Validation of self-reported folic acid use in a multiethnic population: results of the Amsterdam Born Children and their Development study

Jonne J Sikkens1, Manon van Eijsden2,3, Gouke J Bonsel4 and Martina C Cornel1,*

1Department of Clinical Genetics, EMGO Institute for Health and Care Research, VU University Medical Center, B57, D423, PO Box 7057, 1007 MB Amsterdam, The Netherlands; 2Department of Epidemiology, Documentation and Health Promotion, Public Health Service of Amsterdam, The Netherlands; 3Department of Social Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands; 4Department of Public Health, Institute of Health Policy and Management, Erasmus University, Rotterdam, The Netherlands

Submitted 4 May 2010: Accepted 12 January 2011: First published online 16 February 2011

Abstract

Objective: To assess folic acid supplementation rates and validate the self-reporting of folic acid supplement use among pregnant women in a multiethnic cohort.

Setting: Self-reported folic acid supplement use in the Amsterdam Born Children and their Development study cohort was compared with serum folate concentrations using non-parametric trend analysis and linear and logistic regression.

Subjects: A total of 4234 pregnant women of various ethnic backgrounds.

Results: Serum folate levels showed a significant positive linear trend as reported use of folic acid increased ($P<0.001$), which was supported by linear regression ($r=0.49$). Odds of having low serum folate concentration decreased with reported early start of folic acid intake. Young, multiparous or non-Western women reported less pre-conception folic acid intake. Non-Western women showed lower serum folate concentrations. The overall rate of over-reporting, i.e. serum folate concentrations ≥20 nmol/l while reporting the use of folic acid supplements, was 20.7%. Women of Surinamese and Moroccan ancestry had higher odds of over-reporting (OR $=2.3; 95\%$ CI 1.5, 3.5 and OR $=2.3; 95\%$ CI 1.3, 4.0, respectively). The odds for Surinamese women remained significant after adjusting for the onset of supplement use, parity and age (OR $=1.7; 95\%$ CI 1.1, 2.6).

Conclusions: Although self-reporting is a valid method for assessing folic acid supplement use in a multiethnic population, some participants do over-report. Surinamese and possibly Moroccan women appear to over-report more often. Rates of supplementation are low, especially in non-Western women. This suggests the need for intensifying current campaigns or perhaps even additional advice to start or continue to use folic acid post-conceptually.

Keywords

Folic acid dietary supplement
Folic acid/blood
Ethnicity
ABCD study
Over-reporting

A low maternal serum folate concentration before conception and during the first weeks after conception is associated with an increased risk of fetal neural tube defects (NTD) and other non-NTD birth defects$^{1-3}$ and can be prevented by the intake of folic acid4. Adequate folic acid supplementation has been shown to substantially increase folate serum levels5. Although prophylactic use is widely recommended in public campaigns, recent studies suggest little or no improvement in NTD prevalence by self-intake6, which raises the question as to whether behavioural change did occur.

Ideally, adherence to the recommendations is measured by serum folate status in conjunction with reported use; however, most epidemiological studies rely on self-report only, as this is less invasive and cheap. Being a socially desirable behaviour, self-reported use is prone to response bias, which raises questions regarding the actual validity of this measure. A study by Burton et al.7 showed that, although intake reports and folate levels are well correlated, over-reporting is present in 7% of respondents. However, Burton et al.7’s study was limited to mainly white participants. Although evidence suggests that race or ethnicity does not influence socially desirable responding by itself, factors such as divorce rate, birth rate, level of education and rate of employment do influence socially desirable responding, and these factors are often not similar across ethnic groups$^{8-10}$. Therefore, ethnic differences in over-reporting of folic acid

*Corresponding author. Email mc.cornel@vumc.nl

© The Authors 2011
supplementation could be expected. Insight into these mechanisms is essential in order to improve public health policies. Using data from a multiethnic cohort in the Netherlands – the Amsterdam Born Children and their Development (ABCD) cohort – we investigated the rates of supplementation and the validity of self-reported folic acid supplementation in terms of over-reporting.

Methods

Data collection
Data were obtained from the ABCD study in 2003 and 2004. The present cohort study included pregnant women at their first antenatal control visit to a health professional. Consenting women had a questionnaire sent to their homes a few weeks later. In addition, women were asked to participate in a biomarker study. This entailed a blood sample being collected in conjunction with routine prenatal screening following the control visit. The blood sample collection procedure included samples sent by mail or courier, which could lead to a maximum delay of 28 h between collection and processing. However, this diminished precision of estimates did not jeopardise the integrity of epidemiological research. Serum folate concentrations were measured by immunoassay with chemiluminescence detection on the Advia Centaur System (Bayer Group, Leverkusen, Germany). Values of serum folate above the detection limit of 63 nmol/l were set to 64 nmol/l.

