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ABSTRACT. Glacier response to climate can be characterized by a single time-scale
when the glacier changes sufficiently slowly. Then the derivative of volume with respect to
area defines a thickness scale similar to that of Johannesson and others, and the time-scale
follows from it. Our version of the time-scale is different from theirs because it explicitly
includes the effect of surface elevation on mass-balance rate, which can cause a major
increase in the time-scale or even lead to unstable response. The time constant has a dual
role, controlling both the rate and magnitude of response to a given climate change. Data
from South Cascade Glacier, Washington, U.S.A.; illustrate the ideas, some of the diffi-
culty in obtaining accurate values for the thickness and time-scales, and the susceptibility
of all response models to potentially large errors.

INTRODUCTION

It is a challenging problem to predict how a glacier re-
sponds to climate, because the result is sensitive to the in-
put data, and because the physical processes acting in the
terminal region and at the bed are poorly understood.
Even with gross approximations for these processes, the
resulting numerical or analytical theories tend to be so
complicated that it is easy to overlook or fail to exploit the
simplifying effect of a fundamental constraint, mass conti-
nuity. This 1s why a simple approach by Jéhannesson and
others (1989a, b) 1s potentially so useful and why it has at-
tracted so much attention. The basic idea is that mass con-
tinuity, together with a minimum of input from theoretical
glacier dynamics, should determine a “volume” time-scale
(the time to “fill” or “empty” the glacier volume to a new
value after a climate change) that characterizes the gross
response of a glacier. Applications for a simple approach
like this include several related problems: the effect of a gla-
cier’s shape and size on its response characteristics, the re-
gional extrapolation of mass-balance measurements, and
the effect of glaciers on sea level.

Here we develop a modified version of this simple the-
ory which, unlike the original, accounts explicitly for the
effect of surface elevation on mass balance. We start with
mass continuity, identify the mathematical requirement
for glacier response to be characterized by a single time-
scale, and demonstrate a method which uses field data to
test whether this is a reasonable approximation in a given
situation. We could also make this test within the frame-
work of the conventional theory of glacier dynamics, but
because of its inherent limitations we prefer the compari-
son with data, from which the time-scale, or limits on it,
can be determined directly in suitable situations. Data
from South Cascade Glacier, Washington, U.S.A.; are used
for illustration.
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THEORY
Formulation

The basis of our approach is the concept of a reference-sur-
face balance rate (Elsberg and others, 2001). This is simply
the balance rate that would occur on some fixed reference
surface, which in this paper is taken to be the surface of the
glacier as it was at the beginning of a balance time series,
defined to be at time ¢ = 0. The usefulness of this balance is
that, unlike the conventional one, it is a function of climate
alone and 1s not influenced by changes in the shape and the
size of the glacier. For this reason it could be called the
“climatic” balance. The concept is applicable both to specific
balance (defined at a point) and to the glacier-wide inte-
grated balance. It is important to distinguish between the
instantaneous balance rate and the balance accumulated
over some finite interval, which we emphasize is usually
> lyear in this paper. Both balance rate and balance are con-
sidered to be continuous functions of time in our approach.
Specific and glacier-wide balances are designated by lower-
and upper-case symbols, respectively, and reference-surface
quantities are primed. The concept of the reference-surface
balance rate and the notation are summarized by Elsberg
and others (2001, fig. 1, table 1).

