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Abstract. To any k-dimensional subspace of Qn one can naturally associate a point in the
Grassmannian Grn,k(R) and two shapes of lattices of rank k and n− k, respectively. These
lattices originate by intersecting the k-dimensional subspace and its orthogonal with the
lattice Zn. Using unipotent dynamics, we prove simultaneous equidistribution of all of
these objects under congruence conditions when (k, n) �= (2, 4).
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1. Introduction
In this paper, we study the joint distribution of rational subspaces of a fixed discriminant
(also called height by some authors) and of two naturally associated lattices: the integer
lattice in the subspace and in its orthogonal complement together with some natural
refinements.

Let Q be a positive definite integral quadratic form on Qn and let L ∈ Grn,k(Q) be
a rational k-dimensional subspace. Here, Grn,k is the projective variety of k-dimensional
subspaces of the n-dimensional linear space. The discriminant discQ(L) of L with respect
to Q is the discriminant of the restriction of Q to the integer lattice L(Z) = L ∩ Zn. As a
formula, this is

discQ(L) = det

⎛
⎜⎝
〈v1, v1〉Q · · · 〈v1, vk〉Q

...
...

〈vk , v1〉Q · · · 〈vk , vk〉Q

⎞
⎟⎠,

where 〈·, ·〉Q is the bilinear form induced by Q and v1, . . . , vk is a basis of L(Z). We
consider the finite set

Hn,k
Q (D) := {L ∈ Grn,k(Q) : discQ(L) = D}.
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We attach to any L ∈ Grn,k(Q) the restriction of Q to L(Z) represented in a basis.
This is an integral quadratic form in k-variables which is well defined up to a change of
basis, i.e. (in the language of quadratic forms), up to equivalence. In particular, it defines a
well-defined point, which is also called the shape of L(Z),

[L(Z)] ∈ Sk ,

where Sk is the space of positive definite real quadratic forms on Rn up to similarity (i.e.
up to equivalence and positive multiples). We may identify Sk as

Sk � Ok(R)
∖PGLk(R)

/
PGLk(Z)

which, in particular, equips Sk with a probability measure mSk
arising from the Haar

measures of the groups on the right. We will simply call mSk
the Haar probability measure

on Sk .
Analogously, one may define the point [L⊥(Z)] ∈ Sn−k , where L⊥ is the orthog-

onal complement of L with respect to Q. Overall, we obtain a triple of points
(L, [L(Z)], [L⊥(Z)]). The goal of this work is to study the distribution of these points in
Grn,k(R)× Sk × Sn−k as discQ(L) grows. In what follows, Grn,k(R) is given the unique
SOQ(R)-invariant probability measure mGrn,k(R).

Conjecture 1.1. Let k, n ∈ N be integers such that k ≥ 2 and n− k ≥ 2. Then the sets

{(L, [L(Z)], [L⊥(Z)]) : L ∈ Hn,k
Q (D)}

equidistribute (implicitly, we mean with respect to the product ‘Haar’ measure, i.e. the
product measure mGrn,k(R) ⊗mSk

⊗mSn−k
) in Grn,k(R)× Sk × Sn−k as D →∞ along

D ∈ N satisfyingHn,k
Q (D) �= ∅.

Remark 1.2. There exists an analogous conjecture for k = 1, n− k ≥ 2, where one only
considers the pairs (L, [L⊥(Z)]) (and, similarly, for n− k = 1, k ≥ 2). This has been
studied extensively by the first named author with Einsiedler and Shapira in [AES16a,
AES16b], where the conjecture is settled for n ≥ 6 (i.e. n− k ≥ 5), for n = 4, 5 under a
weak congruence condition and for n = 3 under a stronger congruence condition on D.
We remark that, as it is written, [AES16a, AES16b] treat only the case where Q is the
sum of squares (which we will sometimes call the standard form), but the arguments carry
over without major difficulties. Using effective methods from homogeneous dynamics,
Einsiedler, Rühr and Wirth [ERW19] proved an effective version of the conjecture when
n = 4, 5, removing, in particular, all congruence conditions. The case n = 3 relies on a
deep classification theorem for joinings by Einsiedler and Lindenstrauss [EL19]; effective
versions of this theorem are well out of reach of current methods from homogeneous
dynamics. Assuming the generalized Riemann hypothesis, Blomer and Brumley [BB20]
recently removed the congruence condition in [AES16b].

Remark 1.3. The case k = 2 and n− k = 2 of Conjecture 1.1 was settled in [AEW22]
by the first and the last named author together with Einsiedler under a (relatively strong)
congruence condition when Q is the sum of four squares. The result in the paper is, in
fact, stronger as it considers two additional shapes that one can naturally associate to L,
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essentially, thanks to the local isomorphism between SO4(R) and SO3(R)× SO3(R). The
arguments carry over without major difficulties to consider norm forms on quaternion
algebras (equivalently, the forms Q for which disc(Q) is a square in Q×). In [AW21],
the first and last named author extend the results of [AEW22] to treat arbitrary quadratic
forms.

In this article, we prove Conjecture 1.1 in the remaining cases, partially under
congruence conditions. For integers D, �, we write D[�] for the �-power free part of D,
i.e. the largest divisor d of D with a� � d for any a > 1.

THEOREM 1.4. (Equidistribution of subspaces and shapes) Let 2 ≤ k ≤ n be integers with
k ≤ n− k and n− k > 3, and let p be an odd prime with p � disc(Q). Let Di ∈ N be a
sequence of integers with D

[k]
i →∞ andHn,k

Q (Di) �= ∅ for every i. Then the sets

{(L, [L(Z)], [L⊥(Z)]) : L ∈ Hn,k
Q (Di)}

equidistribute in Grn,k(R)× Sk × Sn−k as i →∞, assuming the following conditions.
• p � Di if k ∈ {3, 4}.
• −Di mod p is a square in F×p if k = 2.
Moreover, the analogous statement holds when the roles of k and n− k are reversed.

Remark 1.5. Maass [Maa56, Maa59] in the 1960s and Schmidt [Sch98] in the 1990s
considered problems of this kind. They proved that the set of pairs (L, [L(Z)]) equidis-
tributes in Grn,k(R)× Sk , where L ∈ Grn,k(Q) varies over the rational subspaces with
discriminant at most D. In this averaged set-up, Horesh and Karasik [HK20] recently
verified Conjecture 1.1. Indeed, their version is polynomially effective in D.

Remark 1.6. (Congruence conditions) As in the previous works referenced in Remarks 1.2
and 1.3, our proof is dynamical in nature and follows from an equidistribution result for
certain orbits in an adelic homogeneous space. The congruence conditions at the prime p
assert, roughly speaking, that one can use non-trivial dynamics at one fixed place for all D.
The acting groups we consider here are (variations of) the Qp-points of

HL = {g ∈ SOQ : g.L ⊂ L}◦

for L ∈ Grn,k(Q). In particular, the cases k = 2 and k > 2 are very different from a
dynamical viewpoint.
• For k > 2, the group HL is semisimple. The knowledge about measures on homoge-

neous spaces invariant under unipotents is vast (see Ratner’s seminal works [Rat91,
Rat95]). In our situation, we use an S-arithmetic version of a theorem by Mozes and
Shah [MS95], proved by Gorodnik and Oh [GO11], which describes weak∗-limits
of measures with invariance under a semisimple group. Roughly speaking, the
theorem implies that any sequence of orbits under a semisimple subgroup is either
equidistributed or sits (up to a small shift) inside an orbit of a larger subgroup. The
flexibility that this method provides allows us to, in fact, prove a significantly stronger
result; see Theorem 1.11 below.
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• For k = 2 and n− k ≥ 3, the group HL is reductive. Thus, one can apply the results
mentioned in the previous bullet point only to the commutator subgroup of HL, which
is non-maximal and has intermediate subgroups.

One of the novelties of this article is a treatment of this reductive case where we use
additional invariance under the center to rule out intermediate subgroups ‘on average’ (see
§4.3). Here, as well as for the second component of the triples in Theorem 1.4, we need
equidistribution of certain adelic torus orbits; this is a generalized version of a theorem
of Duke [Duk88] that builds on a breakthrough of Iwaniec [Iwa87] (see, for example,
[ELMV11, HM06, Wie19]). Furthermore, to prove simultaneous equidistribution of the
tuples in Theorem 1.4, we apply a new simple disjointness trick (see the following remark).

Remark 1.7. (Disjointness) In the upcoming work, the first and last named author
prove, together with Einsiedler, Luethi and Michel [AEL+21], an effective version of
Conjecture 1.1 when k �= 2. This removes, in particular, the congruence conditions. The
technique consists of a method to ‘bootstrap’ effective equidistribution in the individual
factors to simultaneous effective equidistribution (in some situations).

In the current article, we use an ineffective analogue of this to prove Theorem 1.4,
namely, the very well-known fact that mixing systems are disjoint from trivial systems
(see also Lemma 4.2). This simple trick has (to our knowledge) not yet appeared in the
literature in a similar context. It is particularly useful when k = 2 and n− k ≥ 3, in which
case, we cannot rely solely on methods from unipotent dynamics (see Remark 1.6).

Remark 1.8. (On the power assumption) The assumption in Theorem 1.4 regarding the
power free part of the discriminants should be considered a simplifying assumption only.
Its purpose is automatically to rule out situations where, for most subspaces L ∈ Hn,k

Q (D),
the quadratic form Q|L(Z) (or Q|L⊥(Z)) is highly imprimitive (i.e. a multiple of a quadratic
form of very small discriminant). We expect that such discriminants do not exist regardless
of their factorization. A conjecture in this spirit is phrased in Appendix B. Moreover,
Schmidt’s work [Sch68] suggests that |Hn,k

Q (D)| = Dn/2−1+o(1), in which case one could

remove the assumption that D
[k]
i →∞ in Theorem 1.4.

1.1. A strengthening. In the following, we present a strengthening of Conjecture 1.1
inspired by the notion of grids introduced in [AES16a] and by Bersudsky’s construction
of a moduli space [Ber19] which refines the results of [AES16a].

Consider the set of pairs (L, �), where L ⊂ Rn is a k-dimensional subspace and where
� ⊂ Rn is a lattice of full rank with the property that L ∩� is a lattice in L (L is
�-rational). We define an equivalence relation on these pairs by setting (L, �) ∼ (L′, �′)
whenever the following conditions are satisfied.
(1) L = L′.
(2) There exists g ∈ GLn(R) with det(g) > 0 such that g acts on L and L⊥ as scalar

multiplication and g� = �′.
We write [L, �] for the class of (L, �); elements of such a class are said to be homothetic
along L or L-homothetic to (L, �). We refer to the set Y of such equivalence classes as
the moduli space of basis extensions. Indeed, one can think of a lattice � such that L ∩�
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is a lattice as one choice of complementing the lattice L ∩� into a basis of Rn. The
equivalence relation is not very transparent in this viewpoint; see §6 for further discussion.

The moduli space Y is designed to incorporate subspaces as well as both shapes.
Clearly, we have a well-defined map

[L, �] ∈ Y �→ L ∈ Grn,k(R). (1.1)

The restriction of Q to L ∩� yields a well-defined element of Sk . Similarly, one may
check that L⊥ intersects the dual lattice �# in a lattice; the second shape is given by the
restriction of Q to L⊥ ∩�#.

We note that there is a natural identification of Y with a double quotient of a Lie group
(cf. Lemma 6.3) so that we may again speak of the ‘Haar measure’ on Y.

Conjecture 1.9. Let k, n ∈ N be integers such that k ≥ 3 and n− k ≥ 3. Then the sets

{([L, Zn] : L ∈ Hn,k
Q (D)} ⊂ Y

equidistribute with respect to the Haar measure as D →∞ along D ∈ N satisfying
Hn,k

Q (D) �= ∅.

Remark 1.10. (From Conjectures 1.9 to 1.1) When Q is unimodular (i.e. disc(Q) = 1),
Conjecture 1.9 implies Conjecture 1.1. Otherwise, Conjecture 1.9 implies equidistribution
of the triples (L, [L(Z)], [L⊥ ∩ (Zn)#]), where (Zn)# is the dual lattice to Zn under the
quadratic form Q: that is,

(Zn)# = {x ∈ Qn : 〈x, y〉Q ∈ Z for all y ∈ Zn}.
This is not significantly different, as the lattice L⊥ ∩ (Zn)# contains L⊥ ∩ Zn with index at
most disc(Q); nevertheless, it is insufficient to deduce Conjecture 1.1. In §6, we introduce
tuples [L, �L] that satisfy an analogue of Conjecture 1.9; this adapted conjecture implies
Conjecture 1.1

We prove the following theorem towards Conjecture 1.9.

THEOREM 1.11. Let k, n be integers with 3 ≤ k ≤ n− k and let p be an odd prime with
p � disc(Q). Let Di ∈ N be a sequence of integers with D

[k]
i →∞ andHn,k

Q (Di) �= ∅ for
every i. Then the sets

{([L, Zn] : L ∈ Hn,k
Q (Di)}

equidistribute in Y as i →∞ assuming, in addition, that p � Di if k ∈ {3, 4}.
Remark 1.12. As mentioned in Remark 1.6, the assumption k ≥ 3 and n− k ≥ 3 asserts
that the acting group underlying the problem is semisimple. There are instances where one
could overcome this obstacle: Khayutin [Kha21] proved equidistribution of grids when
(k, n) = (1, 3), as conjectured in [AES16a], using techniques from geometric invariant
theory.

1.2. Further refinements and questions. For an integral quadratic form q in k variables, a
primitive representation of q by Q is a Z-linear map ι : Zk → Zn such that Q(ι(v)) = q(v)
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for all v ∈ Zk and such that Qι(Zk) ∩Qn = ι(Zk). One can identify primitive represen-
tations of q with subspaces L ∈ Grn,k(Q) such that Q|L(Z) is equivalent to q. Given this
definition, one could ask about the distribution of the pairs

{(L, [L⊥(Z)]) : L ∈ Grn,k(Q) and Q|L(Z) is equivalent to q} (1.2)

inside Grn,k(R)× Sn−k when disc(q) →∞. The condition disc(q) →∞ here is not
sufficient; for example, when q represents 1 and Q represents 1 only on, say, ±v ∈ Zn,
then any primitive representation of q by Q must contain ±v. However, the subspaces
in Grn,k(R) containing ±v form a Zariski closed subset. Assuming that the minimal
value represented by q goes to infinity, the above question is very strongly related to
results of Ellenberg and Venkatesh [EV08], as are indeed our techniques in this article.
In principle, these techniques should apply to show that, under congruence conditions as
in Theorems 1.4 and 1.11, the pairs in (1.2) are equidistributed when qi is a sequence of
quadratic forms primitively representable by Q whose minimal values tend to infinity.

As alluded to in Remark 1.12, it would be interesting to know whether Khayutin’s
technique applies to show the analogue of Theorem 1.11 when, say, (k, n) = (2, 5), (2, 4).
The two cases are from quite different dynamical perspectives, as noted in Remark 1.6.

Furthermore, we note that this paper has various clear directions of possible generaliza-
tion. Most notably, this paper can be extended to indefinite forms. Let Q be an indefinite
integral quadratic form on Qn of signature (r , s). Here, we observe that SOQ(R) does not
act transitively on Grn,k(R). Indeed, the degenerate subspaces form a Zariski closed subset
(the equation being disc(Q|L) = 0). The complement is a disjoint union of finitely many
open sets on which SOQ(R) acts transitively; for each tuple (r ′, s′) with r ′ + s′ = k and
r ′ ≤ r , s′ ≤ s, such an open set is given by the subspaces L for which Q|L has signature
(r ′, s′). The analogue of the above conjectures and theorems can then be formulated by
replacing Grn,k(R) with one of these open sets. The proofs generalize without major
difficulties to this case; we refrain from doing so here for simplicity of the exposition.
Other directions of generalization include the number field case, which is not addressed in
any of the works prior to this article and is hence interesting in other dimensions as well.

1.3. Organization of the paper. This article consists of two parts. In Part 1—the ‘dynam-
ical’ part—we establish the necessary results concerning equidistribution of certain adelic
orbits. It is structured as follows.
• In §2.1, we prove various results concerning stabilizer subgroups of subspaces.
• In §3, we prove the homogeneous analogue of Theorem 1.11. The key ingredient of our

proof is an S-arithmetic extension of a theorem of Mozes and Shah [MS95] that was
proved by Gorodonik and Oh [GO11]. The arguments used in this section only work
when the dimension and codimension (that is, k and n− k) are at least three.

• In §4, we prove the homogeneous analogue of Theorem 1.4 for two-dimensional
subspaces (i.e. for k = 2). Contrary to the case of dimension and codimension at least
three, the groups whose dynamics we use are not semisimple (see Remark 1.6). In
particular, the theorem of Gorodonik and Oh [GO11] is not sufficient and more subtle
arguments, relying on Duke’s theorem [Duk88] and the trick mentioned in Remark 1.7,
are required.
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In Part 2, we deduce Theorems 1.4 and 1.11 from the homogeneous dynamics results proved
in §3 (k > 2) and §4 (k = 2) of the first part. More precisely, it is structured as follows.
• In §5.1, we prove that the discriminant of the orthogonal complement of a subspace is

equal to the discriminant of the subspace up to an essentially negligible factor.
• In §6, we study the moduli space of base extensions and show that it surjects

onto Grn,k(R)× Sk × Sn−k . From this, we prove that a slight strengthening of
Theorem 1.11 implies Theorem 1.4. In these considerations, it is useful to include
subspaces together with an orientation.

• In §7, we finally establish Theorems 1.4 and 1.11. The technique here is by now
standard—we interpret the sets in Theorem 1.11 as projections of the adelic orbits
in Part 1 (or a slight adaptation thereof).

In the appendix, we establish various complementary facts.
• In Appendix A, we discuss non-emptiness conditions for the set Hn,k

Q (D) when the

quadratic form Q is the sum of squares. In particular, we prove that Hn,k
Q (D) �= ∅ for

all n ≥ 5. The techniques here are completely elementary and we do not provide any
counting results.

• In Appendix B, we prove various facts complementing the discussion in §5.1. For
example, we prove that if L ∈ Grn,k(Q) is a subspace where k < n− k, then the
quadratic form on the orthogonal complement Q|L⊥(Z) is primitive up to negligible
factors.