Measures
Responses to the question ‘What is your country of birth?’ were used to classify women into groups according to their ethnic background. Responses to the question ‘Which community do you consider yourself to belong to?’ were available to further classify respondents into ethnic groups similar to the study by Burton et al. The questionnaire contained the following three questions assessing folic acid supplement use (possible answers in brackets): (i) ‘Did you use folic acid supplements or folic acid containing multivitamins before or during your pregnancy?’ (yes; no), if yes: (ii) ‘When did you start taking folic acid?’ (before the pregnancy; as soon as I knew I was pregnant; later during the pregnancy) and (iii) ‘When did you stop taking folic acid?’ (before the pregnancy; as soon as I knew I was pregnant; later during the pregnancy; I have not stopped yet). The responses to these questions were combined into four groups according to the onset of folic acid supplement use (Table 1).

Analysis
The Wilcoxon-type test for trend was used to test for a linear trend in serum folate across groups. Linear regression was used to compare serum folate concentrations between folic acid supplement use groups, adjusting for parity, age and ethnicity. In addition, a dichotomous variable was created to indicate low serum folate status. For this we used a cut-off limit of 20 nmol/l because 2 months of adequate folic acid supplementation has been shown to lead to a minimum serum folate level of 20 nmol/l. Logistic regression was used to compare the odds of low serum folate status between folic acid supplement use groups, adjusting for parity, age and ethnicity.

To assess the effects of ethnicity, we first compared serum folate concentrations and the occurrence of low serum folate across ethnic groups. Using Levene’s statistic, we assessed that variances of serum folate concentrations were not homogeneous across groups. Therefore, we compared serum folate concentrations over ethnic groups by testing for equality of means by Brown–Forsythe and we compared groups using the Tamhane test. A logistic regression model (adjusting for folic acid supplement use, age and parity) was used to compare odds of having a low serum folate level (≤20 nmol/l).

To assess over-reporting, a variable was constructed by allocating women to one of two groups: (i) women reporting folic acid use while their serum folate concentration showed a value ≤20 nmol/l and (ii) all other women. Finally, to assess over-reporting in ethnic groups, a logistic regression model was used to compare the odds of having a low serum folate level (≤20 nmol/l) in women who reported folic acid supplement use, adjusting for onset of folic acid supplement use, age and parity. Consequently, women not reporting folic acid use are missing from this specific analysis. OR was reported as the measure of association. All analyses were performed using the Statistical Package for the Social Sciences statistical software package for Windows version 15.0.1 (SPSS Inc., Chicago, IL, USA).

Results

Subjects
Of 12 373 pregnant women, 8266 (67%) returned a completed questionnaire, and of these women 4389 (53%) also provided a blood sample. Cases with incomplete information on folic acid supplement use or with an inconclusive blood sample were excluded, leaving 4234 cases for analysis. The median age was 32 (range: 15–44) years and 2452 (58%) women were nulliparous. Median gestational age was 13 weeks at the time of blood collection and 16 weeks at questionnaire completion. Most women were born in the Netherlands (69%), followed by Morocco (5%), Suriname (5%), Turkey (3%), Ghana (1%) and the Dutch Antilles and Aruba (1%), with 9% and 7% being born in another Western or non-Western country, respectively. Using the question ‘Which community do you consider yourself to belong to?’ 69% of women classified themselves as belonging to the indigenous, white population.

Reported folic acid supplement use
Only 39.9% of women used folic acid as recommended: before conception or at least before they knew they were
Table 1 Linear and logistic regression model for correlates of serum folate concentration among 4234 pregnant women of different ethnic backgrounds, Amsterdam Born Children and their Development study

<table>
<thead>
<tr>
<th>Folic acid supplement use</th>
<th>Serum folate concentration (nmol/l)</th>
<th>Serum folate concentration ≤ 20 nmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before being aware of pregnancy</td>
<td>After being aware of pregnancy</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>1053</td>
<td>24.9</td>
</tr>
<tr>
<td>No</td>
<td>113</td>
<td>2.7</td>
</tr>
<tr>
<td>No</td>
<td>1378</td>
<td>32.5</td>
</tr>
<tr>
<td>Yes</td>
<td>1690</td>
<td>39.9</td>
</tr>
</tbody>
</table>

IQR, interquartile range.

