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Abstract

For a prime number p, we show that differentials dn in the motivic cohomology spectral
sequence with p-local coefficients vanish unless p − 1 divides n − 1. We obtain an
explicit formula for the first non-trivial differential dp, expressing it in terms of motivic
Steenrod p-power operations and Bockstein maps. To this end, we compute the algebra
of operations of weight p − 1 with p-local coefficients. Finally, we construct examples
of varieties having non-trivial differentials dp in their motivic cohomology spectral
sequences.

1. Introduction

The motivic cohomology spectral sequence (MCSS) is an algebro-geometric analogue of the
Atiyah–Hirzebruch spectral sequence in topology. Its second term consists of motivic cohomology
groups and the sequence converges to algebraic K-theory.

The spectral sequence was initially constructed for fields by Bloch and Lichtenbaum.
Unfortunately, their arguments contained a gap and the construction can now be found only
in the unpublished preprint [BL95]. Later, different constructions were built by Grayson [Gra95]
and Friedlander and Suslin [FS02]. These two constructions not only globalized the MCSS to
the whole category of smooth varieties, but also showed that it is supplied with multiplicative
structure. The equivalence of the two approaches was established in [Sus03].

Voevodsky [Voe02a, Voe02b] observed that the slice filtration of the motivic Eilenberg–Mac
Lane spectrum leads (modulo some conjectures) to another model of the MCSS. This approach
was developed by Levine and he has also shown the equivalence of all three constructions [Lev08].
These steps made it possible to extend the MCSS to the category of Voevodsky’s spaces. More
historical issues can be found in Weibel’s ‘K-book’ [Wei13, VI.4.4].

The behavior of differentials in the MCSS is quite similar to the topological case. Being
taken with rational coefficients, the sequence collapses on its E2-page (see [GS99]). On the other
hand, its structure with integer coefficients becomes too tangled, because of the interrelation of
different p-prime effects involved. The purpose of the current paper is to investigate the case of
Z(p)-coefficients that allows us to ‘distill’ the p-prime effects. In this case one gets non-trivial
differentials of rather high degree and that makes their computation an interesting question.

Differentials in the Atiyah–Hirzebruch spectral sequence were computed by Buchstaber long
ago [Buc69]. In the current paper we establish the parallel result for the MCSS. Philosophically,
our approach is quite similar to Buchstaber’s one, but the technique is certainly rather different.
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The strategy of the proof is the following. Firstly, we show, using Adams operations, that the
first non-trivial differential may appear only on the Ep-page (Proposition 3.1). Then, computing
the motivic Steenrod algebra in the corresponding degree, it is possible to show that the
differential in question is a scalar multiple of some concrete cohomological operation. Finally,
to check that the scalar in question is not zero, we construct examples of varieties such that the
differentials dp in their motivic cohomology spectral sequences are non-trivial (Proposition 6.2
and Example 6.3).

The significant part of our results becomes trivial in the case p = 2. So, this case is
systematically avoided in the paper. However, we give evidence (see Example 6.1) of non-triviality
of the differential d2 in the MCSS with Z(2)-coefficients over Q.

Let us, finally, mention that the scalar appearing in our result is actually a unit in the field
Z/p and, therefore, plays a negligible role in the spectral sequence structure, so that our theorem
gives full control over all differentials up to d2p−2. To compute the differential d2p−1 and other
possibly non-zero differentials dk(p−1)+1, we need a good description of secondary (and higher)
cohomological operations. As far as this description is currently not available, this makes studying
higher cohomological operations in motivic cohomology an interesting topic.

The computation of the p-local Steenrod algebra is based on Voevodsky’s result on the
structure of the motivic Steenrod algebra with finite coefficients. Originally, the statement was
proven only over fields of characteristic zero, but recent work [HKØ13] extends Voevodsky’s
construction to fields of characteristic mutually prime to p.

1.1 Notation remarks
We fix a prime number p and denote by Z(p) the localization of the ring of integers at the prime
ideal (p). We also denote by Z/p∞ the p-cyclotomic group, i.e. lim

→
Z/pmZ. Unless it is specified,

we always assume that p > 2.
We always assume the field k to be perfect and (Char k, p) = 1. Here and below by Char k we

denote the characteristic exponent of k. We denote by Sm/k the category of smooth separated
schemes of finite type (smooth varieties) over a field k. We also denote by Spc the category of
pointed Nisnevich sheaves over Sm/k (pointed Voevodsky spaces) and by Sp the homotopy
category of T -spectra (see below for the definition of T ). The reader is referred to [Voe98,
§ 2] for the constructions of the categories as well as for the description of a closed model
category structure on Spc. Abusing the notation, we identify smooth varieties with corresponding
representable Voevodsky spaces. We denote by H∗,∗(−) the motivic cohomology [MVW06, 3.4]
(cf. also § 4) and by K∗(−) Quillen’s K-groups [Qui73, § 7]. We often call the first index of motivic
cohomology groups degree and the second index weight.
• pt := Spec k.
• X+ := X t pt.
• H∗,∗ := H∗,∗(Spec k,Z/p).
• An (respectively Pn) denotes affine (respectively projective) space of dimension n in Sm/k.
• T := A1/(A1 − {0}) is the Tate object.
• We denote the T -suspension functor by T ∧−. The natural morphism X → T ∧X induces

a shifted isomorphism in motivic cohomology. For consistency, we call the inverse map
H̃∗,∗(−)

∼=
→ H̃∗+2,∗+1(T ∧ −) the T -suspension isomorphism and it is denoted by ΣT

(cf. (4.2)).
• σT := ΣT (1) ∈ H̃2,1(T ) is often called the Tate element.
We often denote by [X,Y, Z] the Bockstein homomorphism H∗,∗(−, Z) → H∗+1,∗(−, X)

corresponding to the short exact sequence 0→ X → Y → Z → 0 of abelian groups.
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Finally, we summarize here some vanishing results, which we will use below.

Statement 1.1. For X ∈ Sm/k, one has Hp,q(X) = 0 if:

(i) p > 2q;
(ii) p > q + dimX;
(iii) q < 0;
(iv) q = 0 and p 6= 0.

Proof. See [MVW06]: Theorem 19.3 for (i), Theorem 3.5 for (ii), Corollary 4.2 for (iii) and (iv). 2

2. Main result and outline of the proof

As was shown in [FS02], for any X ∈ Sm/k there exists the motivic cohomology spectral sequence

Ei,j2 = H i−j,−j(X)⇒ K−i−j(X), (2.1)
starting from the motivic cohomology groups H∗,∗(X) and converging to the algebraic K-groups
of the variety X. The differentials in this spectral sequence are dn : Ei,jn → Ei+n,j−n+1

n (n > 2).

