Bull. Aust. Math. Soc. **96** (2017), 36–**43** doi:10.1017/S000497271700020X

ON ALGEBRAIC DIFFERENTIAL EQUATIONS FOR THE GAMMA FUNCTION AND *L*-FUNCTIONS IN THE EXTENDED SELBERG CLASS

FENG LÜ

(Received 22 November 2016; accepted 18 December 2016; first published online 13 March 2017)

Abstract

This paper concerns the problem of algebraic differential independence of the gamma function and \mathcal{L} -functions in the extended Selberg class. We prove that the two kinds of functions cannot satisfy a class of algebraic differential equations with functional coefficients that are linked to the zeros of the \mathcal{L} -function in a domain $D := \{z : 0 < \text{Re } z < \sigma_0\}$ for a positive constant σ_0 .

2010 *Mathematics subject classification*: primary 11M36; secondary 11M06, 30D30, 33B15, 34M15. *Keywords and phrases*: *L*-function, Riemann zeta function, gamma function, algebraic differential independence.

1. Introduction and main result

This paper is devoted to studying the question of whether or not the gamma function Γ and some other functions, for example, the Riemann zeta function, ζ , or \mathcal{L} -functions in the extended Selberg class, are algebraically independent. The functions Γ and ζ have played a very important role in the development of mathematics. The \mathcal{L} -functions are Dirichlet series with ζ as the prototype and are important objects in number theory. Selberg introduced a class of Dirichlet series $\mathcal{L}(s) = \sum_{n=1}^{\infty} a(n)/n^s$ of a complex variable $s = \sigma + it$ with a(1) = 1 (now called the Selberg class of \mathcal{L} -functions), satisfying the following axioms (see, for example, [12]).

- (1) *Dirichlet series*: for $\sigma > 1$, the series representation of $\mathcal{L}(s)$ is absolutely convergent.
- (2) Analytic continuation: for some integer m > 0, the function $(s 1)^m \mathcal{L}(s)$ is entire and of finite order.
- (3) Functional equation: $\mathcal{L}(s)$ satisfies a functional equation of the form

$$\phi(s) = \omega \phi(1 - \overline{s}),$$

The research was supported by NNSF of China, Project No. 11601521, and the Fundamental Research Fund for Central Universities in China, Project Nos. 15CX05061A, 15CX05063A and 15CX08011A. © 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

where

$$\phi(s) = Q^s \prod_{j=1}^K \Gamma(\lambda_j s + \mu_j) L(s),$$

with Q > 0, $\lambda_j > 0$, $\operatorname{Re} \mu_j \ge 0$ and $|\omega| = 1$.

(4) *Ramanujan hypothesis*: for any $\varepsilon > 0$, we have $a(n) \ll n^{\varepsilon}$.

(5) Euler product: for σ sufficiently large,

$$\log \mathcal{L}(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s}, \quad s = \sigma + it,$$

where b(n) = 0 unless *n* is a positive power of a prime, and $b(n) \ll n^{\theta}$ for some $\theta < 1/2$.

The Selberg class includes the Riemann zeta function ζ and, essentially, those Dirichlet series where one might expect the analogue of the Riemann hypothesis. Throughout the paper, all \mathcal{L} -functions are assumed to be functions from the extended Selberg class of Dirichlet series satisfying the axioms (1)–(3) (see, for example, [4]).

The degree $d_{\mathcal{L}}$ of such an \mathcal{L} -function \mathcal{L} is defined to be $d_{\mathcal{L}} = 2 \sum_{j=1}^{K} \lambda_j$. Let $\lambda = \prod_{j=1}^{K} \lambda_j^{2\lambda_j}$. Then the famous Riemann–von Mangoldt formula (see, for example, [12, page 145]) for \mathcal{L} -functions can be stated as

$$N_{\mathcal{L}}^0(T) = \frac{d_{\mathcal{L}}}{\pi} T \log \frac{T}{e} + \frac{T}{\pi} \log(\lambda Q^2) + O(\log T),$$

where $N_{\mathcal{L}}^0(T)$ denotes the number of zeros of the \mathcal{L} -function in the region $|\text{Im } s| \leq T$ and $0 < \text{Re } s < \sigma_0$, where σ_0 is a large enough positive constant.