1.4. Notation. Let VQ be the set of places of Q and denote by Qv for any v ∈ VQ the
completion at v. Given a subset S ⊂ VQ, we define the ring QS to be the restricted direct
product of Qp for p ∈ S with respect to the subgroups Zp for p ∈ S \ {∞}. Moreover, we
set ZS := Z[1/p : p ∈ S \ {∞}}. When S = VQ, we denote QS by A and call it the ring
of adeles. When, instead, S = VQ \ {∞}, we denote QS by Af and call it the ring of finite
adeles. Finally, we let Ẑ = ∏

p∈VQ\{∞} Zp.
Let G < SLN be a connected algebraic group defined over Q. We identify G(ZS) =

G(QS) ∩ SLN(ZS) with its diagonally embedded copy in G(QS). If G has no non-trivial
Q-characters (for example, when the radical of G is unipotent), the Borel–Harish–Chandra
theorem (see [PR94, Theorem 5.5]) yields that G(ZS) is a lattice in G(QS) whenever
∞ ∈ S. In particular, the quotient G(QS)/G(ZS) is a finite volume homogeneous space.
For g ∈ G(QS) and v ∈ S, gv denotes the v-adic component of g.

Whenever G is semisimple, we denote by G(QS)+ the image of the simply connected
cover in G(QS) (somewhat informally, this can be thought of as the part of G(QS) that is
generated by unipotents).

1.4.1. Quadratic forms. Throughout this article, (V , Q) is a fixed non-degenerate
quadratic space over Q of dimension n. The induced bilinear form is denoted by 〈·, ·〉Q. We
assume throughout that (V , Q) is positive definite. We also identify V with Qn and suppose
that 〈·, ·〉Q takes integral values on Zn × Zn, in which case we say that Q is integral.
Equivalently, the matrix representation MQ in the standard basis of Zn has integral entries.

We denote by OQ (respectively, SOQ) the orthogonal (respectively, special orthogonal)
group for Q. Recall that SOQ is abelian if dim(V ) = 2 and semisimple otherwise.
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We denote by SpinQ the spin group for Q, which is the simply connected cover of
SOQ if dim(V ) > 2. Explicitly, the spin group may be constructed from the Clifford
algebra of Q. We remark that this article contains certain technicalities that will use the
Clifford algebra—we refer to [Knu88] for a thorough discussion. The spin group comes
with an isogeny of Q-groups ρQ : SpinQ → SOQ which satisfies that, for any field K of
characteristic zero, we have an exact sequence (cf. [Knu88, p. 64])

SpinQ(K) → SOQ(K) → K×/(K×)2,

where the second homomorphism is given by the spinor norm. The isogeny ρQ induces an
integral structure on SpinQ. For example, SpinQ(Z) consists of elements g ∈ SpinQ(Q) for
which ρQ(g) ∈ SOQ(Z). To simplify notation, we will write g.v for the action of SpinQ on
a vector in n-dimensional linear space. Here, the action is naturally induced by the isogeny
ρQ (and the standard representation of SOQ).

Furthermore, we let Grn,k denote the Grassmannian of k-dimensional subspaces of V.
Note that this is a homogeneous variety for SOQ and (through the isogeny ρQ) also for
SpinQ. If we assume that Q is positive definite (as we always do), the action of SOQ(R)

on Grn,k(R) is transitive. Furthermore, in this case, the spinor norm on SOQ(R) takes
only positive values so that SpinQ(R) surjects onto SOQ(R) and, in particular, also acts
transitively.

We denote the standard positive definite form (i.e. the sum of n squares) by Q0 and
write SOn for its special orthogonal group. As Q0 and Q have the same signature, there
exists ηQ ∈ GLn(R) with det(ηQ) > 0 such that ηt

QηQ = MQ or, equivalently,

Q0(ηQx) = Q(x) (1.3)

holds for all x ∈ Rn (similarly for the induced bilinear forms). In particular, ηQ maps
pairs of vectors in V that are orthogonal with respect to Q onto pairs of vectors that are
orthogonal with respect to Q0. Also, η−1

Q SOn(R)ηQ = SOQ(R).

1.4.2. Quadratic forms on sublattices and discriminants. For any finitely generated
Z-lattice � < Qn (of arbitrary rank), the restriction of Q to � induces a quadratic form.
We denote by q� the representation of this form in a choice of basis of �. Hence, q� is
well defined up to equivalence (and not proper equivalence) of quadratic forms (i.e. up to
change of basis).

If � < Zn, q� is an integral quadratic form and we denote by gcd(q�) the greatest
common divisor of its coefficients (which is independent of the choice of basis). Note that
gcd(q�) is sometimes also referred to as the content of q� . We write q̃� = 1/gcd(q�)q�

for the primitive multiple of q� . If L ⊂ Qn is a subspace, we sometimes write qL instead
of qL(Z) for simplicity.

The discriminant discQ(�) of a finitely generated Z-lattice � < Qn is the discriminant
of q� . As at the beginning of the introduction, we write discQ(L) instead of discQ(L(Z))

for any subspace L ⊂ Qn. Given a prime p, we also define

discp,Q(L) = disc(Q|L(Zp)) ∈ Zp/(Z×p )2, (1.4)
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where L(Zp) = L(Qp) ∩ Zn
p. We have the following useful identity,

discQ(L) =
∏
p

pνp(discp,Q(L)), (1.5)

where the product is taken over all primes p and νp denotes the standard p-adic valuation.
Note that only primes dividing the discriminant contribute non-trivially.

1.4.3. Choice of a reference subspace. We fix an integer k ≤ n for which we always
assume that one of the following holds:
• k ≥ 3 and n− k ≥ 3;
• k = 2 and n− k ≥ 3; or
• k ≥ 3 and n− k = 2.
Let L0 ⊂ V be given by

L0 = Qk × {(0, . . . , 0)} ⊂ V . (1.6)

We adapt the choice of ηQ to this reference subspace L0 and suppose that the first k
column vectors in η−1

Q are an orthonormal basis of L0. This choice asserts that ηQ maps
L0(R) to L0(R) and hence L⊥

0 (R) to {(0, . . . , 0)} × Rn−k .

1.4.4. Ambient groups. The following subgroups of SLn will be useful throughout this
work: that is,

Pn,k =
{(

A B

0 D

)
∈ SLn : det(A) = det(D) = 1

}
,

Dn,k =
{(

A 0
0 D

)
∈ SLn : det(A) = det(D) = 1

}
,

where A is a k × k-matrix, D is an (n− k)× (n− k)-matrix and B is a k × (n− k)-matrix.
We denote by π1 (respectively, π2) the projection of Pn,k onto the upper-left (respectively,
bottom-right) block. We also define the group

G = SpinQ × Pn,k .

By Ḡ, we denote the Levi subgroup of G with B = 0: that is,

Ḡ = SpinQ × Dn,k � SpinQ × SLk × SLn−k .

Remark 1.13. With regard to the aforementioned groups we will need two well-known
facts. First, Dn,k is a maximal subgroup of Pn,k (which means that there is no connected
Q-group M with Dn,k � M � Pn,k) (see, for example, [AELM20, Proposition 3.2]).
Second, for any quadratic form q in d variables, SOq is maximal in SLd (see, for example,
[LS98] for a modern discussion of maximal subgroups of the classical groups).

1.4.5. Landau notation. In classical Landau notation, we write f � g for two positive
functions if there exist constants c, C > 0 with cf ≤ g ≤ Cf . If the constants depend on
another quantity a, we sometimes write f �a g to emphasize the dependence.
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2. Part 1: Homogeneous results
For an overview of the contents of this part, we refer the reader to §1.3.

2.1. Stabilizer groups. Recall that, throughout the article, Q is a positive definite integral
quadratic form on V = Qn. In particular, any subspace of Qn is non-degenerate with
respect to Q.

2.1.1. Stabilizers of subspaces. For any subspace L ⊂ Q
n
, we define the following

groups.
• HL < SpinQ is the identity component of the stabilizer group of L in SpinQ for the

action of SpinQ on Grn,k .
• H′

L < SOQ is the identity component of the stabilizer group of L in SOQ for the action
of SOQ on Grn,k .

Note that we have an isogeny HL → H′
L. Furthermore, the restriction to L (respectively,

L⊥) yields an isomorphism of Q-groups

H′
L → SOQ|L× SOQ|

L⊥ . (2.1)

To see this, one needs to check that the image does indeed consist of special orthogonal
transformations. This follows from the fact that the determinant of the restrictions is a
morphism with finite image and hence its kernel must be everything by connectedness. In
particular, we have the following cases.
• If k ≥ 3 and n− k ≥ 3, H′

L (and hence also HL) is semisimple.
• If k = 2 and n− k ≥ 3 (or k ≥ 3 and n− k = 2), H′

L is reductive.
• If k = 2 and n− k = 2 (which is not a case this paper covers), H′

L is abelian.

Remark 2.1. (Special Clifford groups and (2.1)) Although it might seem appealing to
suspect that HL is simply connected, this is actually false. The following vague and lengthy
explanation is not needed in what follows. Denote by M the special Clifford group of Q
and similarly by M1 (respectively M2) the special Clifford groups of Q|L (respectively,
Q|L⊥) for the duration of this remark—cf. [Knu88]. These are reductive groups whose
center is a one-dimensional Q-isotropic torus. We identify M1, M2 as subgroups of M
and write C for the center of M which is, in fact, equal to M1 ∩ M2. The natural map
φ : M1 × M2 → M has kernel {(x, y) ∈ C × C : xy = 1} so that

M1 × M2
/
{(x, y) ∈ C × C : xy = 1} � {g ∈ M : g preserves L}◦.

Furthermore, we have the spinor norm which is a character χ : M → Gm whose kernel is
the spin group. Similarly, we have spinor norms χ1, χ2 for M1 (respectively, M2), which
are simply the restrictions of χ . The above yields that

HL � {(g1, g2) ∈ M1 × M2 : χ(g1)χ(g2) = 1}/ker(φ),

which is isogenous (but not isomorphic) to SpinQ|L × SpinQ|
L⊥ .

The first result that we prove states that the group HL totally determines the subspace
L (up to orthogonal complements). This is given more precisely in the following
proposition. Recall that a non-trivial subspace W ⊂ V is non-degenerate if disc(Q|W) �= 0
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or, equivalently, if there is no non-zero vector w ∈ W so that 〈w, w′〉 = 0 for all w′ ∈ W .
This notion is stable under extension of scalars.

PROPOSITION 2.2. Let L1, L2 ≤ V be non-degenerate subspaces. If HL1 = HL2 , then
L1 = L2 or L1 = L⊥

2 .

The proposition follows directly from the following simple lemma.

LEMMA 2.3. Let L ⊂ V be a non-degenerate subspace and let W ⊂ V be a non-trivial
non-degenerate subspace invariant under H′

L. Then W ∈ {L, L⊥, V }.
Proof. First, we observe the following: over Q̄, H′

L acts transitively on the set of
anisotropic lines in L and in L⊥. Indeed, by Witt’s theorem [Cas78, p. 20], the special
orthogonal group in dimension at least two acts transitively on vectors of the same
quadratic value. In any two lines, one can find vectors of the same quadratic value by
taking roots.

Let w ∈ W be anisotropic and write w = w1 + w2 for w1 ∈ L and w2 ∈ L⊥. As w is
anisotropic, one of w1 or w2 must also be anisotropic; we suppose that w1 is anisotropic,
without loss of generality. Let h ∈ H′

L(Q̄) be such that hw1 �= w1 and hw2 = w2. Then

u := hw − w = hw1 − w1 ∈ L ∩W .

We claim that we can choose h so that u is anisotropic. Indeed, as w1 is anisotropic, its
orthogonal complement in L is non-degenerate (as L is non-degenerate). We can thus
choose h to map w1 to a vector orthogonal to it by the above variant of Witt’s theorem.
Then

Q(u) = Q(hw1)+Q(w1) = 2Q(w1) �= 0.

Now note that L ∩W is H′
L-invariant. By a further application of the above variant of

Witt’s theorem and the fact that L is spanned by anisotropic vectors (L is non-degenerate),
we obtain that L ∩W = L or, equivalently, L ⊂ W . Thus, we may write W = L⊕W ′,
where W ′ is an orthogonal complement to L in W and, in particular, is contained in L⊥.
The subspace W ′ must be non-degenerate because W and L are, and hence it is trivial
or contains anisotropic vectors. If W ′ is trivial, then W = L and the proof is complete.
Otherwise, we apply the above variant of Witt’s theorem and obtain that W ′ = L⊥ and
W = V .

An analogous statement holds for the relationship between quadratic forms and their
special stabilizer groups.

PROPOSITION 2.4. Let Q1, Q2 be rational quadratic forms on V. If SOQ1 = SOQ2 , then
Q1 = rQ2 for some r ∈ Q.

For a proof, see [AES16a, Lemma 3.3].

2.1.2. Maximality. We now aim to prove that, for any non-degenerate subspace L, the
connected Q-groups H′

L and HL are maximal subgroups. Here, maximal means among
connected and proper subgroups (as it was in Remark 1.13).
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PROPOSITION 2.5. For any non-degenerate subspace L ⊂ V , the groups H′
L and HL are

maximal.

The result above is well known and due to Dynkin, who classified the maximal
subgroups of the classical groups in [Dyn52] (see also the work of Liebeck and Seitz,
for example [LS98]). We will give an elementary proof.

Proof. Note that it suffices to prove the statement for H′
L. As L is non-degenerate, we may

choose an orthogonal basis of V consisting of an orthogonal basis of L and an orthogonal
basis of L⊥. Let

MQ =
(

M1 0
0 M4

)
with M1, M4 diagonal matrices

be the matrix representation of Q in this basis. Computing the Lie algebras of SOQ and
H′

L we obtain

g := Lie(SOQ) = {A ∈ Mat(n) : AT MQ +MQA = 0}
and

h := Lie(H′
L) =

{
A ∈ Mat(n) : A =

(
A1 0
0 A4

)
and AT

i Mi +MiAi = 0, i = 1, 4
}

.

We may split g in a direct sum h⊕ r, where r is an invariant subspace under the adjoint
action of H′

L on g. Explicitly, we may set

r =
{ (

0 A2

A3 0

)
: AT

2 M1 +M4A3 = 0
}

.

We claim that the representation of H′
L on r is irreducible. Note that we may also show

that the representation of SOQ|L × SOQ|
L⊥ on Mat(k, n− k) given by

((σ1, σ2), A) �→ σ1Aσ−1
2

is irreducible. Over Q̄, we may apply Lemma 2.6 below, from which this follows.
Now let M be a connected group containing H′

L and let m be its Lie algebra. Note that
m ∩ r is an invariant subspace under the adjoint action of H′

L on r. Since this representation
is irreducible, m ∩ r = {0} or m ∩ r = r. In the former case, we have that m = h and in the
latter m = g. It follows that H′

L is maximal and the proof is complete.

LEMMA 2.6. For any k, m ≥ 3, the action of SOk × SOm on Mat(k, m) by right-
multiplication (respectively, left-multiplication) is irreducible.

Proof. We write a very elementary proof for the sake of completeness. First, assume that
k, m ≥ 3. Note that the standard representation of SOk (respectively, SOm) is irreducible
as (note that, whenever k = 2, any isotropic vector is a fixed vector) k ≥ 3 (respectively,
m ≥ 3). It follows that the representation of SOk × SOm on the tensor product of the
respective standard representations is also irreducible (see, for example, [EGH+11,
Theorem 3.10.2]); the latter is isomorphic to the representation in the lemma.
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2.2. The isotropy condition. Here, we establish congruence conditions that imply
isotropy of the stabilizer groups HL. Recall that a Qp-group G is strongly isotropic if, for
every connected non-trivial normal subgroup N < G defined over Qp, the group N(Qp)

is not compact. We say that a Q-group G is strongly isotropic at a prime p if G is strongly
isotropic as a Qp-group.

PROPOSITION 2.7. Let (V ′, Q′) be any non-degenerate quadratic space over Qp. Then
Q′ is isotropic if and only if SpinQ′ is strongly isotropic.

Proof. If Q′ is isotropic, V ′ contains a hyperbolic plane H (see [Cas78, Ch. 2,
Lemma 2.1]). Then SpinQ′ contains SpinQ′|H , which is a split torus. Hence, SpinQ′ is
isotropic. Conversely, if Q′ is anisotropic, then SpinQ′(Qp) is compact as the hypersurface
Q′(x) = 1 is compact. This proves that Q′ is isotropic if and only if SpinQ′ is isotropic.
This is sufficient to prove the proposition if dim(V ′) = 2 (as the torus SpinQ′ is one
dimensional) and if dim(V ′) > 2 is not equal to 4 as SpinQ′ is absolutely almost simple in
these cases.

Suppose that dim(V ′) = 4. We freely use facts about Clifford algebras and spin groups
from [Knu88] (mostly Ch. 9 therein). Recall that SpinQ′ is equal to the norm one elements
of the even Clifford algebra C0 of Q′. If the center Z of C0 is a field over Qp, then C0 is
a quaternion algebra over Z and SpinQ′ is simple. In this case, the proof works as in the
case of dim(V ′) �= 4.

Suppose that the center is split, which is equivalent to disc(Q′) being a square in Qp.
Thus, there is a quaternion algebra B over Qp such that (V ′, Q′) is similar to (B, Nr),
where Nr is the norm on B. Then, SpinQ′ � SL1(B)× SL1(B), which is a product of two
Qp-simple groups. Note that B or SL1(B) are isotropic if and only if Q′ is isotropic. This
concludes the proof of the proposition.

By means of (2.1), we obtain the following corollary.

COROLLARY 2.8. Let L ∈ Grn,k(Q) and let p be an odd prime. Then, HL is strongly
isotropic at p if and only if the quadratic spaces (L, Q|L) and (L⊥, Q|L⊥) are isotropic
over Qp.

Using standard arguments (as in [AES16a, Lemma 3.7], for example) we may deduce
the following explicit characterization of isotropy.

PROPOSITION 2.9. Let L ∈ Grn,k(Q) be a rational subspace and let p be an odd prime.
Then, HL is strongly isotropic at p if any of the following conditions hold.
• k ≥ 5 and n− k ≥ 5.
• 3 ≤ k < 5, n− k ≥ 5 and p � discQ(L).
• k ≥ 5, 3 ≤ n− k < 5 and p � discQ(L⊥).
• 3 ≤ k < 5, 3 ≤ n− k < 5, p � discQ(L) and p � discQ(L⊥).
• k = 2, n− k ≥ 5 and −discQ(L) ∈ (F×p )2 (i.e. −discQ(L) is a non-zero square

modulo p).
• k = 2, 3 ≤ n− k < 5, p � discQ(L⊥) and −discQ(L) ∈ (F×p )2.
• k ≥ 5, n− k = 2 and −discQ(L⊥) ∈ (F×p )2.
• 3 ≤ k < 5, n− k = 2, p � discQ(L) and −discQ(L⊥) ∈ (F×p )2.
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Although the list is lengthy, let us note that half of it consists of interchanging the
roles of k and n− k as well as L and L⊥. Also, whenever p � disc(Q), the conditions
p � discQ(L) and p � discQ(L⊥) are equivalent (see Proposition 5.4 and its corollary).
When k = 4 or n− k = 4, the above criteria are sufficient but not necessary. For example,
the form x2

1 + x2
2 + x2

3 + px2
4 is isotropic although its discriminant is divisible by p.