Theorem 2.1. Let p be an odd prime and k be a perfect field of characteristic l such that either
l = 0 or (l, p) = 1. For a variety X ∈ Sm/k, the motivic cohomology spectral sequence

Ei,j2 = H i−j,−j(X,Z(p))⇒ K−i−j(X,Z(p))

has zero differentials dn for p− 1 - n− 1. The differential dp coincides with the bistable operation
BαP 1r, where r denotes the coefficient reduction corresponding to the residue map Z(p)→ Z/p,
the operation P 1 is the first Z/p motivic Steenrod power, α denotes multiplication of coefficients
by an element of Z/p× and B = [Z(p),Z(p),Z/p] is the Bockstein map. Moreover, for any
l satisfying the theorem conditions, one can find a field F of characteristic l and a variety
X ∈ Sm/F such that the differential dp in the corresponding MCSS is non-trivial.

In the next section we prove, following the strategy of Buchstaber, the first statement of
the theorem. (Let us also mention that a similar technique was also used by Merkurjev [Mer10]
to analyze the structure of the Brown–Gersten–Quillen spectral sequence.) Then, in § 4, the
differential dp is interpreted as a bistable motivic cohomology operation of bidegree (2p−1, p−1),
i.e. as an element of the corresponding motivic Steenrod algebra, which is computed in § 5. Finally,
in § 6, we construct examples of varieties for which differentials dp in the MCSS are non-trivial
that completes the proof of the theorem.

3. Differentials and Adams operations

The purpose of the current section is to prove the following proposition.

Proposition 3.1. dn = 0 for p− 1 - n− 1.

Proof. As was shown in [GS99], for every integer k such that 1/k ∈ Z(p) the Adams operation ψk
on K∗(X,Z(p)) can be represented as an operation acting on the whole motivic cohomology
spectral sequence. Moreover, the action of this operation on the E2-page is given by the
equality ψk(α) = k−qα for α ∈ H∗,q(X). Therefore, all topological arguments proposed by
Buchstaber [Buc69] work in this case as well. Since Adams operations commute with differentials,
for every integer n > 1, we get

dnψk = ψkdn : H∗,∗(X)→ H∗+2n−1,∗+n−1(X).
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Hence, one has (kn−1 − 1)dn = 0. Let us now define the number M(i) as the greatest common
divisor of the following sequence:

M(i) := g.c.d.
k>1
{kN (ki − 1)}, (3.1)

where N � i. One can easily verify that the numbers M(i) are well defined. The integers M(i)
are sometime called Kervaire–Milnor–Adams numbers, probably after the paper [KM60]. Their
values are presented in the lemma below. Obviously, M(n− 1)dn = 0. Since for p− 1 - n− 1, we
have p -M(n− 1), the differentials of these degrees vanish. 2

Lemma 3.2. For a prime p and a positive integer n, denote by νp(n) the greatest dividing
p-exponent1 of n. The sequence of Kervaire–Milnor–Adams numbers is determined as follows.
For i > 1 and a prime number p, one has M(2i− 1) = 2 and

νp(M(2i)) =

{
1 + νp(4i) for (p− 1) | 2i,
0 otherwise.

Proof. See [Ada65]. 2

Corollary 3.3. The MCSS with Q-coefficients degenerates on its E2-page.

Proof. Any differential vanishes after multiplication by an invertible number. 2

Corollary 3.4. For p > 2, one has pdp = 0 in the MCSS with Z(p)-coefficients.

Proof. Since, by Lemma 3.2, one has νpM(p− 1) = 1, the corollary follows. 2

Remark 3.5. It is interesting to mention that the sequence M(2i)

24, 240, 504, 480, 264, 65520, . . .

can be identified with denominators of terms of sequences 1
2ζ(1− 2i) or B2i/4i.

4. Differentials as cohomology operations

Let us give a brief explanation of the construction of motivic Eilenberg–Mac Lane spaces,
following, almost verbatim, the exposition of [Voe03].

For a varietyX ∈ Sm/k, consider the presheaf Ztr(X) of abelian groups on the category Sm/k,
which takes a variety U to the free abelian group, generated by all closed integral subvarieties of
X×U , which are finite and equidimensional over U . For an abelian group A, we set Atr := A⊗Ztr

and define presheaves of abelian groups:

Kpre
n,A : U 7→ Atr(An)(U)/Atr(An − {0})(U). (4.1)

Let Kn(A) be the pointed sheaf (in Nisnevich topology) of sets associated to Kpre
n,A. The sheaves

Kn(A) play the roles of Eilenberg–Mac Lane spaces in the category Spc.
Alternatively, one can start from the presheaf Kpre

n,Z and obtain a complex Z(n) of sheaves of
abelian groups on (Sm/k)Nis (see the construction in [VSF00, ch. 5]). For any i, j ∈ Z, a smooth
scheme X and an abelian group A, one defines motivic cohomology groups as hypercohomology

1 For example, for any positive integer n, one has n = 2ν2(n)3ν3(n)5ν5(n) . . . .
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groups H i,j(X,A) := Hi(XNis, A(j)), where A(j) = A ⊗ Z(j). Let K(i, j, A) be the simplicial
abelian group sheaf corresponding to the complex A(j)[i]. Applying again the forgetful functor,
one gets the simplicial sheaf of sets that determines an object (also denoted by K(i, j, A)) of the
motivic homotopy category of spaces HoA1 . The sheaves K(i, j, A) are A1-local [Del09, §§ 2.2–2.4]
and, for any smooth scheme X, one has H i,j(X,A) = HomHoA1

(X+,K(i, j, A)). For any pointed
simplicial sheaf F• on (Sm/k)Nis, one can take the following definition of reduced motivic
cohomology:

H̃ i,j(F•, A) = HomHoA1
(F•,K(i, j, A)). (4.2)

It is shown in [Del09, §§ 2.2–2.4] that there exists a weak equivalence between Kn(A) and
K(2n, n,A), so the two constructions of Eilenberg–Mac Lane spaces agree. This extends the
definition of motivic cohomology groups to the whole category of spaces.

We shall also need the notion of a cohomological operation.

Definition 4.1. A collection {ϕ}p,q of natural transformations of functors on Spc

ϕp,q : H̃p,q(−, A)→ H̃p+i,q+j(−, B),

where A and B are abelian groups and the index (p, q) runs through Z×Z, is called an (unstable)
cohomological A–B-operation of degree i and weight j.

Let us recall that in the category Spc there are two circles and hence two different suspension
functors. Among all the cohomological operations there are special ones that commute with both
suspension isomorphisms. These operations are called bistable, and Voevodsky showed, using
a simple trick [Voe03, Proposition 2.6], that there exists a natural bijection between bistable
operations and operations that a priori commute only with the T -suspension. (Recall that T is
the Tate object.) We will call operations of the latter type stable.

Notation. We denote the set of all stable cohomological A–B-operations of degree i and weight
j by OPi,j(A,B). We always implicitly assume that all considered operations have non-negative
degree and weight. Since, by [Voe03, Corollary 2.10], stable operations are additive, this set has
a natural structure of an abelian group, induced by addition in cohomology.

If A (respectively B) has a ring structure, the set OP∗,∗(A,B) also has a natural structure of
a bigraded left (respectively right) H∗,∗-module.

It is reasonable to expect that natural transformations of motivic cohomology functors can
be classified by cohomology groups of motivic Eilenberg–Mac Lane spaces.