A classical theorem of Hölder [3] states that the gamma function does not satisfy any nontrivial algebraic differential equation whose coefficients are rational functions in \mathbb{C} . Bank and Kaufman [1] generalised the theorem to coefficients being meromorphic functions which grow more slowly than Γ . In his famous list of 23 problems, Hilbert [2] stated the analogous problem for ζ and Mordykhai-Boltovskoi [10] and Ostrowski [11] proved that ζ does not satisfy any nontrivial algebraic differential equation whose coefficients are rational functions. It is natural to study whether the functions Γ and ζ are related by any nontrivial algebraic differential equation. In 2007, Markus [9] showed that Γ and the composition function $\zeta(\sin(2\pi z))$ are differentially independent over \mathbb{C} . That is to say, $\zeta(\sin(2\pi z))$ cannot satisfy any nontrivial algebraic differential equations whose coefficients are polynomials of Γ and its derivatives. In the same paper, Markus conjectured that ζ does not satisfy any nontrivial algebraic differential equations whose coefficients are polynomials of Γ and its derivatives. Li and Ye [6, 7] partially solved the conjecture by proving that ζ is not a solution of any nontrivial algebraic differential equation, even allowing coefficients that are polynomials in Γ , Γ' and Γ'' . Very recently, Li and Ye [8] made use of the well-known fact that ζ has an infinity of zeros on the critical line to show that $P(z, \Gamma, \Gamma', \dots, \Gamma^{(n)}, \zeta) \neq 0$ in \mathbb{C} for any nontrivial distinguished polynomial P whose

[2]

F. Lü

coefficients can be allowed to be any polynomials of ζ over \mathbb{C} , over the ring of polynomials or, more generally, over the class L_{δ} (see Definition 1.1). Before giving their theorem, we need the following definitions.

DEFINITION 1.1. Let L_{δ} be the set of the zero function and all nonzero functions f from \mathbb{C} to $\mathbb{C} \cup \infty$ with the following property: there exist infinitely many zeros $z_n = \frac{1}{2} + iy_n$ of ζ on the critical line L such that $\{|f(z_n)|\}$ has a positive lower bound and $|f(z_n)|e^{-\delta|y_n|} = o(1)$, as $n \to \infty$, where $\delta < \pi/2$ is a positive number.

EXAMPLE 1.2. In [8], the authors pointed out some important classes of functions belonging to L_{δ} .

- (1a) For any $\delta > 0$, L_{δ} contains the ring of all polynomials in \mathbb{C} .
- (1b) L_{δ} may contain entire functions or meromorphic functions of finite or infinite order, such as the functions e^{z} and $e^{e^{z}}$.
- (1c) The functions in L_{δ} are not even required to be continuous or meromorphic. For example, given any complex function f with $f(0) \neq 0, \infty$ (even not continuous), the composite $f(\zeta(z))$ belongs to L_{δ} .

DEFINITION 1.3. Let $I = (i_0, i_1, ..., i_n)$ be a multi-index with $|I| = i_0 + i_1 + \cdots + i_n$. A polynomial in the variables $u_0, u_1, ..., u_n$ with functional coefficients in a set S can always be written as

$$P(u_0, u_1, \ldots, u_n) = \sum_{I \in \Lambda} a_I(z) u_0^{i_0} u_1^{i_1} \cdots u_n^{i_n},$$

where the coefficients a_I are functions in S and Λ is an index set. We call P a distinguished polynomial in u_0, u_1, \ldots, u_n with coefficients in S, or simply an S-distinguished polynomial, if the index set Λ has the property that $|I_i| \neq |I_j|$ for distinct indices I_i , I_j in Λ .

Li and Ye [8] obtained the following result.

THEOREM 1.4. Let $P(z, u_0, u_1, ..., u_n, v) = \sum_{k=0}^{m} P_k(z, u_0, u_1, ..., u_n)v^k$, where the P_k , not all identically zero, are L_{δ} -distinguished polynomials. Then, for $z \in \mathbb{C}$,

$$P(z,\Gamma,\Gamma',\ldots,\Gamma^{(n)},\zeta) \not\equiv 0.$$

In the same paper, Li and Ye [8] mentioned that it would be natural to extend the above study to \mathcal{L} -functions. However, it remains an open problem of whether a general \mathcal{L} -function in the Selberg class has infinitely many zeros on the critical line $L = \{z \in \mathbb{C} : \text{Re } z = 1/2\}$. In this paper, we study the problem of whether Γ and \mathcal{L} -functions in the extended Selberg class are related by any nontrivial distinguished polynomial. In fact, we consider a more general class of functions.