2.3. Diagonal embeddings of stabilizer groups. In this section, we define a diago-
nally embedded copy �HL < SpinQ × Pn,k of the stabilizer group of any subspace
L ∈ Grn,k(Q).

With the arithmetic application in Part 2 in mind, we must allow any rational subspace
a choice of a full-rank Z-lattice �L ⊂ Qn with

Zn ⊂ �L ⊂ (Zn)# := {v ∈ Qn : 〈v, w〉 ∈ Z for all w ∈ Zn}.
If Q is unimodular (i.e. disc(Q) = 1), then �L = Zn = (Zn)#. We emphasize that, for the
arguments in the current Part 1, this choice of intermediate lattice �L is inconsequential
and the reader may safely assume that �L = Zn at first.

Let gL ∈ GLn(Q) be such that gLZ
n = �L, its first k columns are a basis of L ∩�L

and det(gL) > 0. In words, the columns of gL complement a basis of L ∩�L into an
oriented basis of �L. We then have a well-defined morphism with finite kernel


L : HL → Pn,k , h �→ g−1
L ρQ(h)gL. (2.2)

Note that the morphism depends on the choice of �L, but we omit this dependency here
to simplify notation. It also depends on the choice of basis; a change of basis conjugates

L by an element of Pn,k(Z).

One can restrict the action of an element of HL to L and represent the so-obtained
special orthogonal transformation in the basis contained in gL. This yields an epimorphism
(as in (2.1))

ψ1,L : HL → SOq
L∩�L

.

Explicitly, the epimorphism is given by

ψ1,L : h ∈ HL �→ π1(g
−1
L ρQ(h)gL) = π1 ◦
L(h) ∈ SOq

L∩�L
.

Similarly to the above, one can obtain an epimorphism HL → SOQ|
L⊥ . To make this

explicit, we would like to specify how to obtain a basis of L⊥ ∩�#
L from gL. To do this,

observe first that the basis dual to the columns of gL is given by the columns of M−1
Q (g−1

L )t .
Note that the last n− k columns of M−1

Q (g−1
L )t are orthogonal to L so they form a basis of

�#
L ∩ L⊥. Hence, we obtain an epimorphism

ψ2,L : h ∈ HL �→ π2(g
t
LMQρQ(h)M−1

Q (g−1
L )t ) ∈ SOq

L⊥∩�#
L

.

Note that

gt
LMQρQ(h)M−1

Q (g−1
L )t = gt

LρQ(h−1)t (g−1
L )t = (g−1

L ρQ(h−1)gL)t ,
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which shows that

ψ2,L(h) = π2((g
−1
L ρQ(h−1)gL)t ) = π2(g

−1
L ρQ(h−1)gL)t = π2(
L(h−1))t .

We define the group

�HL = {(h, 
L(h)) : h ∈ HL} ⊂ SpinQ × Pn,k = G. (2.3)

By the definitions above, the morphism

G → Ḡ, (g1, g2) �→ (g1, π1(g2), π2(g
−1
2 )t )

induces a morphism

�HL → {(h, ψ1,L(h), ψ2,L(h)) : h ∈ HL} =: �H̄L ⊂ Ḡ,

which is, in fact, an isogeny.

3. The dynamical version of the theorem in codimension at least three
As mentioned in the introduction, our aim is to translate the main theorems into a statement
concerning weak∗ limits of orbit measures on an adequate adelic homogeneous space.
In this and the next section, we shall establish these equidistribution theorems for orbit
measures. This section treats the case k, n− k ≥ 3.

In the following we call a sequence of subspaces Li ∈ Grn,k(Q) admissible if:
(1) discQ(Li) →∞ as i →∞;
(2) disc(q̃Li

) →∞ as i →∞;
(3) disc(q̃L⊥i

) →∞ as i →∞; and
(4) there exists a prime p such that HLi

(Qp) is strongly isotropic for all i.
This section establishes the following theorem. Conjecturally, an analogous version

should hold when k = 2 or n− k = 2 (see Remark 1.12).

THEOREM 3.1. Let Li ∈ Grn,k(Q) be an admissible sequence of rational subspaces (with
a choice of lattice �Li

as in §2.3), let gi ∈ G(R) and let μi be the Haar probability
measure on the closed orbit

gi�HLi
(A)G(Q) ⊂ G(A)

/
G(Q).

Then μi converges to the Haar probability measure on G(A) / G(Q) as i →∞.

The rest of the section is devoted to proving Theorem 3.1. We remark that the notion
of admissible sequences here is an ad hoc notion that appeared in other instances (see, for
example, [AEW22]) to achieve a similar goal. The assumptions (1)–(3) in the definition
of admissibility are, in fact, necessary for the above theorem to hold while (4) can
conjecturally be removed.

3.1. A general result on equidistribution of packets. The crucial input to our results is
an S-arithmetic extension of a theorem of Mozes and Shah [MS95] by Gorodnik and Oh
[GO11]. We state a version of it here for the reader’s convenience.

Let G be a simply connected connected semisimple algebraic group defined over Q

and YA = G(A)/G(Q). Let W be a compact open subgroup of G(Af ). We denote by
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Cc(YA, W) the set of all continuous compactly supported functions on YA which are W
invariant. Consider a sequence (Hi )i∈N of connected semisimple subgroups of G and let
μi denote the Haar probability measure on the orbit Hi (A)+G(Q) ⊂ YA, where Hi (A)+
is the image of the adelic points of the simply connected cover of Hi in Hi (A). For given
gi ∈ G(A), we are interested in the weak* limits of the sequence of measures giμi .

THEOREM 3.2. (Gorodnik and Oh [GO11, Theorem 1.7]) Assume that there exists a prime
p such that Hi is strongly isotropic at p for all i ∈ N. Then, for any weak∗ limit of the
sequence (giμi) with μ(YA) = 1, there exists a connected Q-group M < G such that the
following hold.
(1) For all i large enough, there exist δi ∈ G(Q) such that:

δ−1
i Hiδi ⊂ M.

(2) For any compact open subgroup W of G(Af ), there exists a finite-index normal
subgroup M0 = M0(W) of M(A) and g ∈ G(A) such that μ agrees with the Haar
probability measure on gM0G(Q) when restricted to Cc(YA, W). Moreover, there
exists hi ∈ Hi (A)+ such that gihiδi → g as i →∞.

(3) If the centralizers of Hi are Q-anisotropic for all i ∈ N, then M is semisimple. More-
over, for any compact open subgroup W, M0 = M0(W) in 2 contains M(A)+M(Q).

We remark that the theorem as stated in [GO11] does not assume that G is simply
connected; we will, however, need only this case.

3.2. Proof of Theorem 3.1. We prove Theorem 3.1 in several steps and start with a short
overview. Note that we have a morphism

G → Ḡ = SpinQ × SLk × SLn−k

given by mapping g ∈ Pn,k to (π1(g), π2(g
−1)t ) and SpinQ to itself via the identity map

(see also §2.3). The first step of the theorem establishes equidistribution of the projec-
tions to the respective homogeneous quotients for SpinQ, SLk , SLn−k (henceforth called
‘individual equidistribution’). The second step is the analogous statement for Ḡ. Note
that the admissibility assumption on the sequence of subspaces Li is used for individual
equidistribution and, in fact, the different conditions (1)–(3) imply the corresponding
individual equidistribution statements (i.e. (1) implies equidistribution in the homogeneous
quotient SpinQ(A) / SpinQ(Q) etc.).

To briefly outline the argument here, consider a sequence of orbits

g′iHLi
(A)SpinQ(Q) ⊂ SpinQ(A)

/
SpinQ(Q).

As the groups HLi
are maximal subgroups, the theorem of Gorodnik and Oh above

implies that either the orbits are equidistributed or that there exist lattice elements δi so
that δiHLi

δ−1
i is eventually independent of i. In the latter case, we also know that the

lattice elements are up to a bounded amount in the stabilizer group; this will be shown to
contradict the assumption that discQ(Li) →∞.
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3.2.1. Applying Theorem 3.2. Consider the subgroup J = SpinQ × SLn. Note that J is
semisimple and simply connected so that we may apply Theorem 3.2 given a suitable
sequence of subgroups.

The groups HLi
are potentially not simply connected, so a little more care is needed in

applying Theorem 3.2 to the orbit measures μi . We fix, for any i, some hi ∈ �HLi
(A)

and consider the orbit measures on gihi�HLi
(A)+G(Q). In view of the theorem, it

suffices to show that these converge to the Haar probability measure on G(A) / G(Q).
Indeed, by disintegration, the Haar measure on gi�HLi

(A)G(Q) is the integral over the
Haar measures on gihi�HLi

(A)+G(Q) when hi is integrated with respect to the Haar
probability measure on the compact group �HLi

(A)/�HLi
(A)+. In other words, the Haar

measure on gi�HLi
(A)G(Q) is a convex combination of the Haar measures on the orbits

gihi�HLi
(A)+G(Q). To simplify notation, we replace gi by gihi in order to omit hi .

Furthermore, we abuse notation and write μi for these ‘components’ of the original orbit
measures.

We fix a compact open subgroup W of G(Af ) in view of (2)(b) in Theorem 3.2 and an
odd prime p as in the definition of admissibility of the sequence (Li)i .

Let μ be any weak∗-limit of the measures μi . Note that μ is a probability measure.
Indeed, the pushforward of the measures μi to SpinQ(A)/SpinQ(Q) has to converge
to a probability measure as SpinQ(A)/SpinQ(Q) is compact. We let M < J be as in
Theorem 3.2. Because gi ∈ G(A) and �HLi

< G for all i, the support of the measures
μi is contained in G(A)J(Q) � G(A) / G(Q). Thus, M < G.

CLAIM. It suffices to show that M = G.

Proof of the claim. Suppose that M = G. Let M0 = M0(W) be as in Theorem 3.2. Since
G(A) has no proper finite-index subgroups [BT73, Theorem 6.7], we have M0 = G(A)

(independently of W). Therefore, for any W-invariant continuous compactly supported
function f, the integral μ(f ) agrees with the integral against the Haar measure on
G(A)/G(Q). But any continuous compactly supported function is invariant under some
compact open subgroup W; hence, the claim follows.

We now focus on proving that M = G. By Theorem 3.2, there exist δi ∈ G(Q) such
that δ−1

i �HLi
δi < M for all i ≥ i0. Furthermore, we fix g ∈ G(A) as well as ĥi =

(hi , 
Li
(hi)) ∈ �HLi

(A)+, as in Theorem 3.2, such that

giĥiδi → g. (3.1)

3.2.2. Individual equidistribution of subspaces and shapes. Consider the morphism

G → Ḡ = SpinQ × SLk × SLn−k . (3.2)

In the following step of the proof, we show that the image M̄ of the subgroup M via (3.2)
projects surjectively onto each of the factors of Ḡ.

PROPOSITION 3.3. The morphism obtained by restricting the projection of Ḡ onto any
almost simple factor of Ḡ to M is surjective.
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Proof. We prove the proposition for each factor separately. To ease notation, π will
denote the projection of Ḡ onto the factor in consideration, which we extend to G by
precomposition.

First factor: As π(�HLi
) = HLi

, we have, for each i,

π(δi)
−1HLi

π(δi) < π(M).

Since HLi
is a maximal subgroup of SpinQ (see Proposition 2.5), there are two options:

either π1(M) = SpinQ or π(δi)
−1HLi

π(δi) = π(M) for all i ≥ i0.
Suppose the second option holds (as the proof is complete otherwise). Setting

γi = π(δiδ
−1
i0

) and L = Li0 ,

Hγi .L = γiHLγ−1
i = HLi

.

By Proposition 2.2, we have γi .L = Li or γi .L⊥ = Li ; by changing to a subsequence and
increasing i0, we may suppose that the former option holds for all i ≥ i0. By (3.1) there
exist hi ∈ HLi

(A) such that π(gi)hiγi → π(g′) for some g′ ∈ G(A). Roughly speaking,
this implies that Li = hiγi .L → π(g).L as Qp-subspaces for any prime p contradicting
the discriminant condition. More precisely, let εi → e be such that π(gi)hiγi = εiπ(g′).
Then, for any prime p, the local discriminant gives

discp,Q(Li) = discp,Q(hi,pγi .L). = discp,Q(εi,pπ(g′p).L)

If i is large enough such that εi ∈ SpinQ(R× Ẑ),

discQ(Li) =
∏
p

pνp(discp,Q(Li)) =
∏
p

pνp(discp,Q(π(g′p).L)),

which is constant, contradicting that discQ(Li) →∞.
Second factor: The proof is very similar to the first case, so we will be brief. By

maximality of special orthogonal groups (Remark 1.13) and as π(�HLi
) = SOq

Li∩�Li

,

we may suppose, by contradiction, that, for all i ≥ i0,

π(δi)
−1SOq

Li∩�Li

π(δi) = π(M).

We simplify notation and write qi for the least integer multiple of q
Li∩�Li

that has integer
coefficients. Since Li ∩�Li

and Li(Z) are commensurable with indices controlled by
disc(Q), we have disc(qi) � disc(qLi

) and disc(q̃i) � disc(q̃Li
). In particular, by our

assumption, disc(q̃i) →∞ as i →∞.
Set γi = π(δiδ

−1
i0

) ∈ SLk(Q) so that

SOγi q̃i0
= SOγiqi0

= γiSOq
Li0

γ−1
i = SOqi

= SOq̃i
. (3.3)

By Proposition 2.4, there exist coprime integers mi , ni such that

miγi q̃i0 = niq̃i .
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Using (3.1), write π(gi)hiγi = εiπ(g′) for some g′ ∈ G(A) and εi → e. By (3.3),
hi(γi q̃i0) = γi q̃i0 . Thus, for any prime p,

miεi,pπ(g′p)q̃i0 = mihi,pγi q̃i0 = niq̃i .

The form π(g′p)q̃i0 is a form over Qp with trivial denominators for all but finitely many p.
Applying εi,p for large i does not change this. Furthermore, mi needs to divide all
denominators of q̃i0 over Zp for all i as q̃i is primitive. Hence, mi can only assume finitely
many values and, by reversing roles, one can argue the same for ni . For any prime p,

discp(q̃i) = pordp(mi/ni )discp(π(g′p)q̃i0),

and hence

disc(q̃i) = mi

ni

∏
p

pordp(discp(π(g′p)q̃i0 )),

which is in contradiction to disc(q̃i) →∞.
Third factor: The proof here is the same as for the second factor. We do, however, point

out that the morphism G → Ḡ was constructed to satisfy that, for any h ∈ HLi
, we have

π((h, 
Li
(h)) = ψ2,Li

(h) and hence π(�HLi
) = SOq

L⊥
i
∩�#

Li

.

Remark 3.4. We recall from the beginning of §3.2 that the first three conditions in
admissibility were used in this order for the three factors in the above proof. This has
a consequence: if Li ∈ Grn,k(Q) is any sequence of subspaces satisfying properties (1)
and (4), then, for any gi ∈ SpinQ(R), the packets

giHLi
(A)SpinQ(Q) ⊂ SpinQ(A)

/
SpinQ(Q)

are equidistributed as i →∞. This can be used to obtain equidistribution of Hn,k
Q (D) ⊂

Grn,k(R) without any restrictions on the k-power free part of D (as opposed to our main
theorems in the introduction).

3.2.3. Simultaneous equidistribution of subspaces and shapes. Proposition 3.3 shows
that the image M̄ of M under (3.2) satisfies that the projection onto each simple factor of
Ḡ is surjective. We claim that this implies that M̄ = Ḡ.

We first show that the projection of M̄ to SLk × SLn−k is surjective. Note that
any proper subgroup of SLk × SLn−k with surjective projections is the graph of an
isomorphism SLk → SLn−k . In particular, the intermediate claim is finished if k �= n− k.
Suppose that k = n− k and choose, for some i ≥ i0, an element h ∈ HLi

acting trivially
on Li but not trivially on L⊥

i . The projection of g−1
Li

ρQ(h)gLi
to the first (respectively, the

second) SLk is trivial (respectively, non-trivial); the projection of M̄ to SLk × SLn−k thus
contains elements of the form (e, g) with g �= e. This rules out graphs under isomorphisms
and concludes the intermediate claim.

Now note that M̄ projects surjectively onto SpinQ and SLk × SLn−k and that the latter
two Q-groups do not have isomorphic simple factors. By an argument similar to that above,
we deduce that M̄ = Ḡ.
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3.2.4. Handling the unipotent radical. We now turn to proving that M = G, which
concludes the proof of the theorem. By §3.2.3, we know that M surjects to Ḡ. In particular,
by the Levi–Malcev theorem, there exists some element in the unipotent radical of Pn,k

yC =
(

Ik C

0 In−k

)
∈ Pn,k(Q)

such that M contains SpinQ × yCDn,ky
−1
C . By maximality of the latter group

(cf. Remark 1.13), M is either equal to G or

M = SpinQ × yCDn,ky
−1
C .

Assume, by contradiction, the latter. The inclusion δ−1
i �HLi

δi ⊂ M implies that

δ−1
2,i g−1

Li
ρQ(h)gLi

δ2,i ∈ yCDn,ky
−1
C ,

where δ2,i denotes the second coordinate of the element δi ∈ G(Q) = SpinQ(Q)×
Pn,k(Q). Since yCDn,ky

−1
C stabilizes two subspaces, namely, yCL0 = L0 and

L′ = yC({(0, . . . , 0)} ×Qn−k), the conjugated group gLi
δi,2yCDn,ky

−1
C δ−1

i,2 g−1
Li

fixes
the subspaces

gLi
δi,2L0 = gLi

L0 = Li and gLi
δi,2L

′.

As HLi
fixes exactly the subspaces Li , L⊥

i , we must have

L⊥
i = gLi

δi,2L
′ (3.4)

for all i. We denote by vi
1, . . . , vi

n the columns of gLi
, which is a basis of �Li

, and by
wi

1, . . . , wi
n its dual basis. Recall that wi

k+1, . . . , wi
n form a basis of �#

Li
∩ L⊥

i . By (3.4),
there exists a rational number αi ∈ Q× such that

αi(w
i
k+1 ∧ · · · ∧ wi

n) = gLi
δi,2yC(ek+1 ∧ · · · ∧ en). (3.5)

To simplify notation, we set ηi = δi,2yC .
We first control the numbers αi . From (3.1), we know that there are hi ∈ HLi

such that

g2,ig
−1
Li

ρQ(hi)gLi
ηi → g′

for some g′ ∈ Pn,k(A). For i large enough, there exist εi ∈ Pn,k(R× Ẑ) with
g2,ig

−1
Li

ρQ(hi)gLi
ηi = εig

′. We now fix a prime p so that ρQ(hi,p)gLi
ηi = gLi

εi,pg′p
(as g2,i ∈ G(R)). Applying ρQ(hi,p) to (3.4), we obtain

αi(w
i
k+1 ∧ · · · ∧ wi

n) = gLi
εi,pg′p(ek+1 ∧ · · · ∧ en).