For every motivic Eilenberg–Mac Lane space Kn(A), one can choose a universal element

ιn ∈ H̃2n,n(Kn(A)),

corresponding to the identity morphism of the space K(2n, n,A). Applying the T -suspension
isomorphism map ΣT : H̃∗,∗(−)→ H̃∗+2,∗+1(T ∧ −) to the element ιn, one obtains the element
ΣT ιn ∈ H̃2n+2,n+1(T∧Kn(A)), corresponding to some homotopy class αn ∈ [T∧Kn(A),Kn+1(A)].
This class coincides with the homotopy class of the nth structure morphism of the motivic
Eilenberg–Mac Lane spectrum H(A).
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Finally, using the collection of classes {α•}, one can construct an inverse system of the groups
H̃ i+2n,j+n(Kn(A), B) as shown in the diagram below.

(4.3)

A natural modification of [Voe03, Proposition 2.7] shows that

OPi,j(A,B) = lim
←−
n

H̃ i+2n,j+n(Kn(A), B). (4.4)

We will see that the module OP∗,∗(Z/p,Z/p) is naturally isomorphic to the motivic Steenrod
algebra by Voevodsky (see the discussion on p. 2120).

Proposition 4.2. Consider the motivic cohomology spectral sequence (E∗,∗∗ , d∗). Let us fix an
integer n > 1 and assume that for every 1 < i < n and any variety X ∈ Sm/k, the differentials
di : H∗,∗(X) → H∗+2i−1,∗+i−1(X) are trivial. Then the differential dn can be identified with a
stable cohomological operation of bidegree (2n− 1, n− 1) up to multiplication by ±1.

Proof. Since all the previous differentials vanish, the differential dn actually acts on the E2-page of
the spectral sequence. To prove the stability, one has to check the commutativity of the following
diagram.

(4.5)

Though the space T ∧ X+ does not belong to Sm/k, its cohomology is a direct summand of
cohomology of the scheme P1 × X. Namely, the retraction morphism pt

∞
→ P1

→ pt delivers
the direct sum decomposition H∗,∗(P1) ∼= H̃∗,∗(P1,∞)⊕H∗,∗ and the pointed variety (P1,∞) is
canonically weakly equivalent to T .

The motivic cohomology groups of T ∧ X+ are the (2, 1)-shifted cohomology groups of X
and the isomorphism ΣT is delivered by multiplication with the image of the Tate element σT .
The MCSS is functorial and has a canonical multiplicative structure that is compatible with
multiplication in motivic cohomology (see [FS02, § 14]). Hence, its differentials satisfy the Leibnitz
rule and one has dn(σT ∧x) = dn(σT )∧x±σT ∧dn(x). Now, to prove the commutativity of (4.5) up
to the sign, it suffices to verify that dn(σT ) = 0. This element should lie in the cohomology group
of the variety P1 of bidegree (2n+ 1, n) that vanishes, since 2n+ 1 > 2n (see Statement 1.1(i)).
So, the commutativity result follows for dimension reasons.

In order to complete the proof of the proposition, we only need to extend the differential
to the whole category of spaces. It can be done using Levine’s [Lev08] identification between
the MCSS and the spectral sequence built by the slice filtration. Due to the functoriality of the
spectral sequence construction, the differential dn becomes a motivic cohomological operation of
bidegree (2n− 1, n− 1). It is not hard to show that the arguments above are also applicable to
the category Spc and prove the stability of the operation. 2
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5. Some calculations in Steenrod modules

In this section we are going to perform some computations with cohomology of motivic Eilenberg–
Mac Lane spaces and spectra, and we need some preliminary results and notation. We denote
by Kn : Ab → Spc (respectively K : Ab → Sp) the functor sending an abelian group A to the
motivic Eilenberg–Mac Lane space Kn(A) (respectively motivic Eilenberg–Mac Lane spectrum
H(A)).

Proposition 5.1. For every n > 0, the functor Kn preserves:

(i) limits;
(ii) filtered colimits.

Proof. The functor Kn can be considered as the following chain of functors:

Ab→ (Presheaves of Ab)→ (Presheaves of Sets)→ (Nisnevich sheaves).

Since the groups Ztr(X)(U) are free abelian groups, one can easily check that the first functor
preserves limits and filtered colimits.

Limits and colimits of presheaves are computed objectwise. The forgetful functor Ab→ Sets
preserves limits, because it has a left adjoint functor sending every set X to the free abelian
group Z[X] and also preserves filtered colimits (see, for example, [Art62, § 1.1]).

Finally, it is well known that the sheafification functor preserves arbitrary limits and
colimits. 2

For a field k, we call an abelian group k-admissible if it has a Z[1
l ]-module structure for

l = Char k.

Proposition 5.2. Let k be a perfect field. Then the functor K sends every short exact sequence
of k-admissible groups to a distinguished triangle in the category Sp.

Proof. The following result was established by Röndigs and Østvær [RØ08, Theorem 1] for
fields of characteristic zero and by Hoyois et al. [HKØ13, Theorem 5.8] for perfect fields of
positive characteristic. Let k be a perfect field and R a ring such that Char k is invertible in R.
Then Voevodsky’s big category of motives DM(Sm/k,R) is equivalent to the homotopy category
H(R)−mod of modules over the Eilenberg–Mac Lane spectrum H(R). The equivalence preserves
the monoidal and triangulated structures.

Now it is not hard to check that the short exact sequence of k-admissible abelian groups leads
to a distinguished triangle of motives in DM(Sm/k,R). Since the category of H(R)-modules is a
triangulated subcategory of Sp, this proves the proposition. 2

Remark 5.3. For the short exact sequence 0→ A→ B→ C→ 0 of abelian groups, the morphism
K(C)→ K(A)[1] in the corresponding distinguished triangle of T -spectra induces the Bockstein
map [A,B,C] in motivic cohomology. In particular, this implies the functoriality of Bockstein
maps with respect to morphisms of short exact sequences.

All the relations below involving Bockstein maps are obvious consequences of this remark.

Statement 5.4. Let k be a perfect field of characteristic exponent mutually prime to p. Then the
groups H∗,∗(H(Z/p),Z/p) and OP∗,∗(Z/p,Z/p) are naturally isomorphic.
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Proof. It is exactly the statement of [HKØ13, Theorem 3.2] and [Voe10, Corollary 2.71] that the
lim1 groups in the short exact sequences

0→ lim
←−
n

1H̃ i+2n−1,j+n(Kn(Z/p),Z/p)→H i,j(H(Z/p),Z/p)→ lim
←−
n

H̃ i+2n,j+n(Kn(Z/p),Z/p)→ 0

(5.1)
vanish (cf. also [HKØ13, Corollary 3.3]). We can identify the right-hand term with the group
OPi,j(Z/p,Z/p) using construction (4.4). 2

Our current aim is to compute the module of stable operations from cohomology with Z/p∞-
coefficients. We start with Voevodsky’s computation of the motivic Steenrod algebra.

