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A CONTINUITY PROPERTY RELATED TO AN INDEX OF
NON-SEPARABILITY AND ITS APPLICATIONS

WARREN B. MOORS

For a set E in a metric space X the index of non-separability is

P(E) = inf{r > 0: E is covered by a countable-family of balls of radius less than r}.

Now, for a set-valued mapping $ from a topological space A into subsets of a
metric space X we say that $ is /3 upper semi-continuous at t 6 A if given
e > 0 there exists a neighbourhood U of t such that /3($(f/)) < e. In this paper
we show that if the subdifferential mapping of a continuous convex function $
is P upper semi-continuous on a dense subset of its domain then $ is Frechet
differentiate on a dense Gs subset of its domain. We also show that a Banach
space is Asplund if and only if every weak* compact subset has weak* slices whose
index of non-separability is arbitrarily small.

1. INTRODUCTION

For a bounded set E in a metric space X the Kuratowski index of non-compactness

of E is

a.(E) = inf {r > 0: E is covered by a finite family of sets of diameter less than r}.

Recently, in a paper by Giles and Moors [2], a new continuity property related to
Kuratowski's index of non-compactness was examined. In that paper they said that
a set-valued mapping $ from a topological space A into subsets of a metric space
X is a upper semi-continuous at a point t G A if given e > 0 there exists an open
neighbourhood U of t € A such that a($(U)) < e. They showed that under suitable
circumstances a upper semi-continuity characterises (metric) upper semi-continuity,
and that a significant class of set-valued mappings which are a upper semi-continuous
on a dense subset of their domain are single-valued and (metric) upper semi-continuous
on a dense Gg subset of their domain.

In this paper we consider a natural generalisation of a upper semi-continuity called
/? upper semi-continuity. This new upper semi-continuity condition is defined in terms
of an index of non-separability.
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In Section 2 we define the index of non-separability and prove some of its elementary
properties which are analogous to those of the Kuratowski index of non-compactness.
We also examine a property satisfied by the Kuratowski index of non-compactness, but
which fails to be true for the index of non-separability.

In Section 3 we show that any minimal weak* cusco from a Baire space A into
subsets of the dual of a Banach space X which is /? upper semi-continuous on a dense
subset of A, is single-valued and (norm) upper semi-continuous on a dense G& subset
of A.

In Section 4 we use the index of non-separability to define /3 denting points of a
set in a Banach space and establish a pleasing connection between /? denting points
and ordinary denting points. The single-valuedness property established in Section
3 suggests an application in determining conditions under which continuous convex
functions on a Banach space are generically Frechet differentiable.

In Section 5 we derive another characterisation of Asplund spaces. We also extend
a recent result of Kenderov and Giles [3, Theorem 3.5] to show that on a Banach space
X which can be equivalently renormed to have every point of the unit sphere of X a
/? denting point of the closed unit ball of X, a continuous convex function on an open
convex subset of X* is generically Frechet differentiable provided that the set of points
where the function has a weak* continuous subgradient is residual in its domian.

2. A MEASURE OF NON-SEPARABILITY

For a set E in a metric space X the index of non-separability is

/3(E) = inf{r > 0: E is covered by a countable family of balls of radius less than r } ,

when E can be covered by a countable family of balls of fixed radii, otherwise,

Throughout the rest of this paper all Banach spaces X are over the real numbers
with dual X*. The closed unit ball {x E X: \\x\\ ^ 1} will be denoted by B(X) and
the unit sphere {x E X: \\x\\ — 1} by S(X). Consider a non-empty bounded subset
K of X. Given f e X* \ {0} and 6 > 0, the slice of K defined by / and 6 is the set
S(K, f, 6) = {x E K: f{x) > sup / ( i f ) — 6}. For a metric space (X, d), given xo E X

and r > 0 we will denote by B(xo, r) the open ball {x E X: d(x, xo) < r} and by
B[XQ, r] the closed ball {x £ X: d(x, xo) ^ r } . For any set E in a topological space
X we will denote by C(E) the complement of E in X and E the closure of E in X.

We will denote the interior of E by int E and the boundary of E by dE.