The starting point is a relationship between the conven-
tional and reference-surface glacier-wide balance rates, B
and B/, respectively (Elsberg and others, 2001, equation 8):

B—G,AV —bAA=DB. (1)

For our applications AV is the difference in the volume
between the instantaneous and the initial states, AA is the
corresponding quantity for map area, b, (<0) is the “effec-
tive” specific balance rate in the vicinity of the terminus,
and G, (>0) is the “effective” gradient of the specific
balance rate with elevation. If the actual gradient is inde-
pendent of elevation, then Ge takes on that value; otherwise
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it is a weighted average of the gradient. The weighting factor
1s the elevation difference between the instantaneous and
the initial states. Elsberg and others (2001) give methods for
evaluating Be and G'e from field observations. The —GGAV
term in Equation (1) arises when one chooses any point in
the map plane, and considers the difference between specific
balance rates on the initial and instantaneous surfaces. This
difference is the product of the gradient with the elevation
difference between the surfaces; integration over the map
area to obtain the glacier-wide balance rates gives the AV
factor. The two balance rates, B’ and B, differ because the
initial and instantaneous surfaces are different in both area
and elevation. The effect of the difference in their areas is
accounted for by the term —b.AA, and the effect of the dif-
ference in their elevation by the term —G AV

Equation (1) was used by Elsberg and others (2001) to
transform between the reference-surface balance rate and
the conventional one, but we use it here for a theory of gla-
cier response to climate. We take the reference surface to be
the initial surface, the surface as it was at time t = 0, as noted
above. It is simplest to use ice-equivalent units for all balance
quantities, and to assume that the near-surface density struc-
ture of a glacier does not change significantly with time
(Sorge, 1935; Bader, 1954). Then AV is equal to the ice-
equivalent conventional balance at time ¢, accumulated
since the initial surface was defined (possibly an interval of
many years). This is often called the cumulative balance.
Also, B = dV/dt, in which V (#) is the instantaneous volume.
This is the same as d(AV)/dt because AV is the instantan-
eous volume minus the initial volume, the latter of which is a
constant. Equation (1) can therefore be rewritten as

d(ﬁtv) — G AV —bAA=B'. (2)

Equations (1) and (2) are based on mass continuity and con-
tain no assumptions about glacier dynamics.

Equation (2) is a simple differential equation for the two
dependent variables AV and A A in terms of the independent
variable t. The climate-forcing function is B, which varies
with time but is unaffected by changes in the glacier.
Although Bis really a continuous function of time, in a given
year it can be approximated by its time-averaged value.
Recalling that be < 0, the term —b,AA in Equation (2) can
be interpreted as a negative feedback term; if the climate
becomes less favorable for growth, the glacier reduces its rate
of loss by reducing its ablation area (AA< 0). The term
—G.AV is a positive feedback term; as thinning lowers the
surface, the rate of loss tends to become larger because the
balance rate becomes more negative. The relative importance
of these terms determines whether the glacier has a large or
even unstable response to climate.

A simple theory of glacier response could be based on
Equation (2) if one could assume a functional relationship
between area A and volume V. This is a simple condition
from a mathematical point of view, but except for a perfectly
plastic glacier, it is empirical and a potentially drastic
approximation to the dynamics of a real glacier. It can be
tested with data from a balance program that also measures
area on a routine basis. We expect a relationship between A
and V to be simplest and best defined when the glacier is
changing very slowly. Then time lags are negligible and area
tends to remain “in phase” with volume. The simplest
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plausible relationship is that the rate of change of volume
with respect to area is constant, or
|4
TA= constant = H | (3)
where H is the “thickness scale” (see Johannesson and others,
1989a, p. 350). A useful integrated version of Equation (3) is
AV = HAA. 4)

This implies that AV =0 when AA =0, which is consistent
with our definition of the reference surface. Equation (4) can
be used to eliminate AA (or AV) in Equation (2), which
becomes

dAV) AV .
=B 5
dt + Ty ’ (5)

where 7y is a time-scale given by

1
= (6)