The module OP∗,∗(Z/p,Z/p) has a natural bigraded algebra structure given by composites
of operations. Consider its bigraded subalgebra, generated by Steenrod power operations P i

(of bidegrees (2i(p − 1), i(p − 1))) for i > 0, the Bockstein homomorphism β = [Z/p,Z/p2,Z/p]
(of bidegree (1, 0)) and operations of the form x 7→ ax for a ∈ H∗,∗. This subalgebra is called the
motivic Steenrod algebra A∗,∗(k,Z/p) in [Voe03, § 11, Lemma 9.5].

Let us also consider sequences I = (ε0, s1, ε1, s2, . . . , sk, εk) of non-negative integers and such
that one has εi ∈ {0, 1} and si > psi+1+εi for every index i. These sequences are called admissible.
To every admissible sequence I, one associates the operation P I = βε0P s1βε1 . . . P skβεk . (Here
we assume that β0 = P 0 = id.) These operations are called admissible monomials. There is a
natural graded module map from the free graded left H∗,∗-module generated by all admissible
monomials to A∗,∗(k,Z/p).

It is proven in [Voe03, Lemma 11.1] that the latter homomorphism of H∗,∗-modules is
an epimorphism and in [Voe03, Corollary 11.5] that the admissible monomials are linearly
independent with respect to the left H∗,∗-module structure.

Moreover, Voevodsky showed [Voe10, Theorem 3.49] that over a field k of characteristic 0 there
is a natural isomorphism of graded left H∗,∗-modules between OP∗,∗(Z/p,Z/p) and A∗,∗(k,Z/p).

In the sequel we are mostly dealing with the operations of weight p−1 and degree > p, so we
will often omit the second (weight) index in the notation for operation and cohomology groups
and implicitly assume that the first (degree) index is greater than p.

Up to the end of this section we will omit, for brevity, mentioning Z/p-coefficients and write
OP∗(−) for OP∗,p−1(−,Z/p). We will also write H∗(A,B) for H∗,p−1(H(A), B).

The arguments above immediately imply that OP∗(Z/p) (we assume that ∗ > p) is a free
Z/p-module with the set of generators {P 1, βP 1, P 1β, βP 1β}.

Remark 5.5. Voevodsky’s theorem [Voe10, Theorem 3.49] mentioned in the previous discussion
was originally proven only for base fields of characteristic 0. However, recently Hoyois
et al. [HKØ13] could eliminate this annoying restriction and extend the result to the case of
a perfect field k such that (Char k, p) = 1.

Remark 5.6. Using Voevodsky’s computation of the motivic Steenrod algebra and the methods
of this section, it is possible to compute modules of operations of weight 6 p2 − p. Leaving all
the details to the reader, we just mention that the case p = 3 is slightly more delicate.

Now we will explicitly compute weight p − 1 cohomology groups of the T -spectra H(Z/pm)
with integral and finite coefficients.

Proposition 5.7. For m > 0, there are natural isomorphisms H∗(Z/pm) ∼= OP∗(Z/pm) and
H∗(Z/pm,Z) ∼= OP∗(Z/pm,Z). The groups H∗(Z/pm) and H∗(Z/pm,Z) are the free graded Z/p-
modules with generators given by images of the following operations in the corresponding degrees:

2120

https://doi.org/10.1112/S0010437X16007594 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007594


Motivic spectral sequence and Steenrod operations

2p− 2 2p− 1 2p

H∗(Z/pm) P 1rm P 1βm, β1P
1rm β1P

1βm

H∗(Z/pm,Z) ∅ βZP
1rm βZP

1βm

Here rm is induced by the coefficient reduction Z/pm→ Z/p, βm = [Z/p,Z/pm+1,Z/pm] and
βZ = [Z,Z,Z/p].

Proof. We start with the case of Z/p-coefficients. Setting m = 1, we get just Voevodsky’s result
cited above. Since in this case the higher inverse limits vanish, cohomology groups of spectra
coincide with groups of operations. We now assume that p > 3. The case p = 3, which is similar,
but requires a bit more calculations, is left to the reader. Consider the short exact sequence

0→ Z/p→ Z/pm+1 r
→ Z/pm→ 0

and assume that the groups H∗(Z/pm) satisfy the theorem conclusions. By Theorem 5.2, one has
a distinguished triangle of spectra:

H(Z/p)→ H(Z/pm+1)→ H(Z/pm). (5.2)

Consider the following fragment of the corresponding cohomology long exact sequence.

Since the map β∗m delivers an isomorphism between the group H2p−2(Z/p) and the direct
summand of H2p−1(Z/pm) generated by the operation P 1βm, one gets the isomorphism
H2p−2(Z/pm) ∼= H2p−2(Z/pm+1), which sends the generator P 1rm to r∗(P 1rm) = P 1rmr =
P 1rm+1.

In the same way, one can see that the direct summand of H2p−1(Z/pm) generated by
the operation β1P

1rm maps onto the direct summand of H2p−1(Z/pm+1) with the generator
r∗(β1P

1rm) = β1P
1rmr = β1P

1rm+1. The map β̄m+1 = [Z/pm+1,Z/pm+2,Z/p] sends the group
generated by β1P

1rm+1 to the group H2p(Z/p) in such a way that the composite β̄∗m+1r
∗ = β̄∗m

makes an isomorphism between the direct summand of H2p−1(Z/pm) generated by the operation
β1P

1rm and the group H2p(Z/p). Hence, the group H2p−1(Z/pm+1) splits into two direct Z/p-
summands.

The rest of the exact sequence can be treated in a similar way. One can also immediately
check that H i(Z/pm+1) = 0 for i > 2p and p < i < 2p− 2.

It is also easy to show that the natural epimorphism H∗(Z/pm+1) � OP∗(Z/pm+1) is
a monomorphism. For example, the image of P 1rm+1 is a non-zero element in the group
OP2p−2(Z/pm+1), since we know that the operation (P 1rm+1)β̄m+1 = P 1(rm+1β̄m+1) = P 1β1

is non-trivial in OP2p−1(Z/p).
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As a result, we conclude that H∗(Z/pm+1) ∼= OP∗(Z/pm+1) and

lim
←−
n

1H̃∗+2n−1,∗+n(Kn(Z/pm+1),Z/p) = 0.

The case of finite coefficients now follows by induction.
In order to proceed with the case of integral operations, we need the following simple lemma.

Lemma 5.8. Let

be an exact sequence of groups and the composite ψϕ : A → C be an isomorphism. Then
B ∼= A⊕Q for a group Q such that the restricted map χ̄ : Q→ Q is an automorphism.

