then from the Fourier expansion of Ep (z, s) we obtain, as z -> p through a cusp

ao(z) = P(z, p) + 0(log | P(z, p) | ) . (31)

On the other hand if q is a parabolic fixed point of G which is equivalent to p , then, as z -> q
through a cusp,

a0(z) = 0(log\P(z,q)\). (32)

a0 is a limiting version of a {zu z2) as z2 ->p. This can easily be proved rigorously but we
shall here concentrate on a(zu z2) and only sketch in the corresponding theory for a0. This
idea is also mentioned briefly in [23, §26.3].

To cast the results above into a more recognizable form, we make use of the following
lemma:

LEMMA. Let F be a real function on H satisfying

(J)forgeGF{g{z)) = F{z),
(ii) for some constant c, DF = c,

(iii) there is a point weH and an integer e such that ifz is not equivalent under G to w, then
F is real analytic in a neighbourhood of z; whereas

F(u) + e log | w — w |

is real analytic in a neighbourhood of w.
Then there is a function mon G such that | m | = 1, and an analytic function q> such that, for

and q> has zeros of order e at points equivalent to w and no others. Also

-F(z) = log | cp(z) | + c • log Im(z).

Proof. Let Ft (z) = F(z) + c- loglm(z). Then one checks that Di^ = 0; thus Ft is
harmonic. Thus locally there is an analytic function q>l such that

On going around w (or a point equivalent to w), (px changes by an integral multiple of 2ni.
Thus if we set

it can be analytically continued to H and it is standard to check that the resulting function has
all the properties ascribed to it in the lemma.
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COROLLARY. The function m appearing in the lemma is a multiplier of weight c (in the
sense of Petersson).

Proof. This follows from the lemma and the discussion at the end of Section 6.

THEOREM 2. Let w be a point ofH. Then there is an analytic automorphic form q> (z ; w) of
weight (e(w)T(G))~1 with a simple zero at points equivalent to w and no other zeros or poles. Let
mw be the multiplier for q>(z ; w). Then mfz) depends real-analytically on z. If geG, then
cp(z ; g(w)) is a multiple of <p(z; w).

Proof. This follows from the lemma and Proposition 6.

The same construction applied to a0 shows that there is an analytic automorphic form np

of weight T ( G ) " 1 . r\p has no zeros or poles. From (31) and (32) we deduce that the " ^-series "
at/j is of the form q + 0(q2) but at a parabolic vertex inequivalent top the series is of the form
1 +Q(g). This is the function constructed by Goldstein [8].

This shows that we have both generalized and have given a new proof of the Kronecker
limit formula.

The theorem is our basic existence theorem. It shows that if rt,..., rt are integers, then
there is a form of weight

That is to say, there is a form of every weight which is a multiple of {Lx (G)) ~1. Observe that
Lx (G) is an integer.

The existence of r\v shows that if G has parabolic elements, then, if we ignore the behaviour
at cusps, all real weights can occur.

If s = t = 0, then Lx (G) = 2g — 2, which shows that we have established the existence of
forms of all possible weights.

If we ignored the behaviour of the fixed points, then we would only obtain forms whose
weights were multiples of T ( G ) " 1 . In this way we see darkly a relation between the fixed points
of G and the cohomology of G.

Using Theorem 2, it is possible for us to complete our earlier investigations. For the rest
of this section we shall assume that 5 = 0.

COROLLARY 1. Suppose that s = 0 and that f is a meromorphic form of weight k with a
unitary multiplier. Then there are points wt,..., wN e H, integers r (1 ) , . . . , r (N) and a constant
c such that

Proof. Let w , , . . . , wN be the zeros o f / in some fundamental domain for G and let their
multiplicities be r ( l ) , . . . r(N) respectively, poles being counted as zeros of negative multipli-
city. Set
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T h e n / / / ! is a form of some weight kv If we count the contributions from elliptic elements
with their usual fractional values, we have, by an easy extension of lemma VI.4.3 of [9],

degCCZ/A)) = fclT(G).

As f If i has no zeros or poles it follows that /r, = 0. Thus, in the usual language,///j is a
multiplicative function. As / / / t has no poles or zeros its character is inessential. But by con-
struction it is also unitary. Hence it is trivial. Thus f/fx must be a constant. This proves
the corollary.

COROLLARY 2. Every weight is of the form n(Lx(G))~\n e Z).

Proof Let m be a multiplier of weight k. Then, as is well known (see [4, §10]), we can
construct a meromorphic form/of weight k with multiplier m as a quotient of two Poincare
series. The conclusion follows from Corollary 1 and the remarks after Theorem 2.

In particular this shows that the best possible form of Proposition 3 is with C replaced by
Lx ((?). Also it shows that 8 is a divisor of G if and only if 5 is a divisor of Lx (G). This
corollary was first proved by Petersson [17].

8. Applications to Riemann surfaces. We show in this section how Theorem 2 can be
applied to the function theory on a compact Riemann surface X of genus g>\. Let G be a
Fuchsian group uniformizing X so that

A' s G\H.