——< G,
H

Equation (5) describes the change in the volume of a glacier
in response to the climate forcing B/, the reference-surface
balance rate. Equation (3) is the essential condition for the
validity of Equation (5); the single parameter H is the con-
straint on glacier dynamics that leads to a simple response
characterized by the single parameter 7, defined by Equation
(6). Of course b, and G, also occur in Equation (6), but they
are climatic parameters. Note that 7, is constant only to the
extent that H, Bc and GC are constant. We use long-term
averages of b and G, in the application discussed below.
Our time-scale 7, has the same meaning as the “volume
time-scale” or the “memory length” of Johannesson and
others (1989a, b), but there is a significant difference because
ours accounts explicitly for the effect on balance rate of the
changing surface elevation of the glacier, via the G. term in
the denominator of Equation (6). Their 7, was defined to be
H/(—bt) (our notation), in which b characterizes the
balance rate at the elevation of the ice surface in the terminus
region, while our be characterizes it at the elevation of the
bed there (Elsberg and others, 2001). One may therefore ex-
pect |by| to be less than |be|. This accounts partially for the
effect of changing surface elevation on balance rate in their
approach, but their time-scale estimates still will be shorter
than ours. The G, term is important, as discussed below.

Steady state

Equation (5) can be applied to the important question of the
sensitivity of a glacier to climate change. First we compare
our approach to that of traditional theory (Nye, 1960). Sup-
pose that the climate, its effect characterized by the refer-
ence-surface balance rate B’ since t = 0, has been constant
for a time t > 7. Then if the response is stable, a steady
state 13 approached which can be found by setting
d(AV)/dt = 0 in Equation (5), giving

AV, = B'r, (7)
and
_ (v
AA, =B ( H) (8)

by Equation (4). AV, and AA, are the final changes in
volume and area measured relative to their values at t = 0.
To facilitate comparison with the traditional approach, it is
useful to characterize the climate by a slightly different
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version of the reference-surface balance rate, its glacier-wide
average ':

- B

b= E ) (9)

where A’ is the map area of the glacier in its initial state.
Then if Equations (6), (8) and (9) are combined, one finds
that
A, ¥
A b — G H '

Equation (10) is different from the corresponding result

(10)

from traditional theory (Nye, 1960, equation 40), which in
our notation is

ALy, UV

L 11
= ()

where ALy, is the change in length of the glacier from an

initial steady-state condition, and L is the total length. One
obvious difference between Equations (10) and (11) is that the
variable on the lefthand side is area in the first case and length
in the second. This i1s because Equation (11) is restricted to
glaciers of uniform width. Another difference is that the
balance rate at the terminus by occurs in Equation (11), rather
than the effective value be, which is roughly 25% smaller in
magnitude in the example discussed below (Elsberg and
others, 2001). However, the most important difference is the
absence of the —G.H term in the denominator of Equation
(11), which means that it does not account for the effect of the
surface elevation of the glacier on balance rate, as was recog-
nized by Nye (1960). The dependence of Equation (10) upon H
means that it depends upon glacier dynamics, unlike Equa-
tion (11). This is a complication but it is realistic because the
final adjustment of the glacier must depend upon its mechani-
cal properties. Finally, Equation (11) requires the initial con-
dition of the glacier to be a steady-state one, while Equation
(10) does not. This advantage is more apparent than signifi-
cant, because we expect Equation (3), and therefore Equation
(10), to be most accurate when the initial area has had time to
adjust to the initial volume; in other words, when the initial
condition is near steady state.

Solution for different reference-surface balance-rate
scenarios

It is instructive to consider solution of Equation (5) for two
different scenarios of the reference-surface balance rate B'.
If the climate is steady for ¢ > 0, and B’ is therefore con-
stant, the solution is

AV = B’TV<1 - e*t/f\') . (12)

Because of Equation (4), the solution for AA is the same ex-
cept for the factor H. In this simple case the volume and
area follow an exponential approach to a new steady-state
geometry, where the time constant is 7, and the final state
1s that given by Equations (7) and (8). If the climate were to
undergo a steady rate of change from time ¢ = 0, with

B =Ct, (13)
where C'is a constant, the solution would be
t
AV = CTV2 (— -1+ e‘””) . (14)
Tv