Proof. The map (ψϕ)−1ψ (respectively ϕ(ψϕ)−1) splits the exact sequence on the left
(respectively right). Therefore, the group A is a direct summand of B. Denoting B/ϕA by

Q, one can easily see that the four-term exact sequence splits into isomorphismsA
ϕ //B/Q ,

Q
χ̄ //Q and B/Q

ψ̄ //C . 2

End of the proof of Proposition 5.7. Now, using the theorem conclusion for the groups H∗(Z/pm),
we derive the integral case. Consider the fragment of the coefficient long exact sequence:

where βZ = [Z,Z,Z/p] and C = KerβZ is the direct summand of H2p−1(Z/pm) generated by the
element β1P

1rm. As one can easily verify, the map β1 = rβZ provides an isomorphism between
H2p−2(Z/pm) and C. Therefore, the conditions of the above lemma are satisfied. Let us also
mention that all the groups H∗(Z/pm,Z) are p-groups. Together with the lemma above, this

gives us an isomorphism H2p−2(Z/pm)
βZ∼= H2p−1(Z/pm,Z). The case of degree 2p can be verified

in the same way. Similarly, we can also check that H∗(Z/pm,Z) = 0 for p < ∗ < 2p − 1 and
∗ > 2p. 2

Thus, we have re-proved a classical result of Cartan [Car54] in the motivic context.
The group inclusions im : Z/pm ↪→ Z/pm+1 induce morphisms of spectra: H(Z/pm) →

H(Z/pm+1). Passing to cohomology, one obtains the inverse system of groups (with arbitrary
coefficients)

H∗(Z/p)
i∗1
← H∗(Z/p2)

i∗2
← · · · .

Corollary 5.9.

lim
←−
m

H l(Z/pm,Z/p) =

{
Z/p for l = 2p− 1, 2p,

0 otherwise

and lim
←−mH

l(Z/pm,Z) = Z/p for l = 2p and 0 otherwise.

Proof. We consider the case of the Z/p-coefficients. The integral case is similar and left to the
reader. Applying the map i∗m : H∗(Z/pm+1)→ H∗(Z/pm) to the generators, one has

i∗m(P 1rm+1) = 0, i∗m(P 1βm+1) = P 1βm, i∗m(β1P
1rm+1) = 0 and i∗m(β1P

1βm+1) = β1P
1βm.

Therefore, Im(i∗m) ⊆ H∗(Z/pm)βm. Hence, only the elements of the form

{Xβ1← Xβ2← · · · }

‘survive’ in the projective limit. The corollary follows immediately. 2
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To complete the computation of p-cyclotomic operations, we need a lemma.

Lemma 5.10. Let X1

ϕ1

⊆ X2

ϕ2

⊆ · · · be a sequence of abelian groups. Then, for an abelian group
W , one has

lim
←−
i

OP∗,∗(Xi,W ) ∼= OP∗,∗(lim−→
i

Xi,W ).

Proof. The system {Xi, ϕi} induces the projective system of groups:

OP∗,∗(X1,W )
ϕ]1
← OP∗,∗(X2,W )

ϕ]2
← · · · .

Let α ∈ lim
←−OP∗,∗(Xi,W ). In other words, one has a system of operations {αi ∈ OP∗,∗(Xi,W )}

such that αi = ϕ]i(αi+1).
Let us also consider an element y ∈ H̃∗,∗(−, lim−→ Xi). Since the homology functor on the

category of complexes of abelian groups commutes with direct limits, it implies that

H̃∗,∗(−, lim−→ Xi) ∼= lim−→ H̃∗,∗(−, Xi).

Hence, the element y determines a set of elements {yj ∈ H̃∗,∗(−, Xj)}j�0 such that
ϕj∗(yj) = yj+1. We construct α̌ ∈ OP∗,∗(lim−→ Xi,W ), setting α̌(y) := αN (yN ) for N � 0. Since

αN+1(yN+1) = αN+1(ϕN∗ (yN )) = (ϕ]NαN+1)(yN ) = αN (yN ),

the operation α̌ is well defined.
In order to construct the map in the opposite direction, let us start with an operation

γ ∈ OP∗,∗(lim−→ Xj ,W ) and construct for every index j the operation γ̂j ∈ OP∗,∗(Xj ,W ) given
by the through map

H̃∗,∗(−, Xj)→ H̃∗,∗(−, lim−→ Xj)
γ
→ H̃∗,∗(−,W ),

where the first arrow is canonical and the second is given by the operation γ. These operations
fit together to make an element of the projective system and, therefore, the operation
γ̂ ∈ lim

←−jOP
∗,∗(Xj ,W ). One can easily verify that the given constructions are mutually

inverse. 2

Corollary 5.11. The natural map H∗(Z/p∞, G) → OP∗(Z/p∞, G) is an isomorphism for
G = Z/p or Z.

Proof. We have already seen above that H∗(Z/pm, G) ∼= OP∗(Z/pm, G). These groups and their
maps were explicitly computed in Proposition 5.7 and Corollary 5.9. The computation also implies
that lim
←−m

1H∗,p−1(Z/pm, G) = 0. The desired result now follows from the short exact sequence

0→ lim
←−
m

1H∗−1,p−1(Z/pm, G)→H∗,p−1(Z/p∞, G)→ lim
←−
m

H∗,p−1(Z/pm, G)→ 0. 2

Corollary 5.12. If G = Z/p, the Z/p-module OP∗(Z/p∞, G) has two generators P 1β∞,
β1P

1β∞, lying in degrees 2p − 1, 2p, correspondingly. If G = Z, it is generated by the element
βZP

1β∞. Here β∞ = [Z/p,Z/p∞,Z/p∞].
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Proof. Corollaries 5.9 and 5.11 give us an explicit description of the generators of the module
OP∗(Z/p∞, G). Since it follows from Proposition 5.1(ii) that there is a natural identification
β∞ = limβm, this completes the proof. 2

Let us now return from p-cyclotomic coefficients to p-local. Further, we will also need some
auxiliary results about rational operations, which are presented in the appendix.

Proposition 5.13. The Bockstein homomorphism B = [Z(p),Q,Z/p∞] induces an isomorphism
of Z/p-modules: OP∗(Z(p)) ∼= OP∗+1(Z/p∞), so that the group OPl(Z(p)) is Z/p in degrees
l = 2p − 2, 2p − 1 and trivial otherwise. One can take operations P 1r, β1P

1r ∈ OP∗(Z(p)) as
generators in the corresponding degrees. Here r : Z(p)→ Z/p is the coefficient reduction map.

Proof. Let us recall that by (4.4), one has OPi,j(A,B) = lim
←−nH̃

i+2n,j+n(Kn(A), B). Consider the
commutative square

where the vertical arrows are induced by the Bockstein homomorphism B and both horizontal
arrows are epimorphisms from (5.1). The top arrow is an isomorphism by Lemma 5.11.

Taking the short exact sequence of abelian groups 0→ Z(p)→ Q→ Z/p∞→ 0 and applying
Proposition 5.2, one gets a distinguished triangle

H(Z(p))→ H(Q)→ H(Z/p∞) (5.3)

of spectra. Using the triangle and Lemma A.1, one shows that the map B∗ in the diagram is also
an isomorphism. Hence, all maps in the diagram are isomorphisms. This proves the isomorphism

OP∗(Z(p))
B∼= OP∗+1(Z/p∞).

Finally, the equality rB = β∞ = [Z/p,Z/p∞,Z/p∞], together with the description of the
groups OP∗(Z/p∞,Z/p) given above, supplies us with the desired set of generators. This proves
the proposition. 2

Our current purpose is to compute the group OP∗(Z(p),Z(p)).