*Corrected for parity, age and ethnicity.

Discussion

Strengths and limitations

Folic acid supplementation use before conception is recommended because it provides health benefits for the unborn child. Questions have arisen regarding whether women of either Surinamese or Moroccan ancestry had significantly more frequent serum folate concentrations ≤ 20 nmol/l than women of Western ancestry (OR = 2.3, 95% CI 1.3–4.0, respectively) after adjusting for onset of supplement use in pregnancy. Over-reporting was present in 20% of nulliparous or primiparous pregnant women compared with 20% of multiparous women. Women aged ≥ 25 years used folic acid as recommended by the Netherlands Health Council. There was a significant linear trend in serum folate levels as reported duration of use of folic acid supplements increased (r = 0.5, P < 0.001). Use of folic acid supplements was significantly positively correlated with serum folate concentration, after adjusting for parity, age and ethnicity (r = 0.9, P < 0.001). After adjusting for parity, age and ethnicity, women of Surinamese ancestry had significantly more frequent serum folate concentrations ≤ 20 nmol/l (OR = 2.5, 95% CI 1.6–3.7). Over-reporting was present in 30% of cases.

Serum folate in ethnic groups

Over-reporting in ethnic groups

Serum folate concentrations were significantly higher in women of non-indigenous ancestry compared with women of Western ancestry (r = 0.7928, P < 0.001), for between-group comparisons see Table 2. There was a significant linear trend in serum folate levels as reported duration of use of folic acid supplements increased (r = 0.5, P < 0.001). Use of folic acid supplements was significantly positively correlated with serum folate concentration, after adjusting for parity, age and ethnicity (r = 0.9, P < 0.001). After adjusting for parity, age and ethnicity, women of Surinamese ancestry had significantly more frequent serum folate concentrations (OR = 2.5, 95% CI 1.6–3.7). Over-reporting was present in 30% of cases.
Table 2 Logistic regression model for serum folate levels according to maternal country of birth among 4234 pregnant women of different ethnic backgrounds, Amsterdam Born Children and their Development study

Country of birth	n	%	Mean	Median	IQR	OR	95% CI	Adjusted OR	95% CI	Adjusted OR	95% CI	
The Netherlands	2908	49.2	28.9	26	17-37	1.0						
Suriname	196	15.8	18.5*	13	10-23	4.7	3.4, 6.4	3.8	2.7, 5.2	2.0	1.3, 2.8	
Dutch Antilles and Aruba	47	24.5	23.1	20	13-28	2.4	1.4, 4.1	1.8	1.0, 3.3	1.1	0.5, 2.1	
Turkey	137	7.3	18.1*	15	10-22	4.5	3.1, 6.5	2.8	1.6, 6.9	0.7	0.5, 1.1	
Morocco	211	8.1	15.4*	12	8-17	7.5	5.4, 10.6	5.1	3.6, 7.3	1.7	1.1, 2.6	
Ghana	60	5.0	15.1*	12	7-19	6.2	3.5, 11.1	4.6	2.5, 8.6	1.0	0.5, 2.0	
Other non-Western	298	16.1	22.7*	17	11-29	2.5	1.9, 3.1	2.2	1.7, 2.8	0.8	0.6, 1.1	
Other Western	375	37.1	30.1	28	16-39	1.1	0.9, 1.4	1.1	0.9, 1.4	0.9	0.7, 1.1	

IQR, interquartile range.
Folic acid supplement use as recommended: onset before awareness of pregnancy.
*Mean values were significantly different from those of mothers born in the Netherlands (Tahmane test): P < 0.001.
+Corrected for onset/start of supplement use, parity and age.