PROPOSITION 2 . 1 . For a metric space {X, d), the index of non-sepaiabihty
13 on X satisfies the following properties:

1. 0(A) ftO for any A C X;
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2. 0( A) = 0 if and only if A is a. separable subset of X;

3. 0{A) ^0{B) if ACBCX;

4. 0{A) = 0(1) for any AC X;

5. p( U > 0 = sxvp{0(An): n G N} wiere An C X for all n £ N;

6. /?(4 HB)^ min{0(A), /3{B)} for A, B C X.

We omit the proofs of the properties (1) to (6) as they are straightforward.

PROPOSITION 2 . 2 . For a normed linear space (X, \\-\\), the index of non-

separability /3 on X satisfies the following additional properties:

7. 0{A + B)^0(A) + 0(B) for A,BCX;

8. 0(kA)= \k\0{A) for ACX and fc G E;
9. 0(coA) — f3(A) for AC. X where coA denotes the convex hull of A.

PROOF: The proofs of the properties (7) to (9) are straightforward, with the pos-
sible exception of (9), which we now prove. Clearly fi(A) ̂  (3(coA) as A C coA, so it
is sufficient to show f3(A) ^ 0(coA). Given e > 0, choose a sequence {zn}^=i and an
r > 0 such that

B[xn, r) and 0{A) <r< 0{A) + e.
n = l

<» / oo \ / oo \

But AC\J B[xn, T] = I U {xn} + B{0, r] C co M J {xn} + B[0, r]
n=l \n=l / \n=l /

so

/oo \

coACcoi \J{xn} I +B[0, r].
\n=l /

Therefore

0{coA) < 0 (co Q {zn} ) + /?(I?[0, r])
n = l

oo / oo \
by (7). But co \J {xn} is separable so /?( co \J {xn} I = 0 from which it follows that

n=l \ n=l /

0(coA)<0{A) + e. D

It is a well-known property of Kuratowski's index of non-compactness, that for a
nested sequence of non-empty closed sets {-F1,,}^! in a complete metric space X, if

oo
lim a(Fn) = 0, then f| Fn ^ 0, [4, p.303]. However, the analogous result for the

»— °° n=l

index of non-separability is false, as is shown in the following example. Consider the

Banach space c0 and the element {1/2, 1/4, 1/8, . . . , 1/2", . . .} 6 S(£i). For each
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n e N let Fn = {{xlt x2, x3, ..., xn, ...} <E B{c0): f > n / 2 n ^ 1 - 1/n}. Then
n=l

{•FnJ-JJLj is a nested sequence of non-empty closed sets with lim /3(Fn) — 0; however
n—>oo

oo

f] Fn — 0. We observe that for a normed linear space X either fi(B(X)) — 0 or 1.
n=l

In the first case, X is separable and in the second case, X is non-separable. The proof
of this follows from properties (7) and (8) of Proposition 2.2.

3. /3 UPPER SEMI-CONTINUITY

Consider a set-valued mapping $ from a topological space A into subsets of a
topological space X. $ is said to be upper semi-continuous at t £ A, if, given an
open set W containing $(t) there exists an open neighbourhood U of t such that
$(CA) C W. For brevity we call $ an usco if it is upper semi-continuous and $(<) is a
non-empty compact subset of X for each t £ A. If X is a linear topological space we
call $ a cusco if it is upper semi-continuous and $(^) is a non-empty convex compact
subset of X for each t € A.

For a set-valued mapping $ from A into subsets of a metric space X we introduce
another upper semi-continuity property defined in terms of the index of non-separability.
We say that $ is /? upper semi-continuous at t 6 A, if, given an e > 0 there exists
an open neighbourhood U of t such that /?($(?/)) < t.

We notice then, that every set-valued mapping $ from a topological space A into
subsets of a separable metric space X is f) upper semi-continuous on A. So it is clear
that /3 upper semi-continuity is closely related to questions concerning the separability
of the images of set-valued mappings.

PROPOSITION 3 . 1 . Let $ be a set-valued mapping from a Lindelof space A
into subsets of a metric space X. Then $ lias a separable image $(A) if and only if
$ is /3 upper semi-continuous on A.

PROOF: It is obvious that $ is 0 upper semi-continuous on A when $(A) is
separable.