Because below we wish to consider the responses of glaciers
of different sizes, it is useful to rewrite these solutions in
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terms of the glacier-wide averages of B and AV. We use
the reference-surface glacier-wide average balance rate v,
defined by Equation (9), and the glacier-wide average
balance b, defined by

AV
T
b is the spatially averaged thickness change of the glacier

since the reference surface was defined at ¢t = 0, as might be
determined by geodetic or traditional glaciological meth-

b= (15)

ods. It is useful only if changes in area are small enough that
A = A’; otherwise one must keep the variable AV. With
this approximation, division of Equations (12) and (14) by
A’ gives

b~ ’T\,(l - e’t/T") (16)

and

- 4
b=cr? ( -1+ et/T") , (17)

where ¢ = C/A’. If we denote by, as the value of b for
t > 7, then Equations (16) and (17) both give

boo & Uy (18)

In the former case ¥/ is constant, and in the latter it is pro-
portional to time. Equation (18) is equivalent to Equation
(7) for small area changes.
The general solution to Equation (5) for any form of the
reference-surface balance rate B’ is
t

av = [elomg, (19)
0

which indicates a fading memory to previous climate. The
usefulness of this relation 1s affected by several factors, most
notably the limited validity of Equation (3).

Meaning of the time-scale

The time-scale 7 defined by Equation (6) is positive if
—Be/H > Ge, which is the case if the negative feedback
term in Equation (2) is larger than the positive one. This is
the usual case; the response is stable and a steady state is
eventually attained if climate remains constant. The critical
value of 7, occurs when —6e/H = G.. In this special case
the positive and negative feedback terms cancel, |7y| is very
large, and the reference-surface and conventional balance
rates remain equal even though the initial and instantan-
eous surfaces are different. 7, is negative if —6e/H < Ge,
which is the case if the positive feedback term is the larger
of the two. In this case the response is unstable. This idea of
instability or near-instability was studied by Boéodvarsson
(1953), Nye (1960) and Weertman (1961) with characteriza-
tions of glacier dynamics different from our Equation (3).
The time-scale has a dual role. Equation (I8) is an
example of how it determines the amplitude of the final
response for £ > 7, (Johannesson and others, 1989a). In this
sense it can be said to determine the sensitivity of a glacier to
climate. It also determines the rate of response, as its name
implies, but not at small time. Because AV ~ 0 for small
time, AV /7, & 0 also, so by Equation (5) d(AV)/dt ~ B,
which is independent of 7. This is easily confirmed for the
two examples above by expanding the exponentials in Equa-
tions (16) and (17). This result is not surprising, because the
initial and instantaneous surfaces are the same at small time.
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Thus there are characteristically different responses at large
and small time, as is reasonably well known (e.g. Warrick
and others, 1996).

One can make a more general statement about the
response at small and large time. If two glaciers are subjected
to the same reference-surface average balance rate U, their
average thickness change b will be the same for small time.
In contrast, at large time the response is proportional to the
time-scale. The result is that given two ice masses with the
same I/, the one with the larger time-scale will have the larger
response (larger [b|) for all > 0, at least within our approxi-
mate version of glacier dynamics.

This result brings up a point that is sometimes confusing
in the literature. Oerlemans and Fortuin (1992), for example,
stated that for times on the order of a century or a decade the
large ice sheets should be relatively unimportant contributors
to sea-level change because of their relatively long time-
scales compared with those of glaciers and small ice caps.
There are two issues concerning this assertion. The first,
not discussed here, is whether the implied relation between
size and time-scale is correct (see, e.g., Bahr and others,
1998). The second is whether the implied relation between
time-scale and magnitude of the response is correct. In the
light of our discussion, the average thickness changes of
Oerlemans and Fortuin’s two classes of ice masses would be
the same at small time for a given reference-surface average
balance rate. Then because Greenland, for example, has
such a large area it would have a much greater effect on sea
level than the mountain glaciers and ice caps, ignoring the
possible effects of calving. As time proceeds, Greenland
would become even more important if it had a larger time-
scale because glaciers with the largest time-scales have the
largest response for £ > 0, as noted above. Of course these
comparisons require the different ice masses to be subjected
to the same reference-surface average balance rate, which is
not likely. Nevertheless, it is not correct to ascribe differ-
ences in short-term response to differences in the volume
time-scale.