DEFINITION 1.5. Let \mathcal{F} be a set of functions with infinitely many zeros in the domain $D = \{z : |\text{Re } z| < \sigma_0\}$, where σ_0 is a positive constant. For $F \in \mathcal{F}$, let $\mathfrak{L}_{\delta,F}$ be the set of the zero function and all nonzero functions f from \mathbb{C} to $\mathbb{C} \cup \infty$ with the following

property: there exist infinitely many zeros $z_n = x_n + iy_n$ of *F* in the domain *D* such that $\{|f(z_n)|\}$ has a positive lower bound and

$$|f(z_n)|e^{-\delta|y_n|} = o(1),$$

as $n \to \infty$, where $\delta < \pi/2$ is a positive number.

[4]

EXAMPLE 1.6. The set \mathcal{F} contains some important classes of functions.

- (2a) The Riemann–von Mangoldt formula implies that \mathcal{L} -functions have infinitely many zeros in the domain *D* for a positive σ_0 . Therefore, the Riemann zeta function ζ and the \mathcal{L} -functions in the extended Selberg class belong to \mathcal{F} .
- (2b) \mathcal{F} contains the difference shifts $\zeta(z + \eta)$ and $\mathcal{L}(z + \eta)$ of the ζ function and \mathcal{L} -functions, respectively, where η is a fixed constant.
- (2c) The functions in \mathcal{F} are not even required to be continuous or meromorphic. For example, suppose that the function g satisfies g(0) = 0. Then the compound functions $g(\zeta)$ and $g(\mathcal{L})$ belong to \mathcal{F} .
- (2d) A periodic function with period *it* may belong to \mathcal{F} , where *t* is a real constant; for example, functions such as $e^z 1$, $\sin(iz)$ and so on.

We will prove the following result.

THEOREM 1.7. Let $F \in \mathcal{F}$. Let $P(z, u_0, u_1, \ldots, u_n, v) = \sum_{k=0}^{m} P_k(z, u_0, u_1, \ldots, u_n,)v^k$, where P_k , not all identically zero, are $\mathfrak{L}_{\delta,F}$ -distinguished polynomials. Then, for $z \in \mathbb{C}$,

$$P(z,\Gamma,\Gamma',\ldots,\Gamma^{(n)},F) \not\equiv 0.$$

A nontrivial polynomial P(z, u, v) can be written as $P(z, u, v) = \sum_{k=0}^{m} P_k(z, u)v^k$, where the $P_k(z, u)$ are distinguished polynomials in one argument u. Thus, the following corollary is an immediate consequence of Theorem 1.7.

COROLLARY 1.8. The derivatives, $\Gamma^{(n)}$ $(n \ge 0)$, of the Γ function and a function F in \mathcal{F} are algebraically independent over $\mathfrak{L}_{\delta,F}$. In particular, $P(z,\Gamma^{(n)},F) \not\equiv 0$ in \mathbb{C} for any nontrivial polynomial P(z, u, v) whose coefficients are polynomial functions.

PROOF OF THEOREM 1.7. The proof is based on the ideas of Li and Ye in [6–8]. The polynomial $P(z, u_0, ..., u_n, v)$ may be written in the form

$$P(z, u_0, \dots, u_n, v) = v^m \sum_{I \in \Lambda_m} a_{m,I} u_0^{i_0} u_1^{i_1} \cdots u_n^{i_n} + v^{m-1} \sum_{I \in \Lambda_{m-1}} a_{m-1,I} u_0^{i_0} u_1^{i_1} \cdots u_n^{i_n} + \cdots + v \sum_{I \in \Lambda_1} a_{1,I} u_0^{i_0} u_1^{i_1} \cdots u_n^{i_n} + \sum_{I \in \Lambda_0} a_{0,I} u_0^{i_0} u_1^{i_1} \cdots u_n^{i_n},$$

where *m* is the highest power of *v* in the polynomial *P* and the Λ_j are index sets. The coefficients $a_{i,I}$ are either identically zero in \mathbb{C} or nonzero functions in $\mathfrak{L}_{\delta,F}$.