Validity of self-reported folic acid use

Women reportedly using folic acid as recommended had an OR of 0.97 (95% CI 0.95-0.98) for low serum folate concentrations (20 nmol/l) if women reported serial folate concentrations (≤20 nmol/l). However, serum folate concentrations (≥20 nmol/l) was found in 19.1% of these

Reported folic acid supplement use

Only 39.9% of women reported the use of folic acid supplements as recommended, before conception or at conception. This rate is substantially lower than expected. Consequently, our over-reporting outcomes could be an understimation. On the other hand, this would have led to fewer women being likely labelled as over-reporting.
Table 3 Odds of over-reporting on folic acid supplementation (serum folate concentration = 20 nmol/l) in women who reported folic acid supplement use according to maternal country of birth, Amsterdam Born Children and their Development study

<table>
<thead>
<tr>
<th>Country of birth</th>
<th>n</th>
<th>OR</th>
<th>95% CI</th>
<th>Adjusted OR*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Netherlands</td>
<td>2529</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Suriname</td>
<td>93</td>
<td>2.3</td>
<td>1.5; 3.5</td>
<td>1.7</td>
<td>1.1; 2.6</td>
</tr>
<tr>
<td>Dutch Antilles and Aruba</td>
<td>29</td>
<td>1.2</td>
<td>0.6; 2.7</td>
<td>1.0</td>
<td>0.4; 2.3</td>
</tr>
<tr>
<td>Turkey</td>
<td>33</td>
<td>1.6</td>
<td>0.8; 3.2</td>
<td>0.8</td>
<td>0.4; 1.8</td>
</tr>
<tr>
<td>Morocco</td>
<td>53</td>
<td>2.3</td>
<td>1.3; 4.0</td>
<td>1.5</td>
<td>0.8; 2.6</td>
</tr>
<tr>
<td>Ghana</td>
<td>8</td>
<td>1.7</td>
<td>0.4; 7.0</td>
<td>1.0</td>
<td>0.2; 4.7</td>
</tr>
<tr>
<td>Other non-Western</td>
<td>135</td>
<td>1.3</td>
<td>0.9; 1.9</td>
<td>1.0</td>
<td>0.6; 1.4</td>
</tr>
<tr>
<td>Other Western</td>
<td>301</td>
<td>0.9</td>
<td>0.7; 1.2</td>
<td>0.9</td>
<td>0.7; 1.2</td>
</tr>
</tbody>
</table>

1Women not reporting folic acid supplement use are missing in this table.
2Corrected for onset of folic acid supplement use, parity and age.

women. Women who reported taking supplements only later during pregnancy (which could be for a very short period of time) presented with low serum folate level in 49-6% of cases. These high proportions could perhaps be explained by the time gap between the moment of blood collection (median = 13 weeks) and questionnaire completion (median = 16 weeks), during which period women could have started and consequently reported using supplements. Over-reporting (present in 20-7% of cases) could also add to this effect. However, over-reporting was similar to the report by Burton et al. when comparing over-reporting rates using the cut-off limit used by that study (14 nmol/l): 8-9% v. 7%.

Serum folate in ethnic groups

Serum folate concentrations were significantly lower in all non-indigenous groups compared with those in indigenous women (except for women born in the Dutch Antilles and Aruba). In addition, non-Western women also had higher odds of having low serum folate concentration. We will discuss the following possible causes: folate consumption, folate degradation due to time gap, genetic differences and language skills. These low concentrations are not surprising considering the low supplementation rates among these women. However, when adjusting for supplementation, women of Surinamese and Moroccan ancestry still had higher odds of having a low serum folate concentration, even when adjusting for parity and age. A possible factor responsible for these findings is a diet low in folate. Women having either Moroccan or Turkish ancestry are reported to have a diet low in vegetables (which generally contain folate). However, the opposite is the case for women of Surinamese ancestry. Another factor could be the degradation of folic acid during the time gap between collection and processing. The length of this gap was determined by the location of the practice of the health professional where the blood was collected. Non-indigenous women consulted health professionals in hospitals more often, who processed the blood samples faster. However, in post hoc analysis no significant difference between hospital- and non-hospital-processed serum folate was found ($P=0.95$). Recent research has shown that genetic polymorphisms such as the MTHFR 677C→T genotype are associated with low serum folate21. Prevalence of these polymorphisms varies between ethnic groups but specific data on the non-indigenous groups in the Netherlands are not yet available. Finally, another factor could be over-reporting due to other reasons, which are discussed below.