Then Theorem 2 shows that, for PeX, there is a form <pP of weight (2g —2)"1 with multiplier
ma and a simple zero at P. Let a be a divisor on X. Then if a = £ njPj, set

and

Then cpa is a form of weight deg(a)/(2g—2) and multiplier ma. Also

(fl»a) = a-

Let £(a) be the space of holomorphic functions, so that

Then feL(a) if and only if/^a is a holomorphic form with multiplier ma and of weight
deg(a)/(20-2).

Let S(m, k) be the space of holomorphic forms of weight k and multiplier m. Then we
have shown

Then, for instance, the Riemann-Roch Theorem becomes

dim (S(m, k)) - dim (S(m, l-k)) = (2k - i){g -1).
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By analytic means (such as the Selberg trace formula or index theorems) it is easy to prove the
Riemann-Roch Theorem in this form.

If a is of degree 0, then ma is a character on G. The group of all characters on G may be
identified with the Jacobian J(X) of X. So we have an explicit map from the divisors of degree
0 to J(X). On comparing we find that this is the usual Abel map (see [9]).

The importance of this is that this gives a tentative connection between the spectral de-
composition of the Laplace-Beltrami operator and the classical theory of functions. But we
shall not pursue this topic here.

9. The modular group. In the case of the modular group we can make the forms q> and t\p

more explicit. We shall consider r\n first. At the end of Section 7 we showed that r\m is a cusp
form of weight T ( G ) " 1 = 6. Thus r\JA, where A is the usual discriminant form, is an auto-
morphic function with some character p and having no poles or zeros. The modular group is
generated by an element of order 3 and an element of order 2. Thus any character is of order 6.
So (f/^/A)6 is a function with trivial multiplier and no poles or zeros. Hence (rj^/A)6 is a
constant. Thus //«, is a multiple of A. This is the essential content of the Kronecker limit
formula. There is only a matter of constants to settle. The importance of this method of
proof is that it relies very little on the special features of the problem and hence should admit
wide extension.

In the same way one can show that, up to a constant, multiple,

The multiplier is the (24/e(w))th power of the multiplier of the Dedekind //-function.

REFERENCES

1. L. Bers, Spaces of Riemann surfaces, Proc. Int. Cong. Math. Edinburgh (Cambridge, 1960).
2. S. S. Chern, Complex manifolds without potential theory (Van Nostrand, 1967).
3. J. Dyer and J. Lewittes, Mobius transformations and matrices (Preprint).
4. J. Elstrodt, Die Resotvente zum Eigenwertproblem der automorphen|Formen in der hyper-

bolischen Ebene, I, II, III, Math. Ann. 203 (1973), 295-330, Math. Zeit. 132 (1973), 99-134, Math. Ann.
208(1974), 99-132.

5. L. D. Fadeev, Expansion in eigenfunctions of the Laplace operator on the fundamental
domain of a discrete group on the LobaCevskii plane. Trans. Moscow Math. Soc. 17 (1967), 357-386.

6. I. M. Gel'fand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation theory and auto-
morphic functions (Saunders, 1969).

7. R. Godement, Cohomology des groupes discontinues (Sem. Bourbaki (1954) No. 90).
8. L. J. Goldstein, Dedekind sums for a Fuchsian group, I., Nagoya Math. J. 50 (1973), 21-47.
9. I. Kra, Automorphic forms and Kleinian groups (Benjamin, 1972).

10. A. G. Kurosh, The theory of groups, Vol. 2 (Chelsea, 1956).
11. S. Lang, Rapport sur la cohomologie des groupes (Benjamin, 1966).
12. A. Leutbecher, Uber Automorphiefaktoren und die Dedekindschen Summen, Glasgow Math.

J. 11 (1970), 41-57.
13. H. P. McKean, Selberg's trace formula as applied to a compact Riemann surface, Comm.

Pure Appl. Math. XXV (1972), 225-246.

https://doi.org/10.1017/S0017089500002615 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002615


140 S. J. PATTERSON

14. D. Mumford, Abelian varieties (Oxford, 1970).
15. M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact

Riemann surface, Ann. Math. 82 (1965), 540-567.
16. H. Petersson, Zur analytischen theorie der Grenzkreisgruppen, I., Math. Ann. 115 (1938), 23-

67.
17. H. Petersson, Zur analytischen theorie der Grenzkreisgruppen, III., Math. Ann. 115 (1938),

518-572.
18. W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene,

I, II, Math. Ann. 167 (1966), 292-337, Math. Ann. 168 (1967), 261-234.
19. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian

spaces with applications to Dirichlet series, / . Indian Math. Soc. 20 (1956), 47-87.
20. A. Selberg, Discontinuous groups and harmonic analysis, Proc. Int. Cong. Math. (Stockholm,

1962), 177-189.
21. A. Selberg, On discontinuous groups in higher dimensional symmetric spaces. Contributions to

Functions Theory (Bombay, 1960), 147-164.
22. C. L. Siegel, Ober einige Ungleichungen bei Bewegungsgruppen in der nichteuklidischen

Ebene, Math. Ann. 133 (1957), 127-138.
23. C. L. Siegel, Analytische Zahlentheorie, II. Lecture notes (Wintersemester 1963/4, Gottingen).
24. A. Weil, Generalisation des fonctions abeliennes, J. Math. Pures et Appl. 17 (1938), 47-87.

DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS

16 MILL LANE

CAMBRIDGE, CB2 1SB

https://doi.org/10.1017/S0017089500002615 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002615