F. Lü

Suppose, contrary to the statement of the theorem, that $\Gamma, \Gamma', \dots, \Gamma^{(n)}, F$ satisfy $P(z, u_0, \dots, u_n, v) = 0$ in \mathbb{C} . That is,

$$P(z, \Gamma, \Gamma', \dots, \Gamma^{(n)}, F) = F^{m} \sum_{I \in \Lambda_{m}} a_{m,I} \Gamma^{i_{0}}(\Gamma')^{i_{1}} \cdots (\Gamma^{(n)})^{i_{n}} + F^{m-1} \sum_{I \in \Lambda_{m-1}} a_{m-1,I} \Gamma^{i_{0}}(\Gamma')^{i_{1}} \cdots (\Gamma^{(n)})^{i_{n}} + \cdots + F \sum_{I \in \Lambda_{1}} a_{1,I} \Gamma^{i_{0}}(\Gamma')^{i_{1}} \cdots (\Gamma^{(n)})^{i_{n}} + \sum_{I \in \Lambda_{0}} a_{0,I} \Gamma^{i_{0}}(\Gamma')^{i_{1}} \cdots (\Gamma^{(n)})^{i_{n}} = 0.$$
(1.1)

We will prove that all the coefficients $a_{i,I}$ in (1.1) are identically zero in \mathbb{C} for all possible *i*, *I*. This, of course, contradicts the assumption of the theorem.

Firstly, we will show that $a_{0,I} \equiv 0$ in the last sum of (1.1). Suppose that the index set Λ_0 contains *t* indices I_1, I_2, \ldots, I_t , which we arrange so that $|I_1| < |I_2| < \cdots < |I_t|$. The last sum of (1.1) can be written as

$$\sum_{j=1}^{t} a_{0,I_j} \Gamma^{i_0}(\Gamma')^{i_1} \cdots (\Gamma^{(n)})^{i_n}.$$
(1.2)

Suppose that $a_{0,l_1} \neq 0$. We will derive a contradiction below. Notice that there exist infinitely many zeros $z_l = x_l + iy_l$ (l = 1, 2, ...) of *F* on *D* satisfying

$$|a_{0,I_i}(z_l)| > \kappa, \quad |a_{0,I_i}(z_l)|e^{-\delta|y_l|} = o(1),$$

where κ is a fixed positive constant. By taking a subsequence if necessary, we may assume that $|y_l| \to \infty$ and $x_l \to x_0$ as $l \to \infty$. Without loss of generality, we assume that $|x_l| < |x_0| + 1/2$ for all *l*.

Note that $F(z_l) = 0$. From (1.1) and (1.2),

$$\sum_{j=1}^{t} a_{0,I_j} \Gamma^{i_0}(\Gamma')^{i_1} \cdots (\Gamma^{(n)})^{i_n}(z_l) = 0.$$
(1.3)

Dividing both sides of the above equality by Γ^{I_1} gives

$$\sum_{j=1}^{I} a_{0,I_j} \left(\frac{\Gamma'}{\Gamma}\right)^{i_1} \cdots \left(\frac{\Gamma^{(n)}}{\Gamma}\right)^{i_n} \Gamma^{|I_j|-|I_1|}(z_l) = 0.$$

Instead of the formula $\Gamma(1/2 + iy) = (1 + o(1))e^{-\pi|y|/2}\sqrt{2\pi}$ in [8], we will make use of Stirling's formula (see, for example, [13, page 151]),

$$\Gamma(z) = \sqrt{2\pi} e^{-z} e^{(z-1/2)\log z} \left[1 + O\left(\frac{1}{z}\right) \right] \quad \text{as } |z| \to \infty, \ z \in \mathbb{C} \setminus \{z : |\arg z - \pi| \le \varepsilon\}.$$

We adapt the method of Kilbas and Saigo [5] to prove that

$$|\Gamma(x+iy)| \le M(1+o(1))e^{\pi|y|/2}|y|^{|x_0|+1}$$

40

for $|x| < |x_0| + 1/2$ and $|y| \to \infty$, where $M = \sqrt{2\pi}e^{|x_0|+1/2}$ is a constant. From Stirling's formula, for $|x| < |x_0| + 1/2$, as $|y| \to \infty$,

$$|\Gamma(x+iy)| = \sqrt{2\pi} |e^{-x-iy} e^{(x-1/2+iy)[\log|x+iy|+i\arg(x+iy)]}| \left[1 + O\left(\frac{1}{x+iy}\right)\right]$$
$$= \sqrt{2\pi} e^{-x} e^{(x-1/2)\log|x+iy|} e^{-y\arg(x+iy)} \left[1 + O\left(\frac{1}{x+iy}\right)\right].$$
(1.4)