Proposition 5.14.

Hm(Z(p),Z(p)) =

{
Z/p for m = 2p− 1,

0 for m > 2p.

Proof. We show, first, that Hm(Z(p),Z(p)) is a p-group for m > 2p − 1. Using the distinguished
triangle (5.3) and the universal coefficient formula, one can write the exact sequence

By Corollary 5.12, we already know that Hm+1(Z/p∞,Z) is either Z/p for m = 2p − 1, or 0.
So, it suffices to show that Hm(Q,Z(p)) is a p-group. By A.2, one has 0 = Hm(Q,Q) = Hm(Q,
Z(p))⊗Z(p)

Q and this group is the p-localization of Hm(Q,Z(p)). So, the statement follows.
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Now consider the fragment of the coefficient long exact sequence

where B = [Z(p),Z(p),Z/p]. As we already know from the computation above (Proposition 5.13),
both the groups with finite coefficients are isomorphic to Z/p and the isomorphism between
them can be performed by the map β1 : H2p−2(Z(p))→ H2p−1(Z(p)). One can easily verify the
relation β1 = Br. From Lemma 5.8 and the fact that H2p−1(Z(p),Z(p)) is a p-group, we have

H2p−2(Z(p))
B∼= H2p−1(Z(p),Z(p)).

The same arguments can be used to show that Hm(Z(p),Z(p)) = 0 for m > 2p. One just
should mention, in addition, that the map r : H2p−1(Z(p),Z(p))→ H2p−1(Z(p)) in the sequence
above is an isomorphism. 2

Corollary 5.15. The Bockstein homomorphism B induces the isomorphism

OP2p−2(Z(p))
B∼= OP2p−1(Z(p),Z(p)).

Proof. In the commutative diagram

the top arrow is an isomorphism by Proposition 5.14. The right vertical arrow is an epimorphism
by the standard argument (cf. (5.1)). So, the mapB is an epimorphism. Since OP2p−2(Z(p))∼= Z/p
and the group OP2p−1(Z(p),Z(p)) is non-trivial by results in the next section, the statement
follows. 2

Summarizing the results of 5.13–5.15, we obtain the following.

Theorem 5.16. There are no non-trivial stable cohomological Z(p)–Z(p)-operations of weight
p− 1 and degree greater than 2p− 1. Every non-trivial stable operation of the form

H∗,∗(−,Z(p))→ H∗+2p−1,∗+p−1(−,Z(p))

in motivic cohomology coincides, after multiplication by a unit of Z/p, with the operation
BP 1r, where P 1 denotes the first Z/p motivic Steenrod power, B = [Z(p),Z(p),Z/p] and r is
the corresponding coefficient reduction operation Z(p)→ Z/p.

6. dp 6= 0

The purpose of the current section is to construct for every prime p a smooth variety having
the property that the pth differential dp is non-zero. Although in the previous discussion we
systematically avoided the case of p = 2, in this section we decided to give slightly more general
statements for completeness. So, let p just be a prime number. All coefficient rings are by default
Z(p). Abusing the notation, we omit mentioning coefficients unless it is absolutely necessary.

Below we give two examples demonstrating non-triviality of the differential d2 for p = 2 and
dp for odd primes.
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Example 6.1. Consider the motivic cohomology spectral sequence for the variety SpecQ. One can
check that the Milnor symbol {−1,−1,−1,−1} ∈ KM

4 (Q) is non-trivial of order 2. The group
KM

4 (Q) = Z/2 is canonically isomorphic to E0,−4
2 . On the other hand, the spectral sequence

converges in the degree i + j = −4 to K4(Q) and the map KM
4 (Q) → K4(Q) should pass

through the stable homotopy group of the sphere spectrum π4
S . The latter group is trivial;

therefore, one gets from the short exact sequence E−2,−3
2

d2
→ E0,−4

2 → E0,−4
∞ that the differential

d2 : H1,3(SpecQ)→ E0,−4
2 = KM

4 (Q) is non-zero. This is, certainly, true with Z(2) coefficients as
well.

A more detailed explanation can be found in [Wei13, III.7.2, VI.4.3, Exercise IV.1.12].

Proposition 6.2. Let us assume that for an odd prime number p and a variety G ∈ Sm/k the
following conditions are satisfied:

(i) K0(G,Z(p)) = Z(p) · 1, where the class 1 lies in codimension 0;
(ii) CHp+1(G,Z(p)) 6= 0.

Then the differential dp : E1,−2
p → Ep+1,−p−1

p in the motivic spectral sequence

Ei,j2 = H i−j,−j(G,Z(p))⇒ K−i−j(G,Z(p))

is non-trivial.

Proof. Since motivic cohomology groups coincide with higher Chow groups, the term

Ep+1,−p−1
2 = CHp+1(G, 0) = CHp+1(G) 6= 0

by (ii). By Proposition 3.1, one has E2 = Ep. On the other hand, Ep+1,−p−1
∞ = 0, since, by (i),

the whole group K0(G) is concentrated in the term E0,0
∞ = Z(p). Again, by Proposition 3.1 and

the triviality of groups Ei,j2 = H i−j,−j(X) for j > 0 or i + j > 0 (see Statement 1.1(i, iii)), one
also has Ep+1,−p−1

p+1 = 0. (For the case p = 3, we also need to use triviality of the group H−1,0(X)
(see Statement 1.1(iv)).) Hence, there should be a non-trivial differential that ‘kills’ the term
Ep+1,−p−1
p and the only possibility is that 0 6= dp : E1,−2

p → Ep+1,−p−1
p . 2

Example 6.3. Consider a non-split central simple algebra D of degree p over k. Set G = SL1,D to
be the norm variety, the subvariety of D, given by the equation Nrdx = 1, where Nrd denotes the
reduced norm (see [GS06, § 2.6]). We will show below that this gives us an example of a variety
with dp 6= 0.

Now we are almost ready to complete the proof of Theorem 2.1.
Let us fix an odd prime number p and an integer l such that either l = 0 or (l, p) = 1. We

also introduce a field F of characteristic l, setting

F =

{
Q for l = 0,

Fl(t) for l > 0.

Here Fl(t) is the field of rational functions over the prime finite field Fl. Global class field theory
tells us that in all the cases the Brauer group Br(F ) has many non-trivial p-torsion elements and
there are non-split central simple algebras of degree p over F . Hence, for any characteristic l, we
obtain examples of fields and varieties over them with non-trivial differentials dp.
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Let us consider now the case k = Fl for an odd prime number l. Choose, as before, a non-split
central simple algebra D over F = Fl(t). By Example 6.3 (cf. Proposition 6.5 and discussion
above it), its associated norm variety SL1,D satisfies the conditions of Proposition 6.2. Using
standard limit arguments, one can find a finitely generated k-algebra A ⊂ F and a variety M ∈
Sm/k over SpecA that also satisfies the conditions of Proposition 6.2 and such that M ×SpecA

SpecF = SL1,D. This implies that the coefficient α in the relation dp = BαP 1r of Theorem 2.1
is non-zero over k.