APPLICATION

The ideas described above can be illustrated with data from
South Cascade Glacier, a small glacier in the North Cascade
Mountains, northwest U.S.A. It has a record of annual
balances measured by traditional glaciological methods
beginning in 1958 (Krimmel, 1999b), an extensive set of
volume measurements made by airborne photogrammetry
(Krimmel, 1999a), and a continuous record of area. We use
the geodetically corrected cumulative balance series con-
structed from these data by Elsberg and others (2001), which
is about 50% more negative than the uncorrected one. This
series, in ice-equivalent units, is our AV, measured relative to
September 1970. We do not use the earlier data since we are
uncertain about their accuracy.

AV is shown as a function of AA in Figure 1, both meas-
ured relative to autumn 1970. There is a reasonably linear
relationship between the two, which suggests that Equation
(4) and therefore Equation (3) are satisfied approximately.
The least-squares value for the slope dV/dA is 171 m, which
approximates the thickness scale H. The corresponding value
for the time-scale 7y, can be estimated from Equation (6) using
values of the effective balance rate near the terminus 66 and the
effective balance-rate gradient G determined by Elsberg and
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others (2001, fig. 5). These are —6.2ma ' (1970-97 average) and
0.024a' (1985-97 average), respectively. The resulting value
for 7, is 82 years, although this value is probably too large as
discussed below. Schwitter and Raymond (1993) also discussed
the time-scale for this glacier.

The role of the time constant in determining the sensi-
tivity to climate is easily illustrated with this value of the
time-scale. The climate between 1970 and 1997 can be
roughly characterized by a reference-surface balance rate
of ~Ima ' (Elsberg and others, 2001). If this climate were
to persist, and if the 82 year value for the time-scale were
correct, one would expect the glacier to stabilize after losing
an average thickness of 82 m relative to 1970 (Equation (18)).
This example illustrates the simplicity of the approach, but
it is doubtful that the simple theory would be valid for such
large changes. It is worth pointing out that as a steady state
1s approached in this scenario, the conventional average
balance rate approaches zero, but the reference-surface

. -1
average balance rate remains at —1ma .

DISCUSSION
Meaning of the thickness scale

As noted above, the formal definition of the thickness scale H
is the derivative of volume with respect to area when the
glacier changes sufficiently slowly. The name “thickness scale”
could be misinterpreted. Our value for H is comparable to
depths measured in the thickest part of South Cascade
Glacier by Hodge (1979) from 1973 to 1977, but it is easy to
imagine glacier shapes in which the derivative is quite differ-
ent from the maximum thickness. An example would be a
glacier whose upper part is flat and thick, and whose lower
part is steep and thin. Our derivative would be representative
of the thin lower part of such a glacier.

The variation of H with the size of a glacier would affect
the range of climate change for which our results are valid.
Our approach is insensitive to this variation for South
Cascade Glacier over the duration of the study period,
during which the area change was about 15%. Theoretical
analyses of the effect have been carried out by Johannesson
and others (1989a,b) and by E.D. Waddington (personal

communication, 2000).
Uncertainties

A discussion of some of the uncertainties illustrates the diffi-
culty in making accurate estimates of H and 7. The most
obvious uncertainty is in the effective balance rate near the
terminus be, which is not well known because its determin-
ation requires extrapolation of balance rates measured at a
few points higher on the glacier to the terminus or beyond,
while also taking into account the three-dimensional nature
of the terminus. An additional complication is that the
balance rate may vary rapidly near the terminus. be also
has a weak trend with time and area (Elsberg and others,
2001). By Equation (6) this means that our simple approach,
in which the time-scale 7, 1s assumed to be constant, is prob-
ably valid only for a small range of area change.