Estimating more precisely the terms in (1.4), when $|y| \rightarrow \infty$,

$$\begin{aligned} e^{(x-1/2)\log|x+iy|} &= e^{(x-1/2)\log\sqrt{x^2+y^2}} = e^{(x-1/2)\log|y|} e^{(1/2)(x-1/2)\log(1+x^2/y^2)} \\ &= |y|^{x-1/2} \left(1 + \frac{x^2}{y^2}\right)^{(1/2)(x-1/2)} \le |y|^{x-1/2} \left(1 + \frac{(|x_0| + 1/2)^2}{y^2}\right)^{(|x_0|+1)/2} \\ &= |y|^{x-1/2} \left(1 + O\left(\frac{1}{|y|^2}\right)\right) \le |y|^{|x_0|+1} \left(1 + O\left(\frac{1}{|y|^2}\right)\right). \end{aligned}$$

Further, since $\arg(x + iy) \to \pi/2$ (respectively $-\pi/2$) as $y \to +\infty$ (respectively $-\infty$) uniformly for all $|x| \le |x_0| + 1/2$, the term $e^{-y \arg(x+iy)}$ can be represented as

$$e^{-y \arg(x+iy)} = e^{-\pi y/2} e^{-y [\arg(x+iy) \operatorname{sgn}(y) - \pi/2]}.$$

From L'Hôpital's rule, for all $|x| \le |x_0| + 1/2$,

$$e^{-y[\arg(x+iy)\operatorname{sgn}(y)-\pi/2]} = 1 + O\left(\frac{1}{|y|}\right)$$
 uniformly as $|y| \to \infty$

and, hence,

$$e^{-y \arg(x+iy)} = e^{-\pi y/2} \left[1 + O\left(\frac{1}{|y|}\right) \right]$$
 uniformly as $|y| \to \infty$.

Furthermore, $|x + iy| \sim |y|$ as $|y| \to \infty$ for $|x| < |x_0| + 1/2$, and so O(1/|x + iy|) = O(1/|y|) as $|y| \to \infty$. The above discussion gives the desired result.

Let us turn back to the proof of Theorem 1.7. As in [8], for any positive integer q,

 $\Gamma^{(q)}(z) = (1 + o(1))(\log z)^q \Gamma(z)$

uniformly for all $z \in \mathbb{C} \setminus \{z : | \arg z - \pi| \le \varepsilon\}$. For each $j \ge 2$ and as $l \to \infty$,

$$\begin{aligned} \left| a_{0,I_{j}} \left(\frac{\Gamma'}{\Gamma} \right)^{i_{1}} \cdots \left(\frac{\Gamma^{(n)}}{\Gamma} \right)^{i_{n}} \Gamma^{|I_{j}| - |I_{1}|}(z_{l}) \right| \\ &\leq (1 + o(1)) |a_{0,I_{j}}(z_{l})| (\log |z_{l}|)^{i_{1} + 2i_{2} + \dots + ni_{n}} M^{|I_{j}| - |I_{i}|} |y_{l}|^{(|x_{0}| + 1)(|I_{j}| - |I_{i}|)} e^{-(|I_{j}| - |I_{i}|)\pi|y_{l}|/2} \\ &\leq (1 + o(1)) |a_{0,I_{j}}(z_{l})| e^{-\delta|y_{l}|} (\log |z_{l}|)^{i_{1} + 2i_{2} + \dots + ni_{n}} M^{|I_{j}| - |I_{i}|} |y_{l}|^{(|x_{0}| + 1)(|I_{j}| - |I_{i}|)} e^{(\delta - \pi/2)|y_{l}|} \\ &\leq o(1) (\log |z_{l}|)^{i_{1} + 2i_{2} + \dots + ni_{n}} M^{|I_{j}| - |I_{i}|} |y_{l}|^{(|x_{0}| + 1)(|I_{j}| - |I_{i}|)} e^{(\delta - \pi/2)|y_{l}|} \to 0 \end{aligned}$$

because $\delta < \pi/2$. Thus, taking $l \to \infty$,

$$\left|a_{0,I_1}\left(\frac{\Gamma'}{\Gamma}\right)^{i_1}\cdots\left(\frac{\Gamma^{(n)}}{\Gamma}\right)^{i_n}(z_l)\right|\to 0.$$