This argument shows that α 6= 0 for every prime field, because we already know that the
conclusion is true for the case of characteristic 0. Using the functoriality of the MCSS and
cohomological operations, one can show that the same statement holds for an arbitrary field.
This completes the proof of Theorem 2.1. 2

Remark 6.4. Alternatively, in the previous proof, one could consider the variety SL1,D as a motivic
space over k. It shows that the corresponding slice spectral sequence has non-trivial differential dp
given by a non-zero cohomological operation on the category Spc. By [Lev08] (cf. also p. 2118),
this implies that the differential in the MCSS is also given by this non-zero operation.

It is left to show that the variety G from Example 6.3 satisfies the assumptions of
Proposition 6.2. The first one is checked in [Sus91, Theorem 6.1]. The rest of the paper is devoted
to proving the second one.

Below we denote by X = SB(D) the Severi–Brauer variety, corresponding to the algebra D

(see [GS06, ch. 5]). This is a twisted form of the projective space Pp−1. So, one has dimX = p−1.
Let us also mention that since G is a twisted form of SLp, one has dimG = p2 − 1.

Proposition 6.5. For the variety G = SL1,D introduced above, one has CHp+1(G) 6= 0.

Proof. Setting, as above, X = SB(D), for the projection map G ×X → G consider a filtration
of the base by codimension of points and write down the corresponding spectral sequence
(see Rost [Ros96, § 8]):

Es,t1 (n) =
∐

g∈G(s)

Ht(XF (g),Kn−s) ⇒ Hs+t(G×X,Kn), (6.1)

where XF (g) = X × SpecF (g) is a fiber over the generic point g of codimension s. This spectral
sequence is a natural generalization of the Brown–Gersten–Quillen (BGQ) spectral sequence
(the cohomology groups here are the K-cohomology, i.e. the Zariski cohomology groups with
coefficients in the sheaf K associated to Quillen’s K-theory).

For convenience, we have included a diagram below of the case n = p+ 1, which is the most
important case for us. For brevity, we have used the following notation:∐

g∈G(s)

Ht(XF (g),Ku) =: Rst,u.

The non-zero part of the E1-page is concentrated in the strip given by the inequalities s > 0,
0 6 t 6 p − 1 and s + t 6 n. Let us denote the spectral sequence E∗,∗∗ (p + 1) by E∗,∗∗ ,
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so that Es,t1 = Rst,p+1−s.

Let the following statements hold:

(i) Ep+1,0
2 = CHp+1(G);

(ii) the boundary map Hp(G×X,Kp+1)
ϕ
→ E1,p−1

p is not an epimorphism.

Then the proposition follows easily. Actually, just consider a fragment of the boundary short
exact sequence

Hp(G×X,Kp+1)
ϕ
→ E1,p−1

p

dp
→ Ep+1,0

p .

By (ii), ϕ is not an epimorphism, and so one has Ep+1,0
p 6= 0. But by (i) and for dimension reasons

there exists an epimorphism CHp+1(G) = Ep+1,0
2 � Ep+1,0

p that proves the desired result.
The rest of the paper is devoted to the proof of the auxiliary statements: (i) is established in

Lemma 6.6 right below, (ii) is proven in Proposition 6.11. 2

Lemma 6.6. In the spectral sequence considered in Proposition 6.5 above, one has Ep+1,0
2 =

CHp+1(G).

Proof. One has Ep+1,0
2 = Rp+1

0,0 /R
p
0,1. Decoding the notation, we get

Ep+1,0
2 = Coker

( ∐
g∈G(p)

F (g)∗→
∐

g∈G(p+1)

Z
)

= CHp+1(G) (6.2)

that completes the proof. The same is, certainly, true with Z(p) coefficients. 2

In order to check statement (ii), we should perform some computation with the term E1,p−1
p .

The following lemma simplifies our life showing that we actually work with the term E1,p−1
2 .

Lemma 6.7. In the spectral sequence in Proposition 6.5, one has E1,p−1
2 = E1,p−1

p .

Proof. By the next lemma, one has Ep+1−t,t
2 = 0 for 1 6 t 6 p− 1. So, for dimension reasons, the

only non-trivial differential with domain E1,p−1
∗ is dp. 2

Lemma 6.8. The differential maps dt1 : Rp−tt,t+1 → Rp−t+1
t,t are epimorphisms, provided that 1 6

t 6 p− 1. In other words, in these cases Ep+1−t,t
2 = 0.
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Proof. We have to prove that the maps∐
g∈G(p−t)

Ht(XF (g),Kt+1)→
∐

g∈G(p+1−t)

Ht(XF (g),Kt)

are epimorphisms. The inner groups Ht(XF (g),Kt+m) can be computed using the BGQ spectral
sequence. Writing down Gersten resolutions for different values of t, one gets natural maps of
the resolutions, induced by embeddings of points of different codimensions. This implies natural
maps of BGQ spectral sequences and, finally, natural maps of K-cohomology groups

· · ·→ Ht(XF (g),Kt+m)→ Ht+1(XF (g),Kt+1+m)→ · · · .

By Statement 6.9 below, these maps are isomorphisms for m = 0, 1 and 1 6 t 6 p − 1. By
functoriality of the construction, this implies that

Ep+1−t,t
2 = Rp+1−t

t,t /Rp−tt,t+1
∼= Rp+1−t

p−1,p−1/R
p−t
p−1,p = Ep+1−t,p−1

2 (2p− t).

The rest follows from Lemma 6.10 below, setting there n = 2p− t. 2

In the proof of the previous proposition we used a result of Merkurjev and Suslin, which we
reproduce here.

Statement 6.9 [MS82, Corollary 8.7.2]. Let k̄ be the algebraic closure of k. For a Severi–Brauer
variety X of dimension p− 1, set X̄ = X × Spec k̄. Then

H i(X,Ki) = CH i(X) = pZ(p) ⊂ Z(p) = CH i(X̄) (6.3)

and
H i(X,Ki+1) = NrdD∗ ⊂ k̄∗ = H i(X̄,Ki+1), (6.4)

provided that 1 6 i 6 p− 1. (Here Nrd denotes the group of the reduced norms.)

Lemma 6.10. For n > p, one has En−p+1,p−1
2 (n) = 0.

Proof. Consider now G × X as a group variety over X. By Suslin’s computations [Sus91,
Theorem 4.2], H∗(G × X,K∗) becomes a module over H∗(X,K∗) generated by Chern classes
cj for j > 1, where cj ∈ Hj(G × X,Kj+1). In particular, this implies that CH i(G × X) = 0
for i > p − 1. Therefore, the spectral sequence converges to zero in the nth diagonal. In
particular, En−p+1,p−1

∞ (n) = 0. For dimension reasons, there are no differentials affecting the
term En−p+1,p−1

2 (n). So, one has En−p+1,p−1
2 (n) = En−p+1,p−1

∞ (n) = 0. 2

Proposition 6.11. The map ϕ : Hp(G×X,Kp+1)→ E1,p−1
p has non-trivial cokernel.