Considering that the vectors wi
k+1 ∧ · · · ∧ wi

n and ek+1 ∧ · · · ∧ en are primitive (see, for
example, [Cas97, Ch. 1, Lemma 2]) and that gLi

and g′p have bounded denominators, this
shows that the denominators and numerators of the numbers αi are bounded independently
of i.

We now compute the discriminant of the lattice spanned by wi
k+1, . . . , wi

n in two ways.
First, note that, as wi

k+1, . . . , wi
n is a basis of �#

Li
∩ L⊥

i , the discriminant in question
is equal to the discriminant of �#

Li
∩ L⊥

i and hence � discQ(Li). For the second way,
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observe that, by (3.5), the discriminant of the lattice spanned by wi
k+1, . . . , wi

n is given by
α−1

i multiplied by the determinant of the matrix with entries

〈gLi
ηiej , wi

m〉Q with j , m > k. (3.6)

(One conceptual way to see this is the following: the bilinear form 〈·, ·〉Q induces a bilinear
form 〈·, ·〉∧n−k Q

on the wedge product
∧n−k Qn by defining it on pure wedges through

〈v1 ∧ · · · ∧ vn−k , w1 ∧ · · · ∧ wn−k〉∧n−k Q
= det(〈vi , wj 〉Q).

This definition asserts that the discriminant of a rank n− k lattice is the quadratic value
of the wedge product of any of its bases. Equation 3.6 is then obtained by replacing one of
the wedges in 〈wi

k+1 ∧ · · · ∧ wi
n, wi

k+1 ∧ · · · ∧ wi
n〉∧n−k Q

via (3.5).)

To compute this determinant, write ηiej = ∑
� ai

�j e� for all j > k so that

gLi
ηiej =

∑
�

ai
�j v

i
�.

Using that {wi
l } are dual vectors to {vi

l }, we compute

〈gLi
ηiej , wi

m〉Q =
∑

�

ai
�j 〈vi

�, wi
m〉Q = ai

mj

for all m, j > k. This implies that the determinant of the matrix with entries (3.6) is equal
to the determinant of the lower right-hand block of the matrix ηi . As the latter is equal to
one, we conclude that the discriminant of the lattice spanned by wi

k+1 ∧ · · · ∧ wi
n is equal

to α−1
i .

To summarize, we have established the identity

discQ(�#
Li
∩ L⊥

i ) = α−1
i .

Since the left-hand side of this identity goes to infinity as i →∞ (because � discQ(Li))
whereas the right-hand side is bounded, we have reached a contradiction. It follows that
M = G, and hence the proof of Theorem 3.1 is complete.

4. The dynamical version of the theorem in codimension 2
In the following, we prove the analogue of Theorem 3.1 for the case k = 2 and n− k ≥ 3
(i.e. n ≥ 5) ignoring the unipotent radical (cf. Remark 1.12); the case n− k = 2, k ≥ 3
is completely analogous and can be deduced by passing to the orthogonal complement.
Contrary to cases treated in §3, the groups whose dynamics we use are not semisimple and
have a non-trivial central torus (see also Remark 1.6).

Recall the following notation (for k = 2).
• Ḡ = SpinQ × SL2 × SLn−2 (here, the ambient group).
• �H̄L = {(h, ψ1,L(h), ψ2,L(h)) : h ∈ HL} (here, the acting group) for any L ∈

Grn,k(Q), where ψ1,L (respectively, ψ2,L) is roughly the restriction of the action
of h to L (respectively, L⊥) (cf. §2.3).

• For any L ∈ Grn,2(Q), a choice of intermediate lattice Zn ⊂ �L ⊂ (Zn)# (also
implicit in the definition of �H̄L). For simplicity, we also assume here that
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�L ∩ L = L(Z) and �#
L ∩ L⊥ = L⊥(Z); such a choice will be constructed later

(cf. Proposition 6.6). Again, if Q is unimodular, �L = Zn satisfies this property.

THEOREM 4.1. Let Li ∈ Grn,2(Q) for i ≥ 1 be an admissible sequence of rational
subspaces and let gi ∈ Ḡ(R) be such that gi�H̄Li

(R)g−1
i = �H̄L0(R). Let μi be the Haar

probability measure on the closed orbit

gi�H̄Li
(A)Ḡ(Q) ⊂ Ḡ(A)

/
Ḡ(Q).

Then μi converges to the Haar probability measure on Ḡ(A) / Ḡ(Q) as i →∞.

We will structure the proof somewhat differently as equidistribution in the first
component turns out to be the most difficult challenge in the proof. We fix an admissible
sequence of subspaces Li and a prime p, as in the definition of admissibility.

Recall (cf. §2.1.1) that, for any L ∈ Grn,2(Q), the group HL is not semisimple but only
reductive. Let us describe the center as well as the commutator subgroup of HL. Define
the pointwise stabilizer subgroup

Hpt
L = {g ∈ SpinQ : g.v = v for all v ∈ L}.

The center of HL is equal to Hpt
L⊥ , which we denote by TL for simplicity, as it is abelian

in this case. The commutator subgroup of HL is the semisimple group Hpt
L and HL is

isogenous to Hpt
L × TL (see Remark 2.1). As in §3, one can use the measure rigidity

result of Gorodnik and Oh [GO11], this time for subgroups of the form Hpt
L . These are,

however, non-maximal so that we need to put in extra effort to rule out intermediate
groups. (Roughly speaking, the obstacle to overcome are ‘short vectors’ in L. Ellenberg
and Venkatesh [EV08] prove the theorem we are alluding to here assuming that L does not
contain ‘short vectors’ (see also Proposition 4.7).) Here, we use an averaging procedure
involving the torus TL as well as Duke’s theorem [Duk88] to show that these obstructions
typically do not occur.

We now outline the structure of the proof.
• In §4.1, we show (in Lemma 4.4) that it is sufficient to prove equidistribution in each

of the factors of Ḡ, that is, to show equidistribution of the projections of the packets in
Theorem 4.1 to

SpinQ(A)
/

SpinQ(Q), SL2(A)
/

SL2(Q), SLn−2(A)
/

SLn−2(Q). (4.1)

As mentioned in Remark 1.7, we use the elementary fact that ergodic systems are
disjoint from trivial systems for this reduction (see Lemma 4.2).

• To prove equidistribution in each of the factors of Ḡ, we first note that equidistribution
in the third factor can be verified as in §3, Proposition 3.3. Equidistribution in the
second factor turns out to be a variant of Duke’s theorem [Duk88], which we discuss
in §4.2.

• Due to the difficulties described above, equidistribution in the first factor of Ḡ is the
hardest to prove (cf. §4.3) and implies Theorem 4.1 by the first two items in this list.
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In §4.3.2, we collect a useful corollary of the above variant of Duke’s theorem which
we then use in Lemma 4.10 to prove that the subspaces in the packet do not contain
short vectors on average.

4.1. Reduction to individual equidistribution. As explained, we begin by reducing
Theorem 4.1 to the corresponding equidistribution statement in each of the factors of Ḡ.
To this end, we will use the following elementary fact from abstract ergodic theory.

LEMMA 4.2. Let X1 = (X, B1, μ1, T1) and X2 = (X2, B2, μ2, T2) be measure-preserving
systems. Suppose that X1 is ergodic and that X2 is trivial (that is, T2(x) = x for μ2-almost
every x ∈ X2). Then the only joining of X1 and X2 is μ1 × μ2.

Proof. Let ν be a joining and let A1 × A2 ⊂ X1 ×X2 be measurable. It suffices to show
that ν(A1 × A2) = μ1(A1)μ2(A2). By T1 × T2-invariance of ν,

ν(A1 × A2) =
∫

X1×X2

1A1(x1)1A2(x2) dν(x1, x2)

= 1
M

M−1∑
m=0

∫
X1×X2

1A1(T
m

1 x1)1A2(T
m

2 x2) dν(x1, x2).

As X1 is ergodic, there is a μ1-conull set B1 ⊂ X1 with

1
M

M−1∑
m=0

1A1(T
m
1 (x)) → μ1(A1)

for every x ∈ B1, by Birkhoff’s ergodic theorem. As X2 is trivial, there is a μ2-conull set
B2 with T2(x) = x for all x ∈ B2. We let B = B1 × B2 and note that B has full measure
as it is the intersection of the full-measure sets B1 ×X2 and X1 × B2 (we use, here, that
ν is a joining). Therefore,

ν(A1 × A2) = 1
M

M−1∑
m=0

∫
B

1A1(T
m
1 x1)1A2(T

m
2 x2) dν(x1, x2)

= 1
M

M−1∑
m=0

∫
B

1A1(T
m
1 x1)1A2(x2) dν(x1, x2)

=
∫

B

1
M

M−1∑
m=0

1A1(T
m
1 x1)1A2(x2) dν(x1, x2)

→
∫

B

μ1(A1)1A2(x2) dν(x1, x2) = μ1(A1)μ2(A2),

as claimed.

We aim to apply Lemma 4.2 to any weak∗-limit μ of the measures in Theorem 4.1.
Thus, we need to establish some invariance of the latter. Let p be as in the definition of
admissibility.
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LEMMA 4.3. There exists g ∈ GLn(Qp) with the following property. Let L ∈ Grn,2(Qp)

be the subspace spanned by the first two columns of g. Then μ is invariant under the
subgroup of �H̄L(Qp) ⊂ Ḡ(Qp), where

�H̄L = {(h, π1(g
−1ρQ(h)g), π2(g

−1ρQ(h−1)g)t ) : h ∈ HL}.
Moreover, the Qp-group �H̄L is strongly isotropic.

Proof. First, we prove that there exists a compact subset K ⊂ GLn(Qp) such that gLi
∈ K

for all i ∈ N. Recall that gLi
consists of a basis of an intermediate lattice Zn ⊆ �Li

⊆
(Zn)# (cf. §2.3). The set K of elements g ∈ GLn(Qp) with Zn

p ⊂ gZn
p ⊂ (Zn

p)# is compact
(in fact, it consists of finitely many cosets modulo GLn(Zp) on the right).

By compactness of K, we may assume (by passing to a subsequence) that the sequence
(gLi

)i∈N converges to some g ∈ K . Let L denote the Qp-plane spanned by the first two
columns of g. Note that μ is �H̄L(Qp)-invariant because each μi is �H̄Li

(Qp)-invariant.
Therefore, we are left to show that L is non-degenerate and �H̄L(Qp) is strongly isotropic.

We observe that L and L⊥ are non-degenerate. Indeed, since gLi
→ g, there exist

Zp-bases of the subspaces Li which converge towards a basis of L. Taking discriminants
of Li and L with respect to these bases, we obtain

discp,Q(Li) → discp,Q(L).

Since Z×p /(Z×p )2 is discrete, discp,Q(Li) is eventually constant and therefore discp,Q(L) =
discp,Q(Li) for i large enough; non-degeneracy of L follows. In particular, L⊥ is
non-degenerate.

We may now use Corollary 2.8 to show that �H̄L or, equivalently, that HL is strongly
isotropic. Since HLi

is strongly isotropic at p, the quadratic spaces (Q|Li
, Li) and

(Q|L⊥i , L⊥
i ) are isotropic over Qp. By isotropy of the spaces (Q|Li

, Li), we have a
sequence of non-zero primitive vectors vi ∈ Li(Zp) such that Q(vi) = 0 (after multiplying
with denominators). By compactness of Zn

p \ pZn
p, the sequence vi admits a limit v ∈

Zn
p \ pZn

p after passing to a subsequence. This limit clearly satisfies v ∈ L(Zp) and
Q(v) = 0, so (Q|L, L) is isotropic. An identical argument proves that (Q|L⊥ , L⊥) is also
isotropic, which proves (cf. Corollary 2.8) that HL is a strongly isotropic group. The proof
is complete.

Recall that ψ1,L, ψ2,L denote the epimorphisms HLi
→ SOqLi

, HLi
→ SOq

L⊥
i

, respec-

tively.

LEMMA 4.4. Suppose that individual equidistribution holds, i.e. that:
(1) gi,1HLi

(A)SpinQ(Q) is equidistributed in SpinQ(A) / SpinQ(Q);
(2) gi,2ψ1,L(HLi

(A))SL2(Q) is equidistributed in SL2(A) / SL2(Q); and
(3) gi,3ψ2,L(HLi

(A))SLn−2(Q) is equidistributed in SLn−2(A) / SLn−2(Q).
Then Theorem 4.1 holds.

Proof. Let μ be a weak∗-limit and choose L as in Lemma 4.3. By assumption, μ is a
joining with respect to the Haar measures on each factor. We proceed in two steps and
apply Lemma 4.2 once in each step.
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For the first step, we choose h ∈ HL(Qp), which acts trivially on L but non-trivially
on L⊥. As HL(Qp) is strongly isotropic, we can choose h so that it is unipotent and
not contained in any normal subgroup of SpinQ(Qp). Since SpinQ is simply connected
and SpinQ(Qp) is isotropic, SpinQ has strong approximation with respect to {p} (see,
for example, [PR94, Theorem 7.12]). In particular, SpinQ(Qp) acts ergodically on X1 =
SpinQ(A) / SpinQ(Q) with respect to the Haar measure on X1. By Mautner’s phenomenon
(see [MT96, §2] for this instance), h also acts ergodically. Embedding h diagonally (using
the embedding in Lemma 4.3), we can apply Lemma 4.2 for X1, as above, and for
X2 = SL2(A) / SL2(Q) and obtain that the pushforward of μ to X1 ×X2 is the Haar
measure.

For the second step, we proceed similarly. Choose h ∈ HL(Qp), which acts trivially
on L⊥ but non-trivially on L. One checks that h acts ergodically on X1 ×X2 (via
π2(g

−1ρQ(h−1)g)t on the second factor; cf. Lemma 4.3). Applying Lemma 4.2 again
for X1 ×X2 and for X3 = SLn−2(A) / SLn−2(Q), we obtain the claim.

We prove the conditions of Lemma 4.4 in an order that is potentially peculiar at
first sight. The third assertion can be proved exactly as in §3 by applying [GO11] (see
Proposition 3.3) so we omit it here.

4.2. Individual equidistribution in the second factor. The aim of this section is to prove
the second assertion of Lemma 4.4. It follows from Duke’s theorem [Duk88] and its
generalizations (see, for example, [ELMV11, HM06]. Note that

gi,2ψ1,L(HLi
(A))SL2(Q) ⊂ gi,2SOqLi

(A)SL2(Q).

Although the right-hand side is equidistributed by Duke’s theorem (specifically, for
example, by [ELMV11, Theorem 4.6] or—as we assume a splitting condition—by
[Wie19]), one needs to verify that the left-hand side has sufficiently large ‘volume’.

PROPOSITION 4.5. For L ∈ Grn,2(Q) and any field K of characteristic zero, the image
ψ1,L(HL(K)) contains the group of squares in the abelian group SOqL

(K).

Proof. The proof is surprisingly involved. First, observe that ψ1,L(HL(K)) contains
ψ1,L(TL(K)), which we now identify as the set of squares in SOqL

(K).
We identify the torus TL in terms of the Clifford algebra. Denote by C (respectively,

C0) the Clifford algebra of Q (respectively, the even Clifford algebra of Q). Let v1, v2

be an orthogonal basis of L and complete it into an orthogonal basis of Qn. Consider
X = v1v2 ∈ (C0)× (L is non-degenerate), which satisfies the relationships

Xvi = viX, Xv1 = −Q(v1)v2 = −v1X, Xv2 = −v2X (4.2)

for all i > 2. Moreover, X2 = −Q(v1)Q(v2) ∈ Q×. Denote by σ the standard involution
on C. Then σ(X) = v2v1 = −X.

It follows directly from (4.2) that, for all a, b ∈ K , the element t = a + bX satisfies
tvi = vit for i > 2. Also,

tv1σ(t) = (a + bX)v1(a − bX) = a2v1 + abXv1 − abv1X − b2Xv1X

= a2v1 − 2abQ(v1)v2 − b2Q(v1)Q(v2)v1 ∈ L,
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and similarly for v2. Therefore, t ∈ TL if and only if

σ(t)t = (a − bX)(a + bX) = a2 − b2X2 = a2 − b2Q(v1)Q(v2) = 1.

We set

F = Q(−Q(v1)Q(v2)) = Q(−discQ(L))

and embed F into C0 via
√−discQ(L) �→ X. The non-trivial Galois automorphism on F

is then given by σ |F . To summarize, we obtain

TL(K) = {t ∈ F ⊗K : σ(t)t = 1}.
Also, recall that the special Clifford group surjects onto SOQ, so that one may show
analogously that

SOqL
(K) = (F ⊗K)×/K×.

The proposition then follows from Hilbert’s theorem 90, as in the proof of [Wie19,
Lemma 7.2].

COROLLARY 4.6. The orbits

gi,2ψ1,L(HLi
(A))SL2(Q) ⊂ SL2(A)

/
SL2(Q)

equidistribute as i →∞.

Proof. We deduce the corollary from existing literature and Proposition 4.5. We first claim
that, as i →∞, the sets

gi,2SOqLi
(Ẑ)ψ1,L(HLi

(A))SL2(Q) (4.3)

are equidistributed. By Proposition 4.5, the abelian group SOqLi
(Ẑ)ψ1,L(HLi

(A)) contains
the group SOq

Li
(Ẑ)SOq

Li
(A)2, where SOq

Li
(A)2 denotes the group of squares.

The orbit (4.3) is then a union of suborbits of the same form associated to these
subgroups. Any sequence of such suborbits is equidistributed, for example, by [HM06]
as the volume is of size discQ(Li)

1/2+o(1). (Since the 2-torsion of the Picard group of the
order of discriminant discQ(Li) has size discQ(Li)

o(1) (see, for example, [Cas78, p. 342]),
the squares form a subgroup of size discQ(Li)

1/2+o(1).) We note that the result in [HM06]
allows smaller volumes (where the exponent 1

2 can be replaced by 1
2 − η for some not too

large η > 0). In the case needed here, one can also apply Linnik’s ergodic method as we
assume a splitting condition at a fixed prime (see [Wie19, §7]). By averaging, the claim
in (4.3) follows. The corollary is implied by (4.3) and ergodicity of the Haar measure on
SL2(A)/SL2(Q) under any diagonal flow.