On the other hand, as $l \to \infty$,

$$\left|a_{0,I_1}\left(\frac{\Gamma'}{\Gamma}\right)^{i_1}\cdots\left(\frac{\Gamma^{(n)}}{\Gamma}\right)^{i_n}(z_l)\right|=|a_{0,I_1}(z_l)|(\log|z_l|)^{i_1+2i_2+\cdots+ni_n}\to\infty.$$

This is a contradiction. So $a_{0,I_1} \equiv 0$.

Now, since a_{0,I_1} is identically zero, the expression (1.3) reduces to

$$\sum_{j=2}^{t} a_{0,I_j} \Gamma^{i_0}(\Gamma')^{i_1} \cdots (\Gamma^{(n)})^{i_n}(z_l) = 0.$$

This is in the same form as (1.3), except that now *j* starts from 2. The same argument as above shows that a_{0,I_2} is identically zero. Repeating this argument shows that all the coefficients a_{0,I_i} are identically zero. Therefore, (1.1) becomes

$$P(z,\Gamma,\Gamma',\ldots,\Gamma^{(n)},F) = F^{m-1} \sum_{I \in \Lambda_m} a_{m,I} \Gamma^{i_0}(\Gamma')^{i_1} \cdots (\Gamma^{(n)})^{i_n} + \cdots + \sum_{I \in \Lambda_1} a_{1,I} \Gamma^{i_0}(\Gamma')^{i_1} \cdots (\Gamma^{(n)})^{i_n},$$

which is of the same form as (1.1), except that the highest power of F is now m - 1. Repeating the argument shows all the coefficients of the polynomial are identically zero, which contradicts the assumption.

This completes the proof of Theorem 1.7.

Acknowledgement

The author is greatly indebted to the anonymous referee for several valuable comments.

References

- [1] S. Bank and R. Kaufman, 'An extension of Hölder's theorem concerning the Gamma function', *Funkcial. Ekvac.* **19** (1976), 53–63.
- [2] D. Hilbert, 'Mathematische probleme', Arch. Math. Phys. 1 (1901), 44–63; 213–317.
- [3] O. Hölder, 'Uber die Eigenschaft der Γ-Function, keiner algebraischen Differentialgleichung zu genügen', Math. Ann. 28 (1887), 1–13.
- [4] J. Kaczorowski and A. Perelli, 'On the structure of the Selberg class', *Acta Math.* **182** (1999), 207–241.
- [5] A. Kilbas and M. Saigo, 'A remark on asymptotics of the gamma function at infinity', in: *Study on Applications for Fractional Calculus Operators in Univalent Function Theory*, RIMS Kokyuroku, 1363 (Kyoto University Research Information Repository, Kyoto, 2004), 33–36.
- [6] B. Li and Z. Ye, 'Algebraic differential equations concerning the Riemann zeta function and the Euler gamma function', *Indiana Univ. Math. J.* 59 (2010), 1405–1415.
- [7] B. Li and Z. Ye, 'On algebraic differential properties of the Riemann ζ-function and Euler Γfunction', *Complex Var. Elliptic Equ.* 56 (2011), 137–145.
- [8] B. Li and Z. Ye, 'Algebraic differential equations with functional coefficients concerning ζ and Γ ', *J. Differential Equations* **260** (2016), 1456–1464.

42

[8] On algebraic differential equations for the gamma function and *L*-functions

- [9] L. Markus, 'Differential independence of Γ and ζ ', J. Dynam. Differential Equations 19 (2007), 133–154.
- [10] D. Mordykhai-Boltovskoi, 'On hypertranscendence of the function $\xi(x, s)$ ', *Izv. Politekh. Inst.* Warsaw 2 (1914), 1–16.
- [11] A. Ostrowski, 'Über Dirichletsche Reihen und algebraische Differentialgleichungen', Math. Z. 8 (1920), 241–298.
- J. Steuding, Value Distribution of *L*-Functions, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).
- [13] E. Titchmarsh, The Theory of Functions, second edn (Oxford University Press, Oxford, 1968).

FENG LÜ, College of Science, China University of Petroleum, Qingdao, Shandong, 266580, PR China e-mail: lvfeng18@gmail.com