Conversely, given e > 0, for each x 6 A let Ux be an open neighbourhood

of x in A such that f3($(Ux)) < e. But A - \J{UX C A: x e A} so there ex-

ists a countable subcover {UXn}™=1 of A. So, 0 ^ 0(<f>{A)) = /9( U * ( ^ n ) ) =

sup{^($ (^ n ) : n G N)} ^ e. It follows that /3($(A)) = 0, and so $(A) is separa-
ble. D

One of the great advantages of the generalised continuity condition we have in-
troduced, is that significant classes of f3 upper semi-continuous set-valued mappings
from a Baire space into subsets of a metric space are single-valued and (metric) upper
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semi-continuous on a dense Gs subset of their domain. This is a consequence of the

countability arguments which are entailed by the index of non-separabihty.

An usco (cusco) $ from a topological space A into subsets of a topological (linear

topological) space X is said to be minimal if its graph does not strictly contain the graph

of any other usco (cusco) with the same domain. We will need the follow characterisation

of minimal uscos (cuscos); see [2, Lemma 2.5].

PROPOSITION 3 . 2 . Consider an usco (cusco) $ from a topological space A

into subsets of a Hausdorff space (separated linear topological space) X. Then § is
a minima/ usco (cusco) if and only if for any open set V in A and closed (closed and

convex) set K in X where $ (V) £ K there exists a non-empty open subset V C V

such that $(V')nif = (l.

LEMMA 3 . 3 . Let A be a topological space and X a Hausdorff (separated linear
topological) space. Consider $ a minimal usco (cusco) from A into subsets of X.
Let B be a closed (closed and convex) subset of X. If for each open subset U in A,
$({/) g B then {x £ A; $(«) fl B = 0} is a dense open subset of A.

PROOF: Let W = {x £ A: $(z) n B = 0 } . Since $ is upper semi-continuous
and B is closed, W is open. So it is sufficient to show W is dense in A. Let V be
a non-empty open set in A, then $(V) <£ B so from Proposition 3.2 there exists a
non-empty open subset V of V such that $(V) n B = <D and so ® ^ V C W C\V.
Therefore W is dense in A. D

LEMMA 3 . 4 . Let U be a non-empty open subset of a Baire space A and X
a metric ("linear metric) space. Consider a minimal T-USCO (T-CUSCO) $ from A into
subsets of X, where X is endowed with a topology T such that the metric closed balls
are also r closed (and convex). If /3($(U)) < e for some e > 0, then there exists a
non-empty open subset V of U such that diam $(V) ^ It.

PROOF: Let $' be the restriction of $ to U. It follows from Proposition 3.2
that $' is a minimal r usco (T-CUSCO). We note also that U is a Baire space. Since

/?($(#)) < e there exists a sequence {xn}™=1 in X such that $'(U) C |J B[XJE\. NOW

if $'(W) C B[xi, e] for some non-empty open set W contained in U write V = W, but
if not, by Lemma 3.3 there exists a dense open set O\ C U such that $'(Oi)nB[xx, e] =
0. Now if $'(W) C B[i2, e] for some non-empty open set W contained in U write
V = W, but if not, we have by Lemma 3.3 that there exists a dense open set O2 Q U
such that $'(02) H B[x2, e] — 0. Continue in this way, we will have denned V at some

00

stage, because if not, there exists a dense G{ subset Ooo Q U where Ooo = f] ®n and
n=l

00 00

$ ' (°°°)n U Blxi> e] = 0 contradicting the fact that $'(U) is contained in (J B[XJ, e].
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So U contains a non-empty open set V with diam $(V) ^ 2e. D

THEOREM 3 . 5 . Consider a Baire space A, a metric space (linear metric space)

X, and X with topology r where the metric closed balls are also T closed. Consider

a minimal T USCO (T CUSCO) $ from A into subsets of X. II $ is (3 upper semi-

continuous on a dense subset of A then there exists a dense Gs subset of A on which

$ is single-valued and metric upper semi-continuous.