4.3. Individual equidistribution in the first factor. In view of the discussion in §4.2 and
Lemma 4.4, it suffices to show equidistribution of the packets

gi,1HLi
(A)SpinQ(Q) ⊂ SpinQ(A)

/
SpinQ(Q)

to prove Theorem 4.1. We proceed in several steps.
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4.3.1. An equidistribution theorem for the pointwise stabilizers. We first establish the
following proposition which shows that either orbits of the pointwise stabilizer are
equidistributed or there is some arithmetic obstruction.

PROPOSITION 4.7. Let (Li)i be a sequence of two-dimensional rational subspaces such
that there exists a prime p for which Hpt

Li
(Qp) is strongly isotropic for all i. Let gi ∈ G(R)

and assume that discQ(Li) →∞ as i →∞. Then one of the following statements is true.
(1) The packets giH

pt
Li

(A)SpinQ(Q) are equidistributed in SpinQ(A) / SpinQ(Q) as
i →∞.

(2) There exists a rational vector v ∈ Qn \ {0} and lattice elements δi ∈ SpinQ(Q) such
that

Qv =
⋂
i

δ−1
i .Li(Q).

The lattice elements, additionally, satisfy that there exist hi ∈ Hpt
Li

(A) such that the
sequence gihiδi is convergent as i →∞.

Proof. We prove the proposition in exactly the same way we proved the first case in
Proposition 3.3; thus, we are brief. Let δi ∈ SpinQ(Q) and a connected Q-group M < Ḡ
be as in Theorem 3.2. In particular,

δ−1
i Hpt

Li
δi < M

and it suffices for equidistribution to verify that M = SpinQ. One can see that M strictly
contains δ−1

i Hpt
Li

δi for all i by using discQ(Li) →∞ and repeating the proof of the first
case in Proposition 3.3.

Contrary to the case treated in Proposition 3.3, the groups Hpt
Li

are non-maximal. The

intermediate groups can, however, be understood explicitly: they are of the form Hpt
W ,

where W is a rational line contained in δ−1
i .Li for all i. For a proof of this fact, we

refer to [EV08, Proposition 4]; see also the arXiv version of the same paper, where the
authors give an elementary proof in the case n− 2 ≥ 7. This concludes the proof of
the proposition.

COROLLARY 4.8. Let the notation and the assumptions be as in Proposition 4.7 and
suppose that the second case holds. Then

min
w∈Li(Z)\{0} Q(w) = min

w∈Z2\{0}
qLi

(w)

is bounded as i →∞.

Proof. Let v ∈ Qn be as in Proposition 4.7 and suppose, without loss of generality,
that v is integral and primitive. Suppose, also, that gihiδi → g′ ∈ SpinQ(A) and write
gihiδi = εig

′, where εi → e. Let i0 be large enough so that εi ∈ Ḡ(R× Ẑ) for all i ≥ i0

and let N ∈ N be the smallest integer such that Ng′p is integral for all primes p.
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We claim that vi := Nδi .v ∈ Li(Z). To see this, first note that vi ∈ Li(Q). Furthermore,
for any prime p, the vector vi is contained in L(Zp). Indeed, hi,p ∈ Hpt

Li
(Qp) necessarily

fixes vi and, as gi,p = e,

vi = hi,p.vi = Nhi,pδi .v = Nεi,pgp.v ∈ Zn
p.

This proves the claim and hence the corollary as Q(Nδi .v) = N2Q(v).

4.3.2. A corollary of equidistribution in the second factor. In the following, we would
like to give an estimate of the measure of the set of points in gi,1TLi

(A)SpinQ(Q) whose
associated point in SL2(A) / SL2(Q) is ‘close’ to the cusp. This will allow us to ‘wash out’
the effect of the obstructions in Proposition 4.7 on average across the full stabilizer group.
To obtain said estimate, we introduce a height function that suits our needs.

Let S2 be the space of positive definite real binary quadratic forms up to similarity
and write [q] for the similarity class of a binary form q. (Two positive definite binary real
quadratic forms Q1, Q2 are similar if there exist λ > 0 and g ∈ GL2(Z) with Q2(·) =
λQ1(g·). Note that the space S2 will be discussed in more detail in §6.2.) For ε > 0, we
define

S2(ε) =
{

[q] ∈ S2 : min
w∈Z2\{0}

q(w) > ε
√

disc(q)

}
.

Note that the condition is independent of the choice of representative of [q].
By Mahler’s compactness criterion [Mah46], these are compact subsets of S2 and any

compact subset is contained in S2(ε) for some ε > 0. Furthermore, one can show that the
Haar measure of S2 \ S2(ε) is � ε by direct integration of the hyperbolic area measure
on that region.

We define Kε ⊂ SL2(A) / SL2(Q) to be the preimage of S2(ε) under the composition

SL2(A)
/

SL2(Q) → SL2(R)
/

SL2(Z) → PGL2(R)
/

PGL2(Z) → S2.

By the previous discussion, this is a compact set whose complement has Haar measure
� ε. For x ∈ SL2(A) / SL2(Q), we call the supremum over all ε > 0 with x ∈ Kε the
minimal quadratic value for x.

The following is a direct corollary of equidistribution in the second factor.

COROLLARY 4.9. For any ε ∈ (0, 1), there exists i0 ≥ 1 so that the measure of the set of
points t ∈ TLi

(A) / TLi
(Q) for which g2ψ1,Li

(t)SL2(Q) �∈ Kε is � ε for all i ≥ i0.

4.3.3. Using the shape in the subspace. In the following, we identify the minimal
quadratic value for the points on the orbits in the context of proving Theorem 4.1.
As SpinQ(R× Ẑ) is a compact open subgroup, it has finitely many orbits on
SpinQ(A)/SpinQ(Q) (these correspond to the spin genus of the quadratic form Q). We
choose a finite set of representatives R ⊂ SpinQ(Af ) such that

SpinQ(A)/SpinQ(Q) =
⊔
r∈R

SpinQ(R× Ẑ)r SpinQ(Q). (4.4)
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Note that, in SL2 (or SLn−2), any g ∈ SL2(A) can be written as g = bγ , where b ∈
SL2(R× Ẑ) and γ ∈ SL2(Q).

LEMMA 4.10. Let h ∈ �H̄Li
(A) and write hγ = br for some γ ∈ Ḡ(Q), b ∈ Ḡ(R× Ẑ)

and r ∈ R. Then γ−1
1 .Li is a rational subspace of discriminant � D. Furthermore, the

minimum

min
w∈Z2\{0}

q
γ−1

1 .Li
(w)√

discQ(γ−1
1 .Li)

is comparable to the minimal quadratic value for gi,2ψ1,L(h)SL2(Q).

Note that a lemma in this spirit will later be used to deduce the main theorems from
their dynamical counterparts (cf. Proposition 7.1). The statement here is more technical in
nature (as it needs to treat different genera) and the reader is encouraged to return to the
proof after reading Proposition 7.1. We note that such a treatment has appeared in different
contexts in the literature [ALMW22, EV08].

Proof. The ingredients for this proof are all contained in the proof of Proposition 7.1, so
we are brief. Write L = Li for simplicity. Note that h1,pγ1 = b1,prp and hence

discp,Q(γ−1
1 .L) = discp,Q(γ−1

1 h−1
1,p.L) = discp,Q(r−1

p b1,p.L)

�r discp,Q(b1,p.L) = discp,Q(L).

As the discriminant is a product of the local discriminants (1.5), this proves the first claim.
For the second claim, we let L′ = γ−1

1 .L and consider m = g−1
L′ ρQ(γ−1

1 )gLγ2 ∈
GLn(Q). Observe that

mL0 = g−1
L′ ρQ(γ−1

1 )gLL0 = g−1
L′ ρQ(γ−1

1 )L = g−1
L′ L′ = L0.

As we will now see, m is ‘almost integral’ and invertible. For this, compute

ρQ(γ−1
1 )gLγ2 = ρQ(γ−1

1 h−1
1,p)gLh2,pγ2 = ρQ(r−1

p b−1
1,p)gLb2,p.

This implies that there exists some N ∈ N independent of L such that NρQ(γ−1
1 )gLγ2

and NρQ(γ−1
1 )g−1

L γ2 are integral. Recall that disc(Q)gL′ , disc(Q)g−1
L′ are integral so that

Ndisc(Q)m and Ndisc(Q)m−1 are integral. This discussion implies that, for any two
positive definite real binary quadratic forms q, q ′ with the property that π1(m)q and q ′
are similar,

min
w∈Z2\{0}

q(w)√
disc(q)

� min
w∈Z2\{0}

q ′(w)√
disc(q ′)

.

Here, recall that GL2(R) acts on binary forms via gq(x) = q(gtx).
Now, note that

[qL′] = [Q(g′L·)] = [Q(ρQ(γ1)gL′ ·)]
whereas the similarity class belonging to g2ψ1,L(t)SL2(Q) is

[γ−1
2 qL] = [Q(gLγ2·)] = [Q(ρQ(γ1)gL′m·)]

The claim follows.
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4.3.4. Proof of Theorem 4.1. As explained, it now suffices to prove that the packets
for Li ,

gi,1HLi
(A)SpinQ(Q) ⊂ SpinQ(A)

/
SpinQ(Q),

equidistribute as discQ(Li) →∞. Similarly to the situation in the proof of Theorem 3.1,
we need to circumvent the problem that HL for L ∈ Grn,2(Q) is not exactly isomorphic to
Hpt

L × TL (see Remark 2.1 for a more careful discussion). Denote by HL(A)� the image of
Hpt

L(A)× TL(A) → HL(A); this is a normal subgroup of HL(A) with the property that
KL := HL(A) / HL(A)� is compact and abelian. By an argument as at the beginning of
the proof of Theorem 3.1, it suffices to show that, for any ki ∈ KLi

, the orbits

gi,1kiHLi
(A)�SpinQ(Q) ⊂ SpinQ(A)

/
SpinQ(Q)

are equidistributed as i →∞. We let μi be the Haar measure on the ith such orbit and let

μi,1 = mHpt
Li

(A)SpinQ(Q)
, μi,2 = mTLi

(A)SpinQ(Q)

be the Haar measure on the closed orbits of Hpt
Li

(A) (respectively, TLi
(A)). Then, for any

function f ∈ Cc(SpinQ(A) / SpinQ(Q)),∫
f dμi =

∫ ∫
f (gi,1kiht) dμ1,i (h) dμi,2(t). (4.5)

In the following, we identify ki with a representative in a fixed bounded region of HLi
(A).

For a fixed ti ∈ TLi
(A), the inner integral is the integral over the orbit

gi,1kiH
pt
Li

(A)tiSpinQ(Q) = gi,1ki tiH
pt
Li

(A)SpinQ(Q).

Writing tiγi = bir as in (4.4), we see that

gi,1ki tiH
pt
Li

(A)SpinQ(Q) = gi,1kibirγ−1
i Hpt

Li
(A)SpinQ(Q)

= gi,1kibirH
pt
γ−1
i .Li

(A)SpinQ(Q),

which is equidistributed if and only if Hpt
γ−1
i .Li

(A)SpinQ(Q) is equidistributed (as gi,1kibi

is bounded). By Proposition 4.7 and its corollary, it suffices to show that the minimal
non-zero value of q

γ−1
i .Li

goes to infinity. This minimum is comparable to the minimal
quadratic value for gi,2ψ1,L(ti)SL2(Q) by Lemma 4.10.

Motivated by this observation, we define, for ε > 0,

Bi (ε) = {tTLi
(Q) : gi,2ψ1,L(t)SL2(Q) ∈ Kε} ⊂ TLi

(A)
/

TLi
(Q)

so that the complement of Bi (ε) has μi,2-measure � ε for all i large enough (depending
on ε), by Corollary 4.9. In view of (4.5), this implies that∫

f dμi = 1
μi,2(Bi (ε))

∫
Bi (ε)

∫
f (gi,1kiht) dμ1,i (h) dμi,2(t)+ O(ε).

By the previous paragraph, the orbits gi,1kiH
pt
Li

(A)tiSpinQ(Q) are equidistributed for any
sequence ti ∈ Bi (ε). The integral on the right-hand side is a convex combination of such
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orbital integrals and hence must converge to the integral of f over the Haar measure. Letting
μ be any weak∗-limit of the measures μi , we obtain∫

f dμ =
∫

f dmSpinQ(A) / SpinQ(Q) + O(ε).

As ε is arbitrary, this implies the claim.

5. Part 2: From equidistribution of orbits to the main theorems
For the contents of this part, we refer the reader to the overview of this article in §1.3.

5.1. Discriminants and glue groups. Recall that Q is a positive definite integral
quadratic form on Qn and that 〈·, ·〉Q is its symmetric bilinear form. By integrality,
we mean that 〈·, ·〉Q takes integer values on Zn × Zn. The goal of this section is to prove
the following proposition.

PROPOSITION 5.1. For any subspace L ⊂ Qn, there exist two positive divisors m1, m2 of
disc(Q) with

discQ(L⊥) = m1

m2
discQ(L).

In particular,

1
disc(Q)

discQ(L) ≤ discQ(L⊥) ≤ disc(Q)discQ(L).

To that end, we will use the notion of glue groups defined in §5.1.1 and, in fact, prove a
significantly finer statement in Proposition 5.4 below.

5.1.1. Definitions. For any Z-lattice � ⊂ Qn, we define the dual lattice

�# = {x ∈ � ⊗Q : 〈x, y〉Q ∈ Z for all y ∈ �}.
If � ⊂ Zn (or, more generally, if 〈·, ·〉Q takes integral values on � × �), the dual lattice �#

contains �. Note that if �1 ⊂ �2 are any two Z-lattices, then �#
1 ⊃ �#

2.
For the purposes of this section, a very useful classical tool is the so-called glue group,

which one could see as a concept generalizing the discriminant. We introduce only what
is needed here; for better context, we refer the reader to [CS99, McM11] (in particular, we
do not introduce the fractional form). We define the glue group of a rational subspace L
(or of the lattice L(Z)) as

G(L) = L(Z)#/L(Z).

Note that L(Z)# contains L(Z) by integrality. The glue group is a finite abelian group
whose cardinality is exactly the discriminant (see, for example, [Kit93, §5.1]). We remark
that the glue group may be computed from local data—this is made explicit in §B.1 of the
appendix.

Remark 5.2. For each discriminant D, one may consider the collection of subspaces
L ∈ Grn,k(Q) with discriminant D and glue group that is a fixed abelian group of order D.
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In principle, the results of the current article should carry over to prove equidistribution of
these subspaces together with their shapes (cf. [AEW22]). However, it is not clear when
one expects such collections to be non-empty, even when Q is the sum of squares.

5.1.2. The glue group of the orthogonal complement. We study the relationship between
the glue group of a subspace and that of its orthogonal complement. Any subspace L ⊂ Qn

contains various lattices which are (potentially) of interest and are natural:
• the intersections L(Z) = L(Q) ∩ Zn and L(Q) ∩ (Zn)#;
• the dual lattice L(Z)#; and
• the projection lattices πL(Zn) and πL((Zn)#), where πL : Qn → L denotes the

orthogonal projection.

LEMMA 5.3. (Elementary properties) The following relationships between the aforemen-
tioned lattices hold.
(i) L(Z)# = πL((Zn)#) and (L ∩ (Zn)#)# = πL(Zn).

(ii) (L ∩ (Zn)#)/L(Z) � L(Z)#/πL(Zn).

Proof. We prove (i) first. Since the proofs of the two assertions in (i) are similar, we only
detail the first. Let v1, . . . , vk be a Z-basis of L(Z). Moreover, let w1, . . . , wk ∈ L be
the dual basis to v1, . . . , vk . Extend v1, . . . , vk to a basis v1, . . . , vn of Zn and consider
y1, . . . , yn, the dual basis to v1, . . . , vn. Then πL(yi) = wi for any i ≤ k as

〈πL(yi), vj 〉Q = 〈yi , vj 〉Q = δij

whenever j ≤ k. Moreover, yi ∈ L⊥ for i > k, by construction. Thus,

πL((Zn)#) = πL(spanZ(y1, . . . , yn)) = spanZ(w1, . . . , wk) = L(Z)#,

as claimed. The proof of the second equality is analogous.
For (ii), note that, for any two lattices �1 ⊂ �2 in L, one has

�2/�1 � �#
1/�

#
2, (5.1)

so (ii) follows from (i). To construct such an isomorphism, one proceeds as follows. Fix a
basis v1, . . . , vn of �2 such that d1v1, . . . , dnvn is a basis (such a basis is sometimes
called an ‘adapted basis’ (in geometry of numbers); the existence can be easily seen
using Smith’s normal form) of �1 with di ∈ Z and let w1, . . . , wn be the dual basis to
v1, . . . , vn. Then, the map

f : �2 → �#
1, vi �→ d−1

i wi

induces the desired isomorphism.

PROPOSITION 5.4. We have an isomorphism

πL(Zn)/L(Z) → πL⊥(Zn)/L⊥(Z).

When Q is unimodular, i.e. disc(Q) = 1, this together with Lemma 5.3 shows that the
glue groups of L and L⊥ are isomorphic. Indeed, in this case, (Zn)# = Zn and hence
πL(Zn) = L(Z)#. In particular, L and L⊥ have the same discriminant. When Q is not
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unimodular, the proposition gives an isomorphism between subgroups of the respective
glue groups.

Proof. We define a map f from πL(Zn) to πL⊥(Zn)/L⊥(Z) as follows. For x ∈ πL(Zn),
choose a lift x̂ ∈ Zn of x for the projection πL and define

f (x) = πL⊥(x̂)+ L⊥(Z).

Note that f is well defined since, if x̂, ŷ ∈ Zn are two lifts of x ∈ πL(Zn), then x̂ − ŷ ∈
L⊥(Z), which implies that πL⊥(x̂)+ L⊥(Z) = πL⊥(ŷ)+ L⊥(Z).

We show that ker(f ) = L(Z). Obviously, L(Z) ⊂ ker(f ) since, for any x ∈ L(Z), we
can choose x itself as lift. On the other hand, if x ∈ ker(f ), there is a lift x̂ ∈ Zn of x for
πL such that πL⊥(x̂) ∈ L⊥(Z). In particular,

x = πL(x̂) = πL(x̂)− πL(πL⊥(x̂)) = πL(x̂ − πL⊥(x̂)) = x̂ − πL⊥(x̂) ∈ L(Z).

We deduce that ker(f ) ⊂ L(Z) and hence equality. This proves the proposition.

Proof of Proposition 5.1. By Proposition 5.4,

discQ(L) = |G(L)| = |L(Z)#/πL(Zn)| · |πL(Zn)/L(Z)|
= |L(Z)#/πL(Zn)| · |πL⊥(Zn)/L⊥(Z)|

= |L(Z)#/πL(Zn)|
|L⊥(Z)#/πL⊥(Zn)| |G(L⊥)|.