Proof. Let us mention, first, that by the previous lemma, one has E1,p−1
p = E1,p−1

2 . Consider the
base-change commutative diagram corresponding to the morphism Spec k̄ → Spec k, where k̄ is
the algebraic closure of k. Later we denote E1,p−1

2 by V and the corresponding group E1,p−1
2 over

k̄ by V̄ .

(6.5)
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The desired statement can be derived easily from the following three claims:

(i) Imχ is divisible by p;
(ii) ψ : V → V̄ is an epimorphism;
(iii) V̄ = Z(p).

Assume that ϕ is an epimorphism. Since ψ is also an epimorphism, we can choose an element
x ∈ Hp(G × X,Kp+1) such that ψϕ(x) = 1. Then, by (i), 1 = ϕ̄χ(x) is p-divisible. This gives
a contradiction. We prove (i) in Lemma 6.12 and (ii) in Proposition 6.14 below. Finally, (iii)
appears in the proof of 6.14 as an indirect result. 2

Lemma 6.12. For the base-change morphism χ : Hp(G × X,Kp+1) → Hp(Ḡ × X̄,Kp+1), the
image of χ is divisible by p.

Proof. This follows from the above-mentioned (see the proof of Lemma 6.10) decomposition

Hp(G×X,Kp+1) =
∐
i>0

ciCH
p−i(X) (6.6)

and the fact that the map CH i(X)→ CH i(X̄) is a multiplication by p due to Statement 6.9. 2

Before we can prove the last proposition, we need to construct one map. To this end, let us
reproduce here one important definition (see [Pan91, 3.1] for details).

Definition 6.13. For a quasi-compact locally Noetherian scheme Y, let A be a sheaf of algebras
on Y locally isomorphic in the étale topology to the sheaf of split algebras Mn(OY ). In other
words, A is an Azumaya algebra on Y .

Consider the category of sheaves of left A-modules and denote by P(Y ;A) its full subcategory,
whose objects are locally free coherent OY -modules. We set K∗(Y ;A) := K∗(P(Y ;A)), where the
functor on the right-hand side is obtained by application of Quillen’s Q-construction [Qui73].

We will also write, for brevity, H∗(G,K∗;A) for H∗(G,K∗(−;A)).

Currently, we are going to construct a natural epimorphism ρ̃ : V → H1(G,K2;D), where
D := D⊗(p−1) and V = E1,p−1

2 (see Proposition 6.11).
First, consider the BGQ spectral sequence converging to the K-groups of the Severi–Brauer

varietyX. Since (p−1)! is invertible in the coefficient ring, this spectral sequence has no non-trivial
differentials affecting the two highest diagonals. Moreover, if the base field is algebraically closed,
all the differentials in the spectral sequence vanish (see [MS82, 8.6.2]). Again, by the invertibility
of (p − 1)!, the topological filtration on the K-groups coincides with γ-filtration. The latter
filtration is generated by the image of the corresponding γ-operation.

The E∞-terms of the BGQ spectral sequence are the graded parts of K(X). Taking into
account the triviality of differentials, mentioned in the previous paragraph, there exist boundary
maps

Hp−1(X,Kp−1+m)→ Km(X)(p−1), (6.7)

where m = 0, 1, 2 and we have the smallest non-trivial filtration group on the right-hand side.
These maps are isomorphisms for m = 0, 1. Provided that the base field is algebraically closed,
they are isomorphisms also for m = 2.

By Quillen’s computation of K-groups of Severi–Brauer varieties [Qui73], one has isomor-
phisms Km(X)(p−1) ∼= Km(D), so that we obtain the maps Hp−1(Xg,Kp−1+m)

ρm
→ Km(F (g);D)
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for m = 0, 1, 2, which are isomorphisms for m = 0, 1 and, provided that the base field is
algebraically closed, are isomorphisms for m = 2. As a result, one gets the map of complexes
ρ∗:

(6.8)

inducing the epimorphism map ρ̃ on the middle-term homology groups. The latter map becomes
an isomorphism after passing to the algebraic closure. The middle-term homology groups in the
upper and bottom lines can be identified with V and H1(G,K2;D), correspondingly, which gives
us the desired epimorphism ρ̃.

Proposition 6.14. Let V and V̄ be as before. Then the map ψ : V → V̄ is an epimorphism.

Proof. Let us consider the base-change diagram corresponding to the morphism Spec k̄→ Spec k.

(6.9)

Observe now that Ḡ = SLn(k̄) and H1(Ḡ,K2; D̄) = H1(SLn,K2) = Z(p) with a natural choice of
a generator, given by the first Chern class (see [Sus91, Theorem 2.7]). This gives us the following
commutative diagram.

(6.10)

Consider the universal element α ∈ K1(G;D) determined as in [Sus91, § 4]. It is constructed
in such a way that its image f(α) in K1(SLn) is the universal matrix element. Then, due to
[Sus91, Theorem 2.7], c̄1f(α) = 1. Hence, the map ω is an epimorphism and so is ψ. 2
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Appendix. Something about the groups of rational operations

In this short appendix we give two statements concerning cohomology groups of the spectrum
H(Q), which we need in the paper.

Statement A.1. All motivic cohomology groups of the spectrum H(Q) with Z/p-coefficients
vanish.

Proof. This is left to the reader. 2

Proposition A.2. For integers n, ε > 0, one has H2n+ε,n(H(Q),Q) = 0.

Proof. We want to compute the group H2n+ε,n(H(Q),Q) = [H(Q),H(Q)[2n + ε](n)]. Since the
spectrum H(Q) is a direct summand of the spectrum BGLQ, it suffices to show that [BGLQ,
BGLQ[2n+ ε](n)] = 0. Using the Bott periodicity and [Rio10, Corollary 5.3.1], we have

[BGLQ,BGLQ[2n+ ε](n)] = [BGLQ,BGLQ[ε]] = lim
←− (K−ε(k))Ω.

(Here we use the notation of [Rio10].) Since the group K−ε(k) is the algebraic K-group of the
base field k and, obviously, vanishes for ε > 0, then so does lim

←− (K−ε(k))Ω. 2
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RØ08 O. Röndigs and P. A. Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008),

689–727.
Sus91 A. Suslin, K-theory and K-cohomology of certain group varieties, in Algebraic K-theory,

Advances in Soviet Mathematics, vol. 4 (American Mathematical Society, Providence, RI,
1991), 53–74.

Sus03 A. Suslin, On the Grayson spectral sequence, Proc. Steklov Inst. Math. 241 (2003), 202–237.
Voe98 V. Voevodsky, A1-homotopy theory, in Proceedings of International Congress of

Mathematicians, Vol. 1 (Berlin, 1998), Doc. Math., 1998, Extra Vol. I, 579–604 (electronic).
Voe02a V. Voevodsky, Open problems in the motivic stable homotopy theory I, in Motives,

polylogarithms and Hodge theory I (International Press, Boston, MA, 2002), 3–34.
Voe02b V. Voevodsky, A possible new approach to the motivic spectral sequence for algebraic K-theory,

Contemp. Math. 293 (2002), 371–379.
Voe03 V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes
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