PROOF: Given e > 0, consider the set Oe = (J{open sets U C A: diam $(U) <
2e}. Clearly Oc is open. We now show that Oc is dense. Consider W a non-empty
open subset of A. Now, there exists a t £ W where $ is j3 upper semi-continuous. So
there exists an open neighbourhood U of t contained in W such that /3($(J7)) < e.
Therefore by Lemma 3.4 there exists a non-empty open subset V contained in U such

oo

that diam $(?/) ^ 2e, and so 0 ^ V C OCH W. Since A is a Baire space, (J 0 i / n is a
n=l

dense Gs subset of A on which $ is single-valued and metric upper semi-continuous. 0

An important application of our theory so far concerns the differentiability of con-
vex functions. A continuous convex function (j) on an open convex subset A of a Banach
space X is said to be Frechet differentiable at x G A if

<f>(x + At/) — 4>(x)
Km exists and is approached uniformly for all y G S(X).

A subgradient of <j> at xo G A is a continuous linear functional / on X such that
f(x — xo) ^ 4>{x) — <t>{xo) f° r all x G ^4. The subdifferential of <f> at x, denoted by
d<f>(x), is the set of subgradients of <f> at z, and is non-empty for each x G X. Now
the subdifferential mapping x —• d<j>(x) is a minimal weak* cusco from A into subsets
of X*, [6, p.100]. Further, <j> is Frechet differentiable at x G A if and only if the
subdifferential mapping x —> d(j>{x) is single-valued and norm upper semi-continuous
at x £ A, [6, p. 18] so from Theorem 3.5 we have the following result.

COROLLARY 3 . 6 . A continuous convex function <j> on an open convex subset

A of a. Banach space X whose subdifferential mapping x —> d(j){x) is /3 upper semi-
continuous on a dense subset of A is Frechet differentiable on a dense Gg subset of

A.

The well-known result follows from this corollary that every continuous convex

function on an open convex subset of a Banach space whose dual is separable is Frechet

differentiable on a dense Gs subset of its domain.

We will require the following proposition in Section 5, which again concerns con-

ditions which imply that the image of a set-valued mapping is separable.

PROPOSITION 3 . 7 . Let A be a separable topological space and X a normed

linear space. If $ is a minima./ weak usco or cusco then the image $(A) is separable.
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PROOF: Let {xn G A: n £ N} be a dense subset of A. For each n G N, choose
oo

yn G $ ( i n ) . Now, suppose $(J4) % co \J {yn}\ then by Proposition 3.2 there exists
n = l oo

a non-empty open subset V of A such that $(V) D co |J {yn} = 0- But for some
oo n= l

k £ N, Xfc € V so, 0 ^ (yjt) C $(F) n co |J {j/n}. Therefore we must have that
oo oo n = l _

C co (J {j/n}. But co U {j/n} is separable, so $(A) is also separable. U
COROLLARY 3 . 8 . A continuous convex {unction <j> on an open convex subset

A of a. Ba.na.ch space X whose sub differentia] mapping x —» 9< (̂a:) is a weak cusco is

Frechet differentia We on a dense Gs subset of A.

PROOF: In Phelps, [6, p.23], it is shown that <f> is Frechet differentiable on a dense
Gs subset of A if <j>\y is Frechet differentiable on a dense Gg subset of A D Y for
every closed separable subspace Y of X. Let i: Y —> X be the inclusion map and
i*: X* —* Y* be the conjugate map of i. Then 9<£|y = i*d<j>i. Therefore if d<j> is a
weak cusco, then so is d<j> | y . So by Proposition 3.7, Corollary 3.6 and Proposition 3.1
we have that d(f> |y is Frechet differentiable on a dense Gs subset of Y D A. Hence <f>

is Frechet differentiable on a dense Gs subset of A. D

4. DENTING POINT STRUCTURE FOR CLOSED BOUNDED CONVEX SETS

Consider a closed convex set K with 0 € int K in a Banach space X. The gauge p

of K is defined by p(x) = inf{A > 0: x £ XK} and is a continuous sublinear functional
on X. We define the polar of K as the set K° = {/ G X*: f{x) ^ 1 for all x G K}.

Then K° is weak* compact convex and 0 G K°. We denote by K00 the polar of K°

in X**.