Over-reporting in ethnic groups

Women having Surinamese or Moroccan ancestry over-reported significantly more frequently (OR = 2.3; 95% CI 1.5, 3.5 and OR = 2.3; 95% CI 1.3, 4.0, respectively), but the adjusted OR was significant only for women of Surinamese ancestry (OR = 1.7; 95% CI 1.1, 2.6). Because the present analysis was performed in a smaller population (women reporting no use were excluded), it is possible that a small sample size caused the loss of significance for the already small group of women of Moroccan ancestry. A seemingly logical explanation for the higher odds of over-reporting by non-indigenous women would be insufficient language skills, which could have led to misinterpretation of the questionnaire. However, this is deemed very unlikely because questionnaires were available in their own language and translators were available for oral administration. In addition, women of Surinamese ancestry generally have good skills in Dutch, especially when compared with women of other non-Western ancestry. Nevertheless, the possible answers to the question ‘When did you start taking folic acid?’ in the questionnaire were not quantitatively exact and may have left room for error. A search of the literature yielded one article focusing on the validity of self-reported pneumococcal vaccination in the USA. That study found effects on the validity of reporting related to ethnicity, but differences in over-reporting between whites, blacks and Latinos were not significant22.

Implications for health policy

The above findings suggest that self-reporting is a valid method of assessing folic acid supplementation in a multiethnic population. However, it should be taken into account that among women reporting supplement use as

implications for health policy

The above findings suggest that self-reporting is a valid method of assessing folic acid supplementation in a multiethnic population. However, it should be taken into account that among women reporting supplement use as

Over-reporting in ethnic groups

Women having Surinamese or Moroccan ancestry over-reported significantly more frequently (OR = 2.3; 95% CI 1.5, 3.5 and OR = 2.3; 95% CI 1.3, 4.0, respectively), but the adjusted OR was significant only for women of Surinamese ancestry (OR = 1.7; 95% CI 1.1, 2.6). Because the present analysis was performed in a smaller population (women reporting no use were excluded), it is possible that a small sample size caused the loss of significance for the already small group of women of Moroccan ancestry. A seemingly logical explanation for the higher odds of over-reporting by non-indigenous women would be insufficient language skills, which could have led to misinterpretation of the questionnaire. However, this is deemed very unlikely because questionnaires were available in their own language and translators were available for oral administration. In addition, women of Surinamese ancestry generally have good skills in Dutch, especially when compared with women of other non-Western ancestry. Nevertheless, the possible answers to the question ‘When did you start taking folic acid?’ in the questionnaire were not quantitatively exact and may have left room for error. A search of the literature yielded one article focusing on the validity of self-reported pneumococcal vaccination in the USA. That study found effects on the validity of reporting related to ethnicity, but differences in over-reporting between whites, blacks and Latinos were not significant22. This calls for more research to assess self-reporting by women of Surinamese ancestry.
recommended, low serum folate levels are still present in 20% of cases. However, over-reporting in the present study was similar to a previous result in the literature. The finding that Surinamese women tend to over-report more cannot yet be explained and requires further study, particularly into the role of dietary and genetic factors. The low rates of women taking folic acid supplements as recommended show that current public health campaigns are failing to reach their goals, especially among non-Western women, young women and multiparous women. These results call for improving or modifying current efforts. This may include advising women to take supplements after conception as well, as women who start taking supplements after knowing that they are pregnant were found to have relatively high concentrations of folic acid. Although this may not be beneficial for the prevention of NTD because the neural tube closes at approximately 4 weeks after conception, it may still have a positive influence on other unfavourable pregnancy outcomes such as placenta-mediated diseases (preeclampsia, placental abruption, spontaneous abortion), low birth weight or premature birth. This suggests that pregnant women should be advised to start taking folic acid supplements or continue to use it, after conception. In addition, this may help to prevent adverse events in subsequent pregnancies, as past research has shown adverse outcomes in closely spaced pregnancies to be associated with folic deficiency.

Acknowledgements

The study was approved by the medical ethics committee of the VU University Medical Center, Amsterdam, the Netherlands. The Amsterdam Born Children and their Development (ABCD) study is funded by the Netherlands Organisation for Health Research and Development (ZonMw). The authors have no conflict of interest to declare. J.J.S. is credited with creating the study design and with data processing, planning and performing all statistical analyses except parts of the regression analysis, as well as with advising on and writing the article. M.V.E. contributed towards collecting the ABCD study data, designing the study, data processing, planning and performing parts of the regression analyses, and was also actively involved in interpreting the results and advising on and co-writing the article. G.J.B. advised on statistical analysis and design, interpreted the results and advised on and co-wrote parts of the article. M.C.C. provided valuable advice on statistical analysis and design, and is also credited with interpreting the results, co-writing the article and advising on and supervising the research project. The authors thank M.F. van der Wal for his contributions to previous versions of the present article, H.J. Blom for his useful comments and P.D. Bezemer for his valuable statistical advice.

References