Using Lemma 5.3, note that the finite group L(Z)#/πL(Zn) = πL((Zn)#)/πL(Zn) is a
quotient of (Zn)#/Zn and hence |L(Z)#/πL(Zn)| is a divisor of disc(Q) = |(Zn)#/Zn|.
As the analogous statement holds for L⊥, the proposition follows.

Remark 5.5. When disc(Q) = 1, Proposition 5.4 states that G(L) � G(L⊥). In addition
to the discriminants of L and L⊥ being the same, this includes information about the
local coefficients of the quadratic forms on L and L⊥. This is exploited, for example,
in Proposition B.6. When k = n− k, one can ask whether this implies that Q|L(Z) and
Q|L⊥(Z) are in the same genus.

6. Moduli spaces
In this section, we study the moduli spaceY of basis extensions that was introduced in §1.1
consisting of (certain) homothety classes [L, �], where L is a k-dimensional subspace, �

is a full-rank lattice in Rn and L ∩� is a lattice in L. We also discuss a slight refinement
of Theorem 1.11 (Theorem 6.9 below) and see how it implies Theorem 1.4.

6.1. Oriented subspaces. For the purposes of proving the main theorems from their
dynamical analogues, it is convenient to work with subspaces with an orientation. In fact,
the main theorems may be refined to include orientation.

Oriented subspaces of dimension k form an affine variety Gr+n,k (defined over Q) with a
morphism (of algebraic varieties) Gr+n,k → Grn,k , where the preimage of any point consists
of two points corresponding to two choices of orientation.
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Remark 6.1. To construct Gr+n,k explicitly, observe that the positive definite form Q induces
a rational form discQ on the exterior product

∧k Qn via

discQ(v1 ∧ · · · ∧ vk) = det

⎛
⎜⎝
〈v1, v1〉Q · · · 〈v1, vk〉Q

...
...

〈vk , v1〉Q · · · 〈vk , vk〉Q

⎞
⎟⎠.

Note that this merely extends the previous definition of discriminant. The variety Gr+n,k
is then the subvariety of the variety of pure wedges P satisfying the additional equation
discQ(v1 ∧ · · · ∧ vk) = 1. Note that rational subspaces with an orientation do not corre-
spond to rational points of Gr+n,k but rather to primitive integer points of the variety of pure
wedges P. In that sense, it is often more natural to work with P instead of Gr+n,k .

The orthogonal group SOQ (and hence also SpinQ) acts on oriented subspaces. For
an oriented rational subspace L, the stabilizer group in SpinQ under this action is exactly
equal to the stabilizer group HL defined in §2.1.1. Moreover, the action of SpinQ(R) on
Gr+n,k(R) is transitive (as is the action of SOQ(R)).

Remark 6.2. (Orientation on the orthogonal complement) For any oriented k-dimensional
subspace L, the orthogonal complement inherits an orientation: if v1, . . . , vk is an
oriented basis of L, then a basis vk+1, . . . , vn of L⊥ is oriented if det(v1, . . . , vn) > 0.
The orthogonal complement yields an isomorphism Gr+n,k → Gr+n,n−k that is explicitly
realizable in Plücker coordinates, at least, when disc(Q) = 1 [Sch67, §1].

6.2. Quotients of homogeneous spaces
6.2.1. The moduli space of oriented basis extensions. We extend the definition of the
moduli space of basis extensions to include orientation. Consider the pairs (L, �), where
L is an oriented subspace, � ⊂ Rn is a full-rank lattice and L ∩� is a lattice in L. Two
such pairs (L, �), (L′, �′) are equivalent if L = L′ (including orientation) and if there
exists g ∈ GLn(R) which acts by positive scalar multiplication of L and L⊥ such that
g� = �′. The moduli space of oriented basis extensions Y+ is defined to be the set of
such equivalence classes [L, �]. There exists a natural mapY+ → Y (simply by forgetting
orientation).

We begin by realizing Y+ as a double quotient of a Lie group. We use the following
notation.
• The groups Pn,k and G, as defined in §1.4.4:

Pn,k =
{(

A B

0 D

)
∈ SLn : det(A) = det(D) = 1

}
,

G = SpinQ × Pn,k .

• The reference subspace L0 spanned by the first k standard basis vectors (1.6) as well as
the ‘standardization’ ηQ defined in (1.3). Note that L0 is oriented using the standard
basis.

• For any oriented subspace L ⊂ Qn, we let HL < SpinQ be the stabilizer group of L.
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• The subgroup HL0 < SpinQ maps to a subgroup of Pn,k under the (spin) isogeny ρQ;
we again denote by �HL0 < G the diagonally embedded group (this agrees with the
definition in §2.3 with the choice of the standard basis).

LEMMA 6.3. There is an identification

Y+ � �HL0(R)
∖G(R)

/
Pn,k(Z).

By Lemma 6.3, we may pull back the Haar quotient probability measure on the
right-hand side to Y+(and by pushforward on Y).

Proof. The above identification runs as follows. If (g1, g2) ∈ G(R) is given, we set
L = ρQ(g−1

1 )g2L0(R) = g−1
1 .L0(R) and � = ρQ(g−1

1 )g2Z
n. Clearly, � intersects L in

the lattice ρQ(g−1
1 )g2L0(Z). As any element of Pn,k(Z) stabilizes L0(R) and Zn, and as

�HL0(R) is diagonally embedded, we obtain a well-defined map

�HL0(R)
∖G(R)

/
Pn,k(Z) → Y.

The injectivity of this map is clear from the definition of �HL0(R), so let us argue for the
surjectivity.

Let [L, �] ∈ Y. By choosing the representative correctly, we may assume that � as
well as L ∩� are unimodular. Choose g1 ∈ SpinQ(R) such that g1.L = L0. Then L0(R)

is g1.�-rational. Pick a basis v1, . . . , vk of g1.� ∩ L0(R) and complete it into a basis
v1, . . . , vn of g1.�. Set

g2 = (v1 | · · · | vn) ∈ {g ∈ SLn(R) : gL0(R) = L0(R)}.
As g1.� ∩ L0(R) is unimodular, we have that g2 ∈ Pn,k(R). Under these choices we have
ρQ(g−1

1 )g2L0(R) = L and ρQ(g−1
1 )g2Z

n = �; surjectivity follows.

Remark 6.4. (Action of SpinQ(Z)) Note that SpinQ(Z) acts on Y+ via g[L, �] =
[g.L, g.�]. In view of the identification in Lemma 6.3 (and its proof), this action of
SpinQ(Z) corresponds to the SpinQ(Z)-action from the right on the double quotient
�HL0(R) \ G(R) / Pn,k(Z). In particular,

SpinQ(Z)
∖Y+ � �HL0(R)

∖G(R)
/

G(Z).

Recall from the introduction that Sk is the space of positive definite real quadratic
forms in k variables up to similarity. Here, we say that two forms q, q ′ in k-variables
are equivalent if there is g ∈ GLk(Z) such that gq = q ′ and similar if q is equivalent to a
multiple of q ′. We may identify Sk with

Ok(R)
∖PGLk(R)

/
PGLk(Z). (6.1)

Indeed, to any point Ok(R)gPGLk(Z), one associates the similarity class of the form
represented by gtg. Conversely, given the similarity class of a form q and a matrix
representation M of q, one can write M = gtg for some g ∈ GLk(R). Another way
of viewing the quotient in (6.1) is as the space of lattices in Rk up to isometries and
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homothety. For a lattice � ⊂ Rk , we denote by 〈�〉 its equivalence class. The map

〈�〉 �→ [Q0|�] (6.2)

is the desired bijection. In words, the class of lattices 〈�〉 is associated to the similarity
class of the standard form Q0 represented in a basis of the lattice �.

Note that we have a map [L, �] ∈ Y �→ [Q|L∩�] ∈ Sk already alluded to in the
introduction. It is natural to ask what equivalence class of lattices corresponds to the
similarity class (or shape) [Q|L∩�] from the introduction under the identification (6.2).
To answer this question, choose a rotation kL ∈ SOQ(R) with kLL(R) = L0(R). Apply
ηQ to the lattice kL(L ∩�) ⊂ L0(R). Recall that ηQ was chosen in §1.4.1 to preserve
L0(R) so that ηQkL(L ∩�) ⊂ L0(R). Since

Q0|ηQkL(L∩�) � Q|L∩�,

the equivalence class of the lattice ηQkL(L ∩�) corresponds to the similarity class or
shape [Q|L∩�]. As we did in the introduction, we will also write [L ∩�] for that shape.

LEMMA 6.5. There is a surjective map

Y+ → Grn,k(R)× Sk × Sn−k

given explicitly by [L, �] �→ (L, [L ∩�], [L⊥ ∩�#]). Moreover, the pushforward of the
Haar (quotient) probability measure is the Haar probability measure on the target.

Proof. Recall that H′
L0

is the stabilizer of L0 in SOQ. Over R, we have H′
L0

(R) =
ρQ(HL0(R)). Consider the (surjective) composition

Y+ → �HL0(R)
∖G(R)

/
Pn,k(Z)

→ HL0(R)
∖SpinQ(R)× H′

L0
(R))

∖Pn,k(R)
/

Pn,k(Z)

→ HL0(R)
∖SpinQ(R)× ηQH′

L0
(R)η−1

Q

∖Pn,k(R)
/

Pn,k(Z),

where the first map is the identification in Lemma 6.3, the second map is the
quotient map and the third map is multiplication by ηQ in the second factor. Observe
that HL0(R) \ SpinQ(R) is identified with Gr+n,k(R) via HL0(R)g0 �→ g−1

0 .L0(R).
Note also that ηQH′

L0
(R))η−1

Q is equal to the group SOk(R)× SOn−k(R) embedded
block-diagonally. We apply projections onto the blocks (π1, π2 defined in §1.4.4) as well
as inverse-transpose in the second block to obtain a surjective map

ηQH′
L0

(R)η−1
Q

∖Pn,k(R)
/

Pn,k(Z) → Sk × Sn−k .

Overall, we have a surjection φ : Y+ → Grn,k(R)× Sk × Sn−k .
It remains to verify that this surjection is the map from the lemma. Let [L, �] ∈ Y+ and

let (g1, g2) ∈ G(R) be a representative of its double coset in Lemma 6.3. It is clear from the
proof of Lemma 6.3 that φ([L, �])1 = g−1

1 .L0(R) = L(R). For the second component,
note that, using g−1

1 .L0(R) = L(R),

[Q|L∩�] = [Q0|ηQρQ(g1)(L∩�))] = [Q0|ηQ(L0∩g2Zn)] = [Q0|π1(ηQg2)Zk ] = φ([L, �])2.
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For the third component, we observe that L⊥(R) = g−1
1 .L0(R)⊥ as well as �# =

ρQ(g−1
1 )(g−1

2 )tZn. Hence,

[Q|L⊥∩�# ] = [Q0|ηQρQ(g1)(L⊥∩�#)] = [Q0|ηQ(L⊥0 ∩(g−1
2 )tZn)] = [Q0|π2(ηQ(g−1

2 )t )Zk ]

= φ([L, �])3,

which concludes the lemma.

6.3. A construction of an intermediate lattice. As was already observed in Remark 1.10,
equidistribution of the tuples [L, Zn] for L ∈ Hn,k

Q (D) (Conjecture 1.9) does not necessar-
ily imply equidistribution of the tuples (L, [L(Z)], [L⊥(Z)]) when Q is not unimodular
(Conjecture 1.1). Indeed, one can see from Lemma 6.5 that it implies equidistribution of
the tuples (L, [L(Z)], [L⊥ ∩ (Zn)#]) for L ∈ Hn,k

Q (D). Here, we construct, for every L,
a full-rank sublattice �L ⊂ Qn so that equidistribution of the tuples [L, �L] does have
this desired implication. For any subspace L ⊂ Qn, write πL for the orthogonal projection
onto L.

PROPOSITION 6.6. For any subspace L ∈ Grn,k(Q), there exists a full-rank Z-lattice
�L ⊂ Qn with the following properties.
(1) Zn ⊂ �L ⊂ (Zn)#.
(2) We have

L ∩�L = L(Z), πL⊥(�L) = L⊥(Z)# and L⊥(Z) = �#
L ∩ L⊥.

(3) Suppose that L′ satisfies that there are γ ∈ SpinQ(Q) and kp ∈ SpinQ(Zp) for every
prime p such that γ .L = L′ and kp.L(Zp) = L′(Zp). Then

�L′ =
⋂
p

kp.(�L ⊗ Zp) ∩Qn.

We remark that, if Q is unimodular, one may simply take �L = Zn. For Q not
unimodular, this choice generally satisfies (1) and (3) but not necessarily (2).

Remark 6.7. (Equivalence relation) We write L ∼ L′ for rational subspaces L, L′ of
dimension k if there are γ ∈ SpinQ(Q) and kp ∈ SpinQ(Zp) for every prime p such that
γ .L = L′ and kp.L(Zp) = L′(Zp). This defines an equivalence relation. As L, L′ are
locally rotated into each other, they have the same discriminant (see Equation (1.5)).

Proof of Proposition 6.6. In view of Remark 6.7 and the required property in (3), we first
observe that if L′ is equivalent to L and if L satisfies (1) and (2), then L′ also does so.
Hence, we may split Grn,k(Q) into equivalence classes, choose a representative L in each
equivalence class and construct �L with the properties in (1) and (2) but ignoring (3).

So, let L ∈ Grn,k(Q) be such a representative. Choose a basis v1, . . . , vk of L(Z). We
consider the Z-module (Zn)# / L(Z) that fits into the following exact sequence

0 → L ∩ (Zn)#/
L(Z) → (Zn)#/

L(Z) → (Zn)#/
L ∩ (Zn)# → 0. (6.3)
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As L ∩ (Zn)# is primitive (a sublattice � of a lattice � ⊂ Qn is primitive if it is not strictly
contained in any sublattice of the same rank) in (Zn)#, the module on the far right is free
of rank n− k. We choose a basis of it as well as representatives vk+1, . . . , vn ∈ (Zn)# of
these basis elements. Define

�L = Zv1 + · · · + Zvn.

It is not hard to see that this lattice contains Zn and is contained in (Zn)# so that (1) is
satisfied.

Suppose that

v =
∑

i

αivi ∈ L ∩�L.

This implies that
∑

i>k αivi ∈ L and so
∑

i>k αivi = 0 by linear independence. The
identity L ∩�L = L(Z) follows.

By Lemma 5.3, the projection πL⊥ : (Zn)# → L⊥(Z)# is surjective. Clearly, the kernel
is L ∩ (Zn)# and hence, by construction of �L, we have πL⊥(�L) = πL⊥((Zn)#) =
L⊥(Z)#.

It remains to prove the last identity. As �#
L ⊃ Zn, we have �#

L ∩ L⊥ ⊃ L⊥(Z), so it
suffices to show that

L⊥(Z)# = πL⊥(�L) ⊂ (�#
L ∩ L⊥)#.

For v = πL⊥(v′) ∈ πL⊥(�L) and w ∈ L⊥ ∩�#
L, we have 〈v, w〉 = 〈v′, w〉 ∈ Z, which

proves the remaining claim.

Remark 6.8. Observe that �L constructed above depends on the choice of basis for the
free module (Zn)# / L ∩ (Zn)# which forms the ‘free part’ of (Zn)# / L(Z) in the sense of
(6.3). But the short exact sequence (6.3) does not split, in general, so that the basis elements
have no canonical lifts to (Zn)# / L(Z); different choices yield different lattices �L. This
dependency is inconsequential as the set of lattices � with Zn ⊂ � ⊂ (Zn)# is finite.

6.4. A refinement of Theorem 1.11. We now present a refinement of Theorem 1.11, which
is necessary to deduce the desired equidistribution theorem of shapes (i.e. Theorem 1.4).

THEOREM 6.9. Let k ≥ 3 with k ≤ n− k and let p be a prime with p � 2disc(Q). Let
L ∈ Grn,k(Q) �→ �L satisfy conditions (1) and (3) from Proposition 6.6. Suppose that
Di ∈ N is a sequence of integers with D

[k]
i →∞, Hn,k

Q (Di) �= ∅ as well as p � Di if k ∈
{3, 4}. Then the sets

{([L, �L] : L ⊂ Qn oriented, discQ(L) = Di , dim(L) = k} (6.4)

equidistribute in Y+ as i →∞
We observe that the special case �L = Zn for every L ∈ Grn,k(Q) in Theorem 6.9

implies Theorem 1.11 after projection Y+ → Y.

Proof of Theorem 1.4 from Theorem 6.9 when k ≥ 3. Let �L for L ∈ Grn,k(Q) be defined
as in Proposition 6.6. Let p be a prime and let Di ≥ 1 be a sequence of discriminants as
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in Theorem 1.4. Then Theorem 6.9 is applicable and the sets in (6.4) are equidistributed
in Y+ when i →∞. By construction of �L, the image of these sets under the map in
Lemma 6.5 is exactly

{(L, [L(Z)], [L⊥(Z)]) : L ∈ Hn,k
Q (Di)}.

These images are equidistributed with respect to the pushforward measure, which is the
Haar probability measure on Grn,k(R)× Sk × Sn−k .

Remark 6.10. (Theorem 1.4 for oriented subspaces) LetXk be the space of positive definite
real quadratic forms in k variables up to proper similarity. Observe that the shape of
an oriented k-dimensional subspace makes sense as a point in Xk . Very much related
to this is the fact that the proof of Lemma 6.5 actually establishes a surjective map
Y+ → Gr+n,k(R)× Xk × Xn−k . Theorem 1.4 may thus be generalized to this latter space.
For k = 1, this oriented version already appears in the works [AES16a, AES16b].

7. Proof of the main theorems from the dynamical versions
The aim of this section is to prove Theorems 6.9 and 1.4 for k = 2. We remark that
any possible future upgrades to the dynamical versions (with regard to the congruence
conditions at fixed primes) imply the analogous upgrades to the arithmetic versions.

7.1. Notation. We recall and introduce here some notation used throughout this §7. In
the following, L ⊂ Qn is an arbitrary k-dimensional oriented subspace unless specified
otherwise.
• Y+ is the moduli space of oriented basis extensions defined in §6.2.1 (see also §1.1).

Recall that SpinQ(Z) acts onY+ via g[L, �] = [g.L, g.�]. Moreover, by Lemma 6.3
and the subsequent Remark 6.4,

Y+ � �HL0(R)
∖G(R)

/
Pn,k(Z), (7.1)

SpinQ(Z)
∖Y+ � �HL0(R)

∖G(R)
/

G(Z), (7.2)

where L0 = Qk × {(0, . . . , 0)} ⊂ Qn is the fixed reference subspace (cf. (1.6)) and
G = SpinQ × Pn,k (cf. 1.4.4).

• The subgroup HL < SpinQ is the identity component of the stabilizer group of L (cf.
§2.1.1 and see also §6.1).