If K is bounded we say that a point x G dK is a denting point of if, if given
e > 0, there exists a slice S(K, f, S) containing the point x and whose diameter is
less than t. We now introduce the notion of an a-denting point. An extreme point
x G dK is called an a denting point of K if given e > 0, there exists a slice S(K, f, S)

containing the point x such that ct(S(K, f, 6)) < e. Similarly for a closed bounded
convex subset of X* we can define weak* denting points and weak* a-denting points,
where the shces are generated by weak* continuous linear functionals.

Generalising further, we say that an extreme point x G dK is a /3 denting point

of K if given e > 0, there exists a slice S(K, f, S) containing the point x such that
f)(S(K, f, 6)) < e. Similarly for a closed bounded subset of X* we can define weak*
/? denting points, where again the shces are generated by weak* continuous linear
functionals.

We now proceed towards establishing a close relationship between weak* denting

points and weak* /3 denting points for weak* compact convex subsets of the dual of a

https://doi.org/10.1017/S0004972700011680 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011680


74 W.B. Moors [8]

Banach space.

PROPOSITION 4 . 1 . Consider a weak* compact convex set K with 0 G K in

the dual of a Banach space X . Define the functional p on X by p(x) = sup{/(a;) : / G
K}; then p is a continuous subhnear functional and for every x G X and 6 > 0,
S(K, x, 62) C 8p(B(x, 6)) + SB(X*).

PROOF: Given x G X and 6 > 0, consider / G S(K, x, 82). Then f(x) ^
supx(K) — 62 = p(x) — 82 and since f £ K, / (y) ^ p(y) for all y G X, we have that
f(y — x) < p(y) - p(x) + S2 for all y G X. By the Br0ndsted-Rockafellar Theorem, [6,
p.51], there exist an xo G X and /o G dp(zo) such that ||x — zo|| < 8 and \\f — /o| | < ^.
So /o G ^ ( ^ ( a ; , *)) and S(K, x, 82) C 8p{B(x, 8)) + SB(X*). U

LEMMA 4 . 2 . Let K be a non-empty weak* compact convex subset of the dual

of a Banach space X. If K is the weak* closed convex hull of its weai* (3 denting

points then every weak* slice of K contains a closed weak* slice of arbitrarily small

diameter.

PROOF: We may assume that 0 G K. Given e > 0 consider S(K, x, So) an arbi-
trary weak* slice of K where x G S(X) and 80 > 0. Then the slice S(K, x, 80/2)

must contain at least one weak* /3 denting point / (say). Choose a weak* slice
S(K, y, Si) of K containing / such that f3(S(K, y,8i))<r = min{5o/4, e/4} and con-
sider the following weak* compact subset H = co (K\S(K, x, So/2) U K\S(K, y, Si)).

Clearly / $ H, as / is an extreme point of K. Define the functional p on X by
p(x) = max{/(x) : / G K} for each x G X. Now, choose z G S(X) such that
z(f) > maxz(H). Therefore dp(z) = {g G K: g(z) = p(z)} C K\H, and so by
the upper semi-continuity of dp, there exists an open neighbourhood W of z, such
that dp{W) C K\H so clearly f3(dp(W)) < r. But from Lemma 3.4 there exists a
non-empty open subset V of W such that diam9p(Vr) < 2r. Choose XQ G V and
0 < 6 < r such that B(x0, 6) C V. Now

S(K, x,S2)C [dP(B(x0, 6)) + SB(X*)} n K

C [S(K, x, ^j + 6B(X*)] nKC S(K, x, 60)

and diamS(K, x0, G2) < 2r + 2S< e. D

THEOREM 4 . 3 . Let K be a non-empty weak* compact convex subset of the dual

of a Banach space X. Then K is the weak* closed convex hull of its weak* fi denting

points if and only if K is the weak* closed convex hull of its weak* denting points.