A less obvious and probably more serious source of
uncertainty is in the value of 171 m for the thickness scale
H, which came from the slope of the line in Figure 1. The
problem is rooted in our fundamental assumption about
the dynamics of the glacier, Equation (3), which implies that
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Fig. 1. South Cascade Glacier. Ice-equivalent cumulative balance AV as a function of A A, both measured relative lo their initial

values ( September, 1970), with best-fit line. A’ is the initial area.

area 1s able to react instantaneously to volume, and there-
fore to remain “in phase” with it. If part of the slope of the
line in Figure 1 arises from the failure of area to do so, then
171 m would be an upper limit on H. Considerations beyond
the scope of this paper suggest that a more appropriate
value, one associated with truly slow changes in the glacier,
would be about 30% smaller. This would decrease our esti-
mate of the time-scale, and therefore of the sensitivity to
climate, by about a factor of two.

Importance of the surface elevation term

The dependence of the balance rate on surface elevation has
a major effect on the response. Taking a best value for H about
30% lower than our 171 m as just discussed, we find that the
ratio of the two terms in the denominator of Equation (6),
GQ(H/ée), is about 0.5. In other words, the effect on the
balance rate of surface elevation (the origin of the second
term), although smaller than that of area (the origin of the
first), is significant. The result is that at South Cascade
Glacier the surface elevation term causes a doubling of the
time-scale and of the sensitivity to climate.

Qualitative statements can be made about the effect of sur-
face elevation on the responses of other ice masses. We write
the ratio of the two terms in the denominator of Equation (6)
in a different way, using the fact that the quantity
—ée/Ge = Zi—.cq 18 a rough measure of the elevation of the
equilibrium line relative to the terminus on South Cascade,
and probably on most other glaciers. Then the ratio,
Go(H /b,), is roughly H/Z; e For low-slope glaciers, which
are usually thick, one would expect this ratio to be relatively
large, but as we just saw, it is on the order of 0.5 even for South
Cascade Glacier, which with a characteristic surface slope of
roughly 10° is relatively steep. For lower-slope ice masses
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H/Z;_,oq may approach unity, which by Equation (6) would
make 7y, and therefore the sensitivity, very large. Thus the
effect of surface elevation seems to be critical in the response
of low-slope ice masses, and significant in that of most others.

If the magnitude of G, (H/be), or equivalently of H/Z;_.q,
is close to unity, there is a fundamental problem in calculating
the response of a glacier, because of the near-cancellation of
the surface elevation and area effects. This is brought out
clearly by our model, because the evaluation of the time-
scale, and therefore the sensitivity to climate, requires the
subtraction in the denominator of Equation (6) of two num-
bers with the same order of magnitude, neither of which is
ever known accurately. Although this problem may be less
obvious in other models, it must exist in all, whether analyti-
cal or numerical, because it is due to the fundamental inter-
play between positive and negative feedback. For example,
numerical models which specify balance rate as a function
of elevation automatically account for the effect of elevation
on balance rate, but the possibility of near-cancellation of the
surface elevation and arca effects remains, and it amplifies
the effects of errors in the model or the input data. This
means that the error in the calculated response could be very
large, and that it needs to be investigated in individual cases.

Our discussion points out the limitations of traditional
theory, the best-known versions of which do not consider
the effect of surface elevation on balance rate at all. This is
worth keeping in mind because traditional theory still tends
to be the basis of our perception of what is important in the
response of ice masses to climate. Nevertheless, the limita-
tions of traditional theory may sometimes be less significant
than the uncertainty in the balance rate near the terminus,
which has long been known to be a key to the prediction of
response (Nye, 1960), but is rarely measured.
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