• We fix a full-rank lattice Zn ⊂ �L ⊂ (Zn)# satisfying (1) and (3) in Proposition 6.6.
The reader is encouraged to keep in mind the case disc(Q) = 1, where one may take
�L = Zn for all L.

• We fix an oriented basis of �L, where the first k vectors are an oriented basis of
L ∩�L. Let gL ∈ GLn(Q) be the element whose columns consist of this basis.

• The subgroup �HL < G is defined as in §2.3 using the basis in gL.
• For any [L, �] ∈ Y+ (where L is not necessarily rational), to shorten notation, we

write [L, �]� for the equivalence class SpinQ(Z)[L, �] ∈ SpinQ(Z) \ Y+.
• Let sL ∈ G(R) be the representative of the double coset of [L, �L] defined using gL

(see also the proof of Lemma 6.3).
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• For any D ∈ N withHn,k
Q (D) �= ∅ we consider the finite set Rn,k

Q (D) ⊂ Y+ consisting
of classes [L, �L], where L runs over all oriented k-dimensional subspaces L ⊂ Qn

with discQ(L) = D (see also (6.4)). The action of SpinQ(Z) on Y+ leaves Rn,k
Q (D)

invariant.

7.2. Outline of the proof. Let U = G(R× Ẑ)G(Q) ⊂ G(A) / G(Q) be the principal
genus. (The genera (i.e. orbits of G(R)× G(Ẑ)) correspond to classes in the spinor genus
of Q. Recall that if Q is the sum of squares in ≤ 8 variables, then the spinor genus consists
of one class (cf. [Cas78, p. 232]) and henceU = G(A) \ G(Q).) There is a natural map

G(A)
/

G(Q) ⊃ U→ SpinQ(Z)
∖Y+ (7.3)

given by taking the quotient on the left of G(A)/G(Q) by the maximal compact open
subgroup G(Ẑ) and �HL0(R). Consider an oriented subspace L of discriminant D
and the orbit sL�HL(A)G(Q). For any L ∈ Hn,k

Q (D), the image of the intersection of

sL�HL(A)G(Q) withU under (7.3) is a subset of the collection SpinQ(Z) \ Rn,k
Q (D) and

contains [L, �L] (see Proposition 7.1). In other words, we have a commutative diagram

sL�HL(A)G(Q) ∩U U

SpinQ(Z) \ Rn,k
Q (D) SpinQ(Z) \ Y+.

Assuming that k ≥ 3, the intersection sL�HL(A)G(Q) ∩U is equidistributed in U
with respect to the normalized restriction of the Haar measure (along any sequence of
admissible subspaces). This immediately implies equidistribution of the pushforwards
under the map in (7.3).

It remains to compare the pushforward of the Haar measure on the orbit with
the measure on SpinQ(Z) \ Rn,k

Q (D) induced by the normalized counting measure on

Rn,k
Q (D). (This technical argument constitutes a large part of this section §7.) To this

end, we first note that the projection P(L) of sL�HL(A)G(Q) ∩U is not surjective but
SpinQ(Z) \ Rn,k

Q (D) may be decomposed into such images for different subspaces L (see
Remark 7.2). Thus, it is enough to determine the weights of individual points in P(L) (see
Lemmas 7.3 and 7.4).

7.3. Generating integer points from the packet. As a first step towards the proof of
Theorem 6.9, we illustrate a general technique for generating points in Rn,k

Q (D) from a

given point in Rn,k
Q (D). This kind of idea appears in many recent or less recent articles in

the literature (see, for example, [PR94, Theorem 8.2], [EV08], [AES16b], [AES16a] and
[AEW22]).

For g ∈ G = SpinQ × Pn,k we write g = (g1, g2), where g1 is the first (respectively, g2

is the second) coordinate of g. Consider the open subset (principal genus)

U = G(R× Ẑ)G(Q) ⊂ G(A)
/

G(Q).
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OnU, there is a projection map

� : U→ G(R)
/

G(Z) → �HL0(R)
∖G(R)

/
G(Z) � SpinQ(Z)

∖Y+, (7.4)

where the first map takes, for any point x ∈ U, a representative in G(R× Ẑ) and projects
onto the real component. Note that the first map is clearly G(R)-equivariant. For L ∈
Grn,k(Q), we define

P(L) := �(sL�HL(A)G(Q) ∩U). (7.5)

PROPOSITION 7.1. For any oriented k-dimensional subspace L ⊂ Qn of discriminant D,

P(L) ⊂ SpinQ(Z) \ Rn,k
Q (D).

Proof. Fix a coset bG(Q) ∈ �HL(A)G(Q) ∩U and a representative b = (b1, b2) ∈
G(R× Ẑ). By definition of �,

�(sLbG(Q)) = �HL0(R)sLb∞G(Z).

Note that, since bG(Q) ∈ �HL(A)G(Q), there exists h ∈ �HL(A) and γ ∈ G(Q) such
that b = hγ . By definition of �HL, we have h2 = g−1

L ρQ(h1)gL. We first show that the
point in SpinQ(Z) \ Y+ corresponding to �(sLbG(Q)) lies above a rational subspace
under the natural map Y→ Gr+n,k(R). Note that, by definition of the maps in (7.1), the
subspace attached to �(sLbG(Q)) is ρQ(b−1

1,∞)ρ−1
L L0 = b−1

1,∞.L. But

b−1
1,∞.L = γ−1

1 h−1
1,∞.L = γ−1

1 .L ⊂ Qn. (7.6)

Next, we show that γ−1
1 .L has discriminant D. To this end, note that, by an analogous

argument to that in (7.6), for a prime p, we have b−1
1,p.L = γ−1

1 .L so that

discp,Q(L) = discp,Q(b−1
1,p.L) = discp,Q(γ−1

1 .L),

where we used that b1,p ∈ SpinQ(Zp) preserves the local discriminant at p. Thus,
discQ(γ−1

1 .L) = D by (1.5).
It remains to show that �(sLbG(Q)) corresponds to [γ−1

1 .L, �
γ−1

1 .L]�. For this, notice
that, under (7.1),

�(sLbG(Q)) = [γ−1
1 .L, ρQ(b−1

1,∞)gLb2,∞Zn]�

by definition of the equivalence relation. Now,

ρQ(b−1
1,∞)gLb2,∞ = ρQ(γ−1

1 h−1
1 )gLh2γ2 = ρQ(γ−1

1 )gLγ2.

Quite analogously, we have ρQ(γ−1
1 )gLγ2 = ρQ(b−1

1,p)gLb2,p so that

ρQ(γ−1
1 )gLγ2Z

n
p = ρQ(b−1

1,p)gLZ
n
p = b−1

1,p.(�L ⊗ Zp).

This shows that

ρQ(γ−1
1 )gLγ2Z

n =
⋂
p

(ρQ(γ−1
1 )gLγ2Z

n
p) ∩Qn =

⋂
p

b−1
1,p.(�L ⊗ Zp) ∩Qn = �

γ−1
1 .L,

https://doi.org/10.1017/etds.2023.107 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.107


2050 M. Aka et al

by the third property of �L in Proposition 6.6. This shows that

�(sLbG(Q)) = [γ−1
1 .L, �

γ−1
1 .L]�

and hence the proposition follows.

Remark 7.2. (Equivalence class induced by packets) Note that, for any two L, L′ of
discriminant D, the sets P(L), P(L′) are either equal or disjoint. Indeed, these sets are
equivalence classes for an equivalence relation that is implicitly stated in the proof of
Proposition 7.1 (see also Remark 6.7).

We analyze the fibers of the map � when restricted to the piece of the homogeneous set
sL�HL(A)G(Q) in the open setU. For any L ∈ Grn,k(Q), we set

�H
cpt
L = {h ∈ �HL(A) : h1 ∈ HL(R× Ẑ)}.

We remark that �H
cpt
L is not equal to �HL(R× Ẑ) as gL can have denominators

(cf. (2.2)).

LEMMA 7.3. Let x, y ∈ �HL(A)G(Q) ∩U. Then

�(sLx) = �(sLy) ⇐⇒ y ∈ �H
cpt
L x.

Proof. We fix representatives bx ∈ G(R× Ẑ) of x and by ∈ G(R× Ẑ) of y. Moreover,
we write bx = hxγ x and by = hyγ y with hx , hy ∈ �HL(A) and γ x , γ y ∈ G(Q). The
direction ‘⇐’ is straightforward to verify; we leave it to the reader.

Assume that �(sLx) = �(sLy). We recall from Proposition 7.1 and its proof that

�(sLx) = [(γ x
1 )−1.L, �(γ x

1 )−1.L]�,

and similarly for �(sLy). By assumption, we have that there exists η ∈ SpinQ(Z) such that
η(γ x

1 )−1.L = (γ
y

1 )−1.L. Therefore, γ
y

1 η(γ x
1 )−1 ∈ HL(Q) and we obtain that

SpinQ(R× Ẑ)  bx
1η(b

y

1 )−1 = hx
1γ x

1 η(γ
y

1 )−1(h
y

1)−1 ∈ HL(A).

The element h = (h1, g−1
L ρQ(h1)gL) ∈ �H

cpt
L corresponding to h1 = bx

1η(b
y

1 )−1 ∈
HL(R× Ẑ) satisfies hy = x. To see this, note that

hy = hbyG(Q) = (bx
1η(b

y

1 )−1b
y

1 SpinQ(Q), g−1
L ρQ(bx

1η(b
y

1 )−1)gLb
y

2 Pn,k(Q)).

For the first component, we have bx
1η(b

y

1 )−1b
y

1 SpinQ(Q) = bx
1 SpinQ(Q) because η ∈

SpinQ(Z). For the second component, we first recall that

b
y

2 = h
y

2γ
y

2 = g−1
L ρQ(t

y

1 )gLγ
y

2 and bx
1η(b

y

1 )−1 = hx
1γ x

1 η(γ
y

1 )−1(t
y

1 )−1.

Therefore, we may rewrite

g−1
L ρQ(bx

1η(b
y

1 )−1)gLb
y

2 Pn,k(Q) = g−1
L ρQ(hx

1γ x
1 η(γ

y

1 )−1)gLγ
y

2 Pn,k(Q).

Using that γ
y

2 ∈ Pn,k(Q) and hx
2 = g−1

L ρQ(hx
1)gL, we obtain

g−1
L ρQ(hx

1γ x
1 η(γ

y

1 )−1)gLγ
y

2 Pn,k(Q) = hx
2g−1

L ρQ(γ x
1 η(γ

y

1 )−1)gLPn,k(Q).
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Finally, g−1
L ρQ(γ x

1 η(γ
y

1 )−1)gL ∈ Pn,k(Q) because γ x
1 η(γ

y

1 )−1 stabilizes L, and thus,

hx
2g−1

L ρQ(γ x
1 η(γ

y

1 )−1)gLPn,k(Q) = hx
2Pn,k(Q) = bx

2 Pn,k(Q).

It follows that hx = y and the proof is complete.

7.4. The correct weights. Let μL be the Haar probability measure on the orbit
sL�HL(A)G(Q) ⊂ G(A)/G(Q) and let μL|U be the normalized restriction to U. (Note
that the normalized restriction is well defined (i.e. μL(U) �= 0) as the intersection
sL�HL(A)G(Q) ∩U contains sL(�HL(A) ∩ G(R× Ẑ))G(Q), which is open in
sL�HL(A)G(Q).)

We compute the measure of a fiber through any point x ∈ U in the packet.

LEMMA 7.4. Let x ∈ �HL(A)G(Q) ∩U and write �(sLx) = [L̂, �
L̂

]�. Then

μL|U(sL�H
cpt
L x) =

( ∑
[L′,�L′ ]�∈P(L)

|H
L̂
(Z)|

|HL′(Z)|
)−1

. (7.7)

Proof. We must trace through a normalization: let m be the Haar measure on �HL(A)

induced by requiring that μL is a probability measure and let C1 = m(�H
cpt
L ). Then

μL(sL�H
cpt
L x) = C1

|Stab
�H

cpt
L

(x)| . (7.8)

We compute the stabilizer. Write x = bG(Q) for some b ∈ G(R× Ẑ) and observe that

Stab
�H

cpt
L

(x) = bStab
�H

cpt
L̂

(G(Q))b−1 (7.9)

as L̂ = b−1
1,∞.L. The intersection �H

cpt
L̂

∩ G(Q) consists of rational elements g of

�H
L̂
(Q) whose first component g1 is in SpinQ(R× Ẑ). Equivalently, it is the subgroup

of �H
L̂
(Q) of elements g with g1 ∈ SpinQ(Z), which is clearly isomorphic to H

L̂
(Z). In

particular,

|Stab
�H

cpt
L

(x)| = |H
L̂
(Z)|.

We now use the one-to-one correspondence between P(L) and �H
cpt
L -orbits in

�HL(A)G(Q) ∩U (Lemma 7.3). By summing (7.7) over all such orbits, we obtain

μL(U) =
∑

[L′,�L′ ]�∈P(L)

C1

|HL′(Z)|

which determines C1. This concludes the lemma as, by (7.8) and (7.9),

μL|U(sL�H
cpt
L x) = C1μL(U)−1|H

L̂
(Z)|−1.

7.4.1. Measures on SpinQ(Z) \ Rn,k
Q (D). We have different measures on the set of

cosets SpinQ(Z) \ Rn,k
Q (D).
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• νD is the pushforward of the normalized sum of Dirac measures on Rn,k
Q (D).

• For any L ⊂ Qn oriented k-dimensional with discQ(L) = D, the measure νP(L) is the
pushforward of μL|U under the map � defined in (7.4). Here, the collection P(L) is
defined in (7.5).

We claim that νD is a convex combination of the measures νP(L) for L, varying
with discriminant D. The weights of the above measures may be computed explicitly.
Beginning with the former, note that the mass that νD gives to a point [L̂, �

L̂
]� ∈

SpinQ(Z) \ Rn,k
Q (D) is, up to a fixed scalar multiple, the number of preimages of [L̂, �

L̂
]�

under the quotient map Rn,k
Q (D) → SpinQ(Z) \ Rn,k

Q (D). In other words, it is a constant
times

#{[g.L̂, �
g.L̂] : g ∈ SpinQ(Z)} = #{g.L̂ : g ∈ SpinQ(Z)} = |SpinQ(Z)|

|H
L̂
(Z)| .

By the same argument as in Lemma 7.4, we have (as |SpinQ(Z)| cancels out)

νD([L̂, �
L̂

]�) =
( ∑

[L′,�L′ ]�∈SpinQ(Z) \ Rn,k
Q (D)

1
|HL′(Z)|

)−1 1
|H

L̂
(Z)| . (7.10)

On the other hand, the measure νP(L) satisfies, for any [L̂, �
L̂

]� ∈ P(L),

νP(L)([L̂, �
L̂

]�) =
( ∑

[L′,�L′ ]�∈P(L)

1
|HL′(Z)|

)−1 1
|H

L̂
(Z)| , (7.11)

by Lemma 7.4.
Thus, the relative weights that the measures νD and νP(L) assign agree. It follows from

Remark 7.2 and from (7.11) and (7.10) that νD is a convex combination of the measures
νP(L), as claimed.

7.5. Conclusion. We now prove the remaining theorems. We proved in §6.4 that
Theorem 6.9 implies Theorem 1.4 when k > 2 and Theorem 1.11. So it is left to prove
Theorems 6.9 and 1.4 when k = 2.

Proof of Theorem 6.9. The key insight is that νDi
is a convex combination of measures

that are equidistributed along any sequence of admissible subspaces. The assumption of
Di to be k-power free implies admissibility.

Let p be an odd prime not dividing disc(Q) and let Di →∞ be a sequence of integers
as in the assumptions of the theorem for the prime p. We first claim that any sequence
Li ∈ Hn,k

Q (Di) is admissible (cf. §3). Observe that Condition (1) is automatic. Also, the

assumption D
[k]
i →∞ implies Condition (2). By Proposition 5.1 and n− k ≥ k,

disc(L⊥
i )[n−k] ≥ disc(L⊥

i )[k] �Q D
[k]
i ,

which proves Condition (3). Then, Condition (4) follows from Propositions 5.1 and 2.9
(where the former implies that p � discQ(L⊥)).
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For any sequence Li , as above, together with an additional given orientation, the
measures νP(Li) equidistribute to the Haar measure on SpinQ(Z) \ Y+. Indeed, by
admissibility, the measures μLi

converge to the Haar measure μ on G(A) / G(Q) by
Theorem 3.1. In particular, as U is compact open, we have μLi

|U→ μ|U. Taking the
pushforward under � yields νP(Li) → ν, where ν is the Haar measure on SpinQ(Z) \ Y+.

The fact that νDi
is a convex combination of the measures νP(Li) finally implies

Theorem 6.9.

Proof of Theorem 1.4 for k = 2. Let Ū be the principal genus of Ḡ(A) / Ḡ(Q). The
following diagram commutes by construction.

G(A) / G(Q) ⊃ U Ū ⊂ Ḡ(A) / Ḡ(Q)

SpinQ(Z) \ Y+ SpinQ(Z) \ Grn,2(R)× S2 × Sn−2.

By Theorem 4.1, the images of sLi
�HLi

(A)G(Q) ∩U in Ū along any admissible
sequence of subspaces Li are equidistributed. On the other hand, by the above commutative
diagram, these images are given by the images of P(Li) under the bottom map. The rest of
the argument is analogous to the case k > 2.

Acknowledgments. The authors would like to thank Michael Bersudsky, Manfred
Einsiedler and Manuel Luethi for useful discussions. We also thank the anonymous
referee who made various valuable suggestions towards improving the exposition. A.W.
was supported by ERC grant HomDyn, ID 833423, SNF grant 178958 and the SNF Doc.
Mobility grant 195737.

A. Appendix. Non-emptiness for the sum of squares
In this section, we discuss non-emptiness conditions for the set Hn,k

Q (D) when Q is the
sum of squares. To simplify notation, we writeHn,k(D). Note that we have a bijection

L ∈ Hn,k(D) �→ L⊥ ∈ Hn,n−k(D)

as Q is unimodular (see Proposition 5.4 and its corollary). In view of our goal, we will thus
assume that k ≤ n− k throughout. We will also suppose that n− k ≥ 2.

The question of when Hn,k(D) is non-empty is a classical problem in number theory,
in particular, if k = 1. Here, note that Hn,1(D) is non-empty if and only if there exists a
primitive vector v ∈ Zn with Q(v) = D (i.e. D is primitively represented as a sum of n
squares).
• For n = 3, Legendre proved, assuming the existence of infinitely many primes in

arithmetic progression, that H3,1(D) is non-empty if and only if D �≡ 0, 4, 7 mod 8.
A complete proof was later given by Gauss [Gau86]; we shall nevertheless refer to this
result as Legendre’s three squares theorem.