PROOF: Clearly if K is the weak* closed convex hull of its weak* denting points

then it is the weak* closed convex hull of its weak* /3 denting points.
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Conversely, suppose that cow D ^ K, (where D is the set of all weak* denting
points of K) then there exists an xo G S(X) and a So > 0 such that S(K, xo, So) H
«P° D = 0. But from Lemma 4.2 there exists a slice S(K, z i , 5i) C S(if, x0 , £0)
such that diamS(K, x, 8\) < 1/2. We can now reapply Lemma 4.2 to the slice
S{K, xi, 6x) and get another slice S(K, x,S2) Q S(K, Xj, 61) C S(K, xo,So) with
diam 5(K, x2, S2) < 1/4. We can continue in this way, and at the n t h iteration we
will have a slice S(K, xn, Sn) C S(K, xn_i, 6n-i) Q ... C S{K, xlt 6) C S(K, xo,So)

with diamS(#, xn, Sn) < l / 2 n . Then fl 5(1T, xn, «B) = f| S(lf, xn, «„) = {/},
n=l n=l

for some / £ K. Clearly / is a weak* denting point, but / ^ co"" D. Therefore we
have reached a contradiction, so in fact we must have had K = ~cdw D. D

THEOREM 4 . 4 . For a closed bounded convex set K of a Banach space X, K is
the closed convex hull of its denting points if and only if K is the closed convex hull of
its a denting points.

PROOF: Clearly if K is the closed convex hull of its denting points then it is the
closed convex hull of its a denting points.

Conversely, denoting by D the set of all denting points of K, suppose that ~coD ^
K. Then there exists a slice S(K, f, 6) of K such that coDC\S{K, f, S) = 0. It follows
from [2, Lemma3.1(ii)] that if x is an a denting point of K then x is a weak* a denting
point K00. However, K is weak* dense in K00, so K00 is the weak* closed convex
hull of the natural embedding of the a denting points of K from which it follows that
K00 is the weak* closed convex hull of its weak* /? denting points. Now Theorem 4.3
implies that K00 is the weak* closed convex hull of its weak* denting point. But every
weak* denting point of K00 is a member of K. So K00 = cow* D C K00 \ S ( # 0 0 , / , *)
which is a contradiction. Therefore K must be the closed convex hull of its denting
points. U

5. 0 UPPER SEMI-CONTINUITY AND DIFFERENTIABILITY PROPERTIES

OF CONVEX FUNCTIONS

A Banach space X is called an Asplund space if every continuous convex function
on an open convex domain in X is Frechet differentiable on a dense Gt subset of
its domain. In Theorem 3.5 we showed that minimal weak* uscos (or weak* cuscos)
from a Baire space into subsets of the dual of a Banach space which are /? upper
semi-continuous on a dense subset of their domain are single-valued and norm upper
semi-continuous on a dense Gg subset of their domain. In Corollary 3.6 we showed that
this had differentiability implications for convex functions on open convex subsets of
a Banach space whose subdifferential mapping is j3 upper semi-continuous on a dense
subset of their domain. This suggests that we explore further /? upper semi-continuity
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and related properties in determining conditions under which a Banach space is an
Asplund space or has similar differentiability properties.

Given a Banach space X, for each x £ S(X) we denote by D(x) the set {/ G
S(X*) : f(x) = 1}. The set-valued mapping x —• D{x) from S(X) into subsets of
S(X*) is called the duality mapping on S(X). Part of the study of Asplund spaces is
to determine norm properties which imply that a Banach space is an Asplund space.
We show that if the duality mapping is fi upper semi-continuous on S(X) then X is
an Asplund space.

LEMMA 5 . 1 . Let X be a normed linear space, and Y a closed subspace of X.
If the duality mapping D on S(X) is ft upper semi-continuous on S(X) then Dy,
(the restriction of D to S(Y)), is (3 upper semi-continuous on S(Y).

PROOF: Given e > 0 and x G S(Y) there exists an open neighbourhood U of xin
S(X) such that 0(D(U)) < e. So there exists a sequence {/n}£Li contained in X*

oo

such that D{U) C (J {/„} + eB(X*). Now, DY = i*Di where i is the inclusion map
n=l

from Y into X and i* is its conjugate. Therefore,

DY(U n Y) C i*(D(U)) C i* ( ( j {/„} + eB(X*)) C Q i*(fn) + £B(Y*).
\n=l ) n=l

So /3(DY(U D Y)) ^ e, from which it follows that Dy is /? upper semi-continuous on
S(Y). D

THEOREM 5 . 2 . Let X be a Banach space. Then X is Asplund if the duality
mapping D is /? upper semi-continuous on S(X).

PROOF: It is well-known that a Banach space X is Asplund if and only if every
closed separable subspace Y has a separable dual Y*, (see [6, p.34]). We will proceed
by showing that every closed separable subspace Y has a separable dual Y*. But this
is immediate from Lemma 5.1 and Proposition 3.1. Since Lemma 5.1 tells us that Dy
is f3 upper semi-continuous on S(Y) and then Proposition 3.1 tells us that Dy(S(Y))
is separable. But we know from the Bishop-Phelps theorem that Dy(S(Y)) is dense in
S(Y*). Therefore S(Y*) is separable, and hence Y* is separable. u

We will now prove the following well-known result for comparison with Theorem
5.2.

THEOREM 5 . 3 . Let X be a Banach space. Then X is Asplund if the duality
mapping D is a weak cusco on S{X).

PROOF: Again, as in Theorem 5.2, it is sufficient to show that every closed sepa-
rable subspace Y of X has a separable dual Y* . It follows from the proof of Corollary
3.8 that Dy is a weak cusco on S{Y). Therefore from Proposition 3.7, DY(S(Y)) is
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separable, which, as in Theorem 5.2 implies S(Y*) is separable, which in turn implies
that Y* is separable. D

We notice that for a separable Banach space X, if the duality mapping D is a
weak cusco on S(X) then it is /3 upper semi-continuous on S(X). However if the
duality mapping D is f3 upper semi-continuous on S(X) then it is not necessarily a
weak cusco. In fact, it may not even be weak upper semi-continuous . For example
let X be the James space, [1, p.92]; then X** is separable but X is not reflexive.
The duality mapping D on S(X*) is /? upper semi-continuous but not weak upper
semi-continuous because if D were weak upper semi-continuous then X would be
reflexive.

The classical characterisation theorem for Asplund spaces was given by Namioka
and Phelps, [5, p.737]. We present an extended characterisation using Theorem 3.5.

THEOREM 5 . 4 . For a Banach space X the following are equivalent:

(i) every continuous convex function (f) on an open convex subset A of X is

Frechet differentiable on a dense Gg subset of A;

(ii) every non-empty bounded set in X* has weak* slices of arbitrarily small

diameter;

(iii) every non-empty bounded set in X* has weak* slices whose index of

non-separability is arbitrarily small.

PROOF: In view of the classical characterisation and because it is obvious that
(ii) => (iii), it will be sufficient to prove (iii) =>• (i). Consider a continuous con-
vex function <j> on an open convex subset A in X and given e > 0, consider 0e =
(J{open sets V in A: (3(d<f>(V)) < e} . Now 0e is open; we show that 0e is dense in A.

Consider a non-empty open set W in A. Since the sub differential mapping x —> d<j>{x)

is locally bounded, [6, p.29], there exists a non-empty open subset U of W for which
04>(U) is bounded. Now by the hypothesis in (iii) there exists a z G X and a 8 > 0
such tha t 0(S(d<t>{U), z, 6))<e. Now d<i>{U) g {/ € X*: f{z) ^ sup£(d$(E/ ) ) - 6}

so from Proposition 3.2 there exists a non-empty open subset V of U and so of W such
t h a t d<j>{V) C S(d(j>{U), z , 6 ) . T h e n 0(d<f>{V)) < e . S o 0 ^ V C W n O e , f r o m w h i c h

we conclude that Oe is dense and the subdifferential mapping x —» d4>(x) is /? upper
oo

semi-continuous on the dense Gg subset H^i/n oi A. It follows again from Corollary
I

3.6 that <j) is Frechet differentiable on a dense Gg subset of A. D

It has recently been shown, [3, Theorem 3.5], that there is a large class of Ba-
nach spaces, including the separable spaces, where every continuous convex function
on an open convex subset of the dual is Frechet differentiable on a dense Gg subset of
its domain provided that the set of points were the function has a weak* continuous
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subgradient is residual in its domain. Such spaces are those which can be equivalently
renormed to have every point of the unit sphere a denting point of the closed unit ball.
We generalise this result still further using the index of non-separability and Theorem
3.5.