• For n = 4, Lagrange’s four squares theorem states that H4,1(D) is non-empty if and
only if D �≡ 0 mod 8.
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• For n ≥ 5, we have H5,1(D) �= ∅ for all D ∈ N, as one can see from Lagrange’s four
square theorem. Indeed, if D �≡ 0 mod 8, the integer D is primitively represented as a
sum of four squares and hence also of n squares (by adding zeros). If D ≡ 0 mod 8,
one can primitively represent D − 1 as a sum of four squares, which yields a primitive
representation of D as a sum of five squares.

When k = 2, this question has been studied by Mordell [Mor32, Mor37] and Ko [Ko37].
In [AEW22], the first and last named authors, together with Einsiedler, showed that

H4,2(D) �= ∅ ⇐⇒ D �≡ 0, 7, 12, 15 mod 16. (A.1)

This concludes all cases with n ∈ {3, 4}. In this appendix, we show the following by
completely elementary methods.

PROPOSITION A.1. Suppose that n ≥ 5. ThenHn,k(D) is non-empty.

First, we claim that it suffices to show thatH5,2(D) is non-empty. For this, observe that
there exist, for any (n, k), injective maps

Hn,k(D) ↪→ Hn+1,k(D), Hn,k(D) ↪→ Hn+1,k+1(D). (A.2)

The first map is given by viewing L ∈ Hn,k(D) as a subspace of Qn+1 via Qn → Qn ×
{0} ⊂ Qn+1. The second map associates to L = Qv1 ⊕ · · · Qvk ∈ Hn,k(D) the subspace
Q(v1, 0)⊕ · · · ⊕Q(vk , 0)⊕Qen+1 ∈ Hn+1,k+1(D). In particular, Proposition A.1 for
(n, k) = (5, 2) implies Proposition A.1 for (n, k) = (6, 2), (6, 3). One then proceeds
inductively to verify the claim.

A.1. A construction of Schmidt. Though it is not, strictly speaking, necessary, we
introduce here a conceptual construction of Schmidt [Sch68] that captures what can be
done with inductive arguments as in (A.2). As before, we identify Qn with a subspace of
Qn+1 via Qn � Qn × {0}. Given any L ∈ Grn+1,k(Q), we have that either the intersection
L ∩Qn is (k − 1)-dimensional or L is contained in Qn. In particular, we can write

Hn+1,k(D) = Hn,k(D) "Hn+1,k
nd (D),

where Hn+1,k
nd (D) denotes the subspaces L ∈ Hn+1,k(D) for which L �⊂ Qn. We also let

Grnd
n+1,k(Q) be the subspaces L ∈ Grn+1,k(Q) for which L �⊂ Qn. Here, ‘nd’ stands for

‘non-degenerate’.
We now associate to L ∈ Grnd

n+1,k(Q) three quantities. Let L′ = L ∩Qn. Furthermore,
note that the projection of L(Z) onto the xn+1-axis consists of multiples of some vector
(0, . . . , 0, hL), where hL ∈ N. Because (0, . . . , 0, hL) comes from projection of L(Z),
there exists some vector (uL, hL) ∈ L(Z). We define vL to be the projection of uL onto
the orthogonal complement of L′ inside Qn.

PROPOSITION A.2. [Sch68, §5] The following properties hold.
(i) For any L ∈ Grnd

n+1,k(Q), the pair (hL, vL) is relatively prime in the following sense:
there is no integer d > 1 such that d−1hL ∈ N and d−1vL ∈ πL′⊥(Zn−1).
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(ii) Let (h, L̄, v) be any triplet with h ∈ N, L̄ ∈ Grn,k−1(Q) and v ∈ πL̄(Zn−1) such
that (hL, vL) is relatively prime. Then there exists a unique L ∈ Grnd

n+1,k(Q) with
(h, L̄, v) = (hL, L′, vL).

(iii) We have

disc(L) = disc(L′)(h2
L +Q(vL)).

We remark that the construction in (ii) is quite explicit: if u ∈ Zn−1 satisfies πL̄(u) = v,
one defines L to be the span of L̄ and the vector (u, h).

To illustrate this construction, we show the direction in (A.1) that we need for
Proposition A.1.

LEMMA A.3. If D ∈ N satisfies D �≡ 0, 7, 12, 15 mod 16, thenH4,2(D) is non-empty.

Proof. By Legendre’s three squares theorem and (A.2),

D �≡ 0, 4, 7 mod 8 #⇒ H4,2(D) �= ∅.

Suppose that D is congruent to 4, 8 modulo 16. In view of Proposition A.2, we let L′ be
the line through (1, −1, 0) so that disc(L′) = 2. Thus, it remains to find relatively prime
h ∈ N and v ∈ πL′(Z3) with D/2 = h2 +Q(v). Note that

πL′(Z
3) = Z

e1 + e2

2
+ Ze3

so that we may choose v = a(e1 + e2)/2 + be3 for a, b ∈ Z. Hence, we need to find a
solution to

D

2
= h2 + a2

4
+ a2

4
+ b2 = h2 + a2

2
+ b2

such that (h, a, b) is primitive.
Equivalently, this corresponds to finding a primitive representation of D by the ternary

form x2
1 + 2x2

2 + 2x2
3 . This is again a classical problem and has been settled by Dickson

[Dic27]; as the argument is very short and elementary, we give it here. Note that D/4 is
congruent to 1 or 2 modulo 4 and hence there is (x, y, z) ∈ Z3 primitive with x2 + y2 +
z2 = D/4. As D/4 ≡ 1, 2 mod 4, at least one and at most two of the integers x, y, z must
be even. Suppose, without loss of generality, that x is even and y is odd. One checks that

D = 2(x + y)2 + 2(x − y)2 + (2z)2

and, observing that (x + y, x − y, 2z) is primitive as x + y is odd, the claim follows in
this case.

Proof of Proposition A.1. As explained, it suffices to consider the case (n, k) = (5, 2). In
view of Lagrange’s four squares theorem and (A.2), we may suppose that D ≡ 0 mod 8.
Moreover, we can assume that D ≡ 0, 7, 12, 15 mod 16 by (A.2) and Lemma A.3. To
summarize, we only need to consider the case D ≡ 0 mod 16.
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Again, we employ the technique in Proposition A.2. Consider the subspace L′ ⊂ Q4

spanned by the vector (1, −1, 0, 0), which has discriminant 2. Then

πL′(Z
4) = Z

e1 + e2

2
+ Ze3 + Ze4

and, as in the proof of Lemma A.3, we need to find a primitive representation (h, a, b, c)

of D/2 as

D

2
= h2 + a2

2
+ b2 + c2.

Setting a = 2 and observing that D/2 − 2 ≡ 6 mod 8, the claim follows from Legendre’s
three squares theorem.

B. Appendix. More results around discriminants and induced forms
The contents of this section of the appendix are of elementary nature and complement the
results in §5.1.

B.1. Local glue groups. In this section, we briefly explain how to compute the glue
group in terms of local data. This is largely analogous to the local formula for the
discriminant (1.5). For any prime p, define

Gp(L) = L(Zp)#/L(Zp),

where we recall that L(Zp) = L(Qp) ∩ Zn
p and

L(Zp)# = {v ∈ L(Qp) : 〈v, w〉 ∈ Zp}.
Observe that Gp(L) is trivial for all but finitely many p. Indeed, Gp(L) is trivial if L is
p-unimodular for an odd prime p, that is, p � discQ(L) (see also Remark B.2 for a much
finer statement). Also, it is easy to adapt Lemma 5.3 and Proposition 5.4 to their local
analogues. Here, we prove the following lemma.

LEMMA B.1. We have

G(L) �
∏
p

Gp(L). (B.1)

Taking cardinalities, (B.1) encodes the (obvious) local product formula for discrimi-
nants (1.5).

Proof. The image of the natural inclusion L(Z) ↪→ L(Zp) is dense for every p. In
particular, the image of L(Z)# under L(Q) ↪→ L(Qp) lies in L(Zp)# and is dense therein.
We obtain a homomorphism ι : G(L) → ∏

p Gp(L). We prove that ι is the desired
isomorphism. Let (vi)i be an integral basis of L(Z).

Let v + L(Z) be in the kernel of ι. Then v ∈ L(Zp) for every p or, equivalently, the
coordinates of v in the Z-basis (vi)i of L(Z) have no denominators in p for every p. Hence,
v ∈ L(Z) and ι is injective.

As Gp(L) is trivial for all but finitely many p, it suffices to find, for any v ∈ L(Zp)#,
an element w ∈ L(Z)# with w + L(Zp) = v + L(Zp) and w ∈ L(Zq) for any q �= p. Let
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v ∈ L(Zp)# and write v = ∑
i αivi , where αi ∈ Qp. For every i, let βi ∈ Z[1/p] be such

that αi ∈ βi + Zp and set w = ∑
i βivi ∈ L(Q) as well as u = w − v ∈ L(Zp). Then,

clearly, for every i,

〈w, vi〉 = 〈v, vi〉 + 〈u, vi〉 ∈ Zp,

that is, w ∈ L(Zp)# and 〈w, vi〉 ∈ Z[1/p]. But Zp ∩ Z[1/p] = Z and hence w ∈ L(Z)#.
Observe also that, by construction, w ∈ L(Zq) for every prime q �= p. Hence, ι is
surjective.

Remark B.2. The isomorphism in (B.1) is particularly useful when one tries to explicitly
compute glue groups. Indeed, recall that, for any odd prime, p an integral quadratic form
q over Zp is diagonalizable [Cas78, Ch. 8]. For

q(x1, . . . , xk) = α1p
�1x2

1 + · · · + αkp
�kx2

k

with units αi ∈ Z×p and �i ≥ 0, the glue group is

Z/p�1Z× · · · × Z/p�kZ.

For p = 2, an integral quadratic form q need not be diagonalizable over Z2. However, by
[Cas78, Lemma 4.1], we may write q as a (direct) sum of forms of the following types in
distinct variables: that is,

2�αx2
1 , 2�(2x1x2) and 2�(2x2

1 + 2x1x2 + 2x2
2) (B.2)

with � ≥ 0 and α ∈ Z×2 . An elementary computation leads to observing that the glue
groups of the quadratic forms in (B.2) are, respectively,

Z/2�Z Z/2�Z× Z/2�Z and Z/2�Z× Z/2�Z. (B.3)

It follows that the glue group has essentially the same structure as in the case of p odd.
More precisely, assume that

q(x1, . . . , xk) = q1 + · · · + qm,

where the qi are forms as in (B.2) with exponents � = �i satisfying �1 ≤ · · · ≤ �m. Then
the glue group is a product of groups as in (B.3) with exponents �1 ≤ · · · ≤ �m.

B.2. Indices of projected lattices. For any subspace L ⊂ Qn, we denote the index of
L(Z) in L ∩ (Zn)# by i(L). Then the proof of Proposition 5.1 and Lemma 5.3 shows that

discQ(L⊥) = i(L⊥)

i(L)
discQ(L).

The following proposition establishes a fundamental relation between the indices for L
and L⊥.

PROPOSITION B.3. Let L ⊂ Qn be a subspace. The sequence

0 → (L⊥ ∩ (Zn)#)/L⊥(Z) → (Zn)#/Zn → L(Z)#/πL(Zn) → 0,
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obtained by inclusion and projection, is exact. In particular,

i(L)i(L⊥) = disc(Q).

Similarly, for any prime p,

[L(Qp) ∩ (Zn
p)# : L(Zp)] · [L⊥(Qp) ∩ (Zn

p)# : L⊥(Zp)] = pνp(disc(Q)).

Proof. By Lemma 5.3, the orthogonal projection πL defines a surjective morphism

f : (Zn)# → L(Z)#/πL(Zn).

The kernel of this morphism can be described by

ker(f ) = {v ∈ (Zn)# : there exists w ∈ Zn such that v − w ∈ L⊥}. (B.4)

Clearly, L⊥ ∩ (Zn)# ⊂ ker(f ). We claim that the inclusion of L⊥ ∩ (Zn)# into ker(f )

induces an isomorphism

L⊥ ∩ (Zn)#/L⊥(Z) → ker(f )/Zn.

The fact that the map L⊥ ∩ (Zn)# → ker(f )/Zn induced by the inclusion is surjective
follows immediately from the characterization of ker(f ) in (B.4). Since the kernel of this
map is clearly L⊥(Z), the claim is proved. It follows that

0 → L⊥ ∩ (Zn)#/L⊥(Z) → (Zn)#/Zn → L(Z)#/πL(Zn) → 0

is a short exact sequence. The local analogue follows similarly.

Remark B.4. It would be interesting to see statistical results regarding these indices.
To give a concrete example, suppose that disc(Q) = 2. Then, clearly, i(L) ∈ {1, 2} for
any subspace L and one can ask what is the proportion of subspaces L with i(L) = 1
(or i(L⊥) = 2). If k = n− k, Proposition B.3 shows that the number of subspaces with
i(L) = 1 and i(L) = 2 is the same.

B.3. Primitive forms. Here, we study to what extent the induced forms qL, qL⊥ (defined
in §1.4.2 up to equivalence) for a given subspace L ∈ Grn,k(Q) need to be primitive. For
example, we establish that, for k < n− k, the form qL⊥ needs to be essentially primitive
(while qL does not). First, observe that, indeed, the form qL need not be primitive.

Example B.5. Let n ≥ 6, let (ei)
n
i=1 denote the standard basis vectors of Qn and suppose

that Q = Q0 is the standard positive definite form. Let (v1, v2) ∈ Z2 be a primitive vector.
Then the integer lattice in the subspace

L = spanQ{v1e1 + v2e2, v1e3 + v2e4, v1e5 + v2e6}
is spanned by v1e1 + v2e2, v1e3 + v2e4, v1e5 + v2e6, which are orthogonal vectors. In this
basis,

qL(x1, x2, x3) = (v2
1 + v2

2)(x2
1 + x2

2 + x2
3),
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which is a highly non-primitive form. Similarly, L⊥(Z) is spanned by the integer vectors
v2e1 − 1v1e2, v2e3 − v1e4, v2e5 − v1e6, e7, . . . , en and hence, in this basis,

qL⊥(x1, . . . , xn−3) = (v2
1 + v2

2)(x2
1 + x2

2 + x2
3)+ x2

4 + · · · + x2
n−3.

In particular, qL⊥ is primitive if n > 3; otherwise, gcd(qL⊥) = gcd(qL) (as qL⊥ = qL in
this specific example). This type of behavior is generally true, as established below. For
more examples, we refer to [AEW22, Example 2.4].

PROPOSITION B.6. Let L ∈ Grn,k(Q). If k > n− k, gcd(qL) divides disc(Q) and

disc(q̃L) �Q discQ(L).

Conversely, if k < n− k, gcd(qL⊥) divides disc(Q) and disc(q̃L⊥) �Q discQ(L).
Moreover, if k = n− k, we have gcd(qL) �Q gcd(qL⊥) and

disc(q̃L) �Q disc(q̃L⊥).

For the convenience of the reader, we provide two proofs of the first claim in the
proposition; the second uses glue groups and generalizes to k = n− k.

Proof. First proof for k �= n− k. Fix a basis v1, . . . , vk of L(Z) and complete it into a
basis v1, . . . , vn of Zn. Let v∗1 , . . . , v∗n be its dual basis. Since k > n− k, without loss of
generality, we may assume that v1 ∈ spanR(vk+1, . . . , vn)

⊥. Note that v∗1 ∈ (Zn)# and so
disc(Q)v∗1 ∈ Zn. In particular, we may write

disc(Q)v∗1 =
∑
s≤n

asvs with as ∈ Z.

By our choice of v1,

disc(Q) = 〈disc(Q)v∗1 , v1〉Q =
∑
s≤k

as〈vs , v1〉Q

and the first claim follows as gcd(qL) divides the right-hand side.

Proof. Given a prime p, we write ordp(qL) for the largest integer m with pm | gcd(qL).
Note that ordp(qL) can be extracted from the glue group of L whenever p | gcd(qL) (see
Remark B.2).

To begin the proof, fix p and note that aL := ordp(qL) can be characterized as follows:
it is the smallest integer m so that there exists a primitive vector v ∈ L(Zp)# with pmv ∈
L(Zp). To see this, first assume that p is an odd prime. Then, as in Remark B.2 (after
possibly changing the basis), we may write

qL(x1, . . . , xk) = α1p
�1x2

1 + · · · + αkp
�kx2

k

with �1 ≤ �2 ≤ · · · ≤ �k . If v is a vector as above, the expression for the glue group in
Remark B.2 as well as primitivity imply that m ≥ �1. Conversely, it is easy to see that the
first vector v in the above (implicit) choice of basis of L(Zp) satisfies p−�1v ∈ L(Zp)# and
is primitive. For p = 2, the proof above can be adapted using Remark B.2.
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Define a′L as the smallest integer m so that there exists a primitive vector v′ ∈ πL(Zn
p)

with pmv′ ∈ L(Zp). We argue that a′L ≤ aL. Let v be as in the above definition of aL.
Then, there exists an integer i ≤ aL such that piv ∈ πL(Zn

p) and piv is primitive in
πL(Zn

p). For this integer i, set v′ := piv and observe that paL−iv′ = paLv ∈ L(Zp).
Therefore, a′L ≤ aL − i ≤ aL, as claimed. In analogous fashion, one argues that aL ≤
a′L + ordp(ip(L)), so that

a′L ≤ aL ≤ a′L + ordp(ip(L)).

Suppose that k > n− k. Applying Proposition 5.4, we see that there exists v′ ∈ πL(Zn
p)

primitive with v′ ∈ L(Zp). Indeed, as πL⊥(Zn
p)/L⊥(Zp) is a product of at most k

non-trivial cyclic groups, the same is true for πL(Zn
p)/L(Zp), which implies the claim.

Therefore, a′L = 0 and hence aL ≤ ordp(ip(L)). This shows that gcd(qL) | i(L), which
proves a sharpened version of the first part of the proposition (cf. Proposition B.3).

Now, suppose that k = n− k. We show first that a′L = a′
L⊥ . If a′L = 0, πL(Zn

p)/L(Zp)

is a product of at most k − 1 cyclic groups and hence the same is true for
πL⊥(Zn

p)/L⊥(Zp), by Proposition 5.4. This implies that a′
L⊥ = 0. If a′L �= 0, the number

a′L is exactly the smallest order of a non-trivial element in πL(Zn
p)/L(Zp). Applying the

same for L⊥, yields a′L = a′
L⊥ in all cases. In particular,

aL ≤ a′
L⊥ + ordp(ip(L)) ≤ aL⊥ + ordp(ip(L)).

Varying the prime p, we obtain that

gcd(qL) | gcd(qL⊥)i(L)

and conversely. This finishes the proof of the proposition.
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