We will need the following property of minimal weak* cuscos, [3, Lemma 3.4(iii)].

LEMMA 5 . 5 . Given a minimal weak* cusco $ from a Baire space A into subsets
of the dual X* of a Banach space X, there exists a dense Gg subset D of A such that
at each t £ D the real-valued mapping defined on A by

p{t)=in£{\\f\\:fe*(t)}

is continuous and $(<) lies in the face of a sphere of X* of radius p{t).

THEOREM 5 . 6 . Consider a Banach space X which can be equivalently renormed
to have every point of S(X) a (3 denting point of B{X). Then every minimal weak*
cusco $ from a Baire space A into subsets of X** for which the set G = {t G A: $(<)("!
X ^ 0} is residual in A, is single-valued and norm upper semi-continuous on a dense
Gg subset of A. In particular, every continuous convex function (p on an open convex
set A in X* for which the set G = {/ G A: d<t>{f)nX ^ 0} is residual in A, is Frechet
differentiable on a dense Gg subset of A.

PROOF: Consider X so renormed. Given e > 0, consider Oe = (J{ °Pe n sets U
in A: diam$(!7) ^ 2e}. Now Oe is open; we will show Oe is dense in A. From

Lemma 5.5 there exists a dense Gg subset G\ of A such that at every point t 6 Gi
the mapping p where p(t) = inf{||/|| : / 6 <£} is continuous and $(<) lies in the face of
a sphere of X** of radius p(t). Now G f"l G\ is residual in A. Consider a non-empty
open subset W of A and to G GflGi H W. There exists some xo G $(to)C\X. But xo
is a /3 denting point of p(to)B(X). So there exists a j G S{X*) and a 6 > 0 such that
xo G S(p(to)B(X), g, 6) and (3(S{p(to)B(X), g, 6)) < e/2. We can choose 1 < X < 2
such that x0 G S(\p{to)B(X), g, XS) = XS{p(to)B(X), g, 6) and then by property (2)
of Proposition 2.2, (3(XS(p(to)B(X), g, 8)) < e. Since p is continuous at to there exists
a non-empty open subset V of W containing t0 such that <£(<) D Xp(to)B(X**) ^ 0
for all t E V. So by Proposition 3.2, #(V) C Xp(to)B{X**). Since $(F') % {F £
X** : F(g) ^ Xp(to) — X8} then again by Proposition 3.2, there exists a non-empty
open subset V of V and so of W such that $(V) C S{Xp{to)B(X**), g, XS). Now,
since (3{XS(p(to)B(X), g, 6)) < e, there exists a sequence {zn}£Li contained in X

such that XS(p{to)B(X), g, 6) C ( \J {*„} + eB(X)).
» \n=l /

We now prove that there exists a non-empty open subset U of V such that
diam $(U) ^ It. We start by noting that V with the induced topology is a Baire space.
Now, if $(Z7') C (xj + eB(X**)) for some non-empty open set U' contained in V, write
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U = U', but if not, we have by Lemma 3.3 that there exists a dense open set O\ C V
such that $ ( O 0 n ( £ i + eB(X")) = 0. Now if $(*/') C (x2 + eB{X**)) for some non-
empty open set U' contained in V write U = U1, but if not, we have by Lemma 3.3 that
there exists a dense open set O2 Q V such that $ (O 2 )n (£ 2 + EB(X**)) = 0. Continue
in this way. We will have defined U at some stage, because if not, we have a dense Gg

subset OXQV where 0^= f\ On and $ ( 0 o o ) n ( \Jxn + eB(X**)) is empty. How-
n=l n=l

ever for any t 6 0ooH(G (~l V) which is dense in V, $(<)n ( \J xn + tB(x\ J ^ 0. So

V contains a non-empty open set U with diam$(£/) ^ 2e. Therefore 0 ^ U C OeC\W,

and so Oe is dense. We conclude that $ is single-valued and norm upper semi-
oo

continuous on the dense Gg subset f] O ^ n of A. Q
n=l

The question now arises as to whether the class of Banach spaces we have been
considering in this theorem is larger than the class in the original theorem we have
generalised. It is an open question whether spaces of our class can be equivalently
renormed to have the more restricted condition.
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