A REMARK ON A WEIGHTED LANDAU INEQUALITY OF KWONG AND ZETTL

R. C. BROWN, D. B. HINTON AND M. K. KWONG

ABSTRACT. In this note we extend a theorem of Kwong and Zettl concerning the inequality

$$\int_0^{\infty} t^{\beta} |u'|^p \le K \Big(\int_0^{\infty} t^{\gamma} |u|^p \Big)^{1/2} \Big(\int_0^{\infty} t^{\alpha} |u''|^p \Big)^{1/2}.$$

The Kwong-Zettl result holds for $1 \le p < \infty$ and real numbers α , β , γ such that the conditions (i) $\beta = (\alpha + \gamma)/2$, (ii) $\beta > -1$, and (iii) $\gamma > -1 - p$ hold. Here the inequality is proved with β satisfying (i) for all α , γ except p - 1, -1 - p. In this case the inequality is false; however u is shown to satisfy the inequality

$$\int_0^\infty t^{-1} |u'|^p \le K_1 \Big\{ \Big(\int_0^\infty t^{-1-p} |u|^p \Big)^{1/2} \Big(\int_0^\infty t^{p-1} |u''|^p \Big)^{1/2} + \int_0^\infty t^{-1-p} |u|^p \Big\}.$$

1. Notation. Let $I = (a, b), -\infty \le a < b \le \infty$, and " $AC_{loc}(I)$ " denote the class of locally absolutely continuous functions on *I*. If α , γ are real numbers define

$$\begin{aligned} \mathcal{D}_{\alpha\gamma}(I) &:= \left\{ u : u' \in AC_{\text{loc}}(I) : \int_{I} t^{\gamma} |u|^{p}, \int_{I} t^{\alpha} |u''|^{p} < \infty \right\} \\ \mathcal{D}_{L}^{0}(I) &:= \left\{ u \in \mathcal{D}_{\alpha\gamma}(I) : \lim_{t \to a^{+}} u(t) = 0 \right\}, \\ \mathcal{D}_{L}^{1}(I) &:= \left\{ u \in \mathcal{D}_{\alpha\gamma}(I) : \lim_{t \to a^{+}} u'(t) = 0 \right\}, \\ \mathcal{D}_{R}^{0}(I) &:= \left\{ u \in \mathcal{D}_{\alpha\gamma}(I) : \lim_{t \to b^{-}} u(t) = 0 \right\}, \\ \mathcal{D}_{R}^{1}(I) &:= \left\{ u \in \mathcal{D}_{\alpha\gamma}(I) : \lim_{t \to b^{-}} u'(t) = 0 \right\}, \\ \mathcal{D}_{L}(I) &:= \mathcal{D}_{L}^{0}(I) \cap \mathcal{D}_{L}^{1}(I), \\ \mathcal{D}_{R}(I) &:= \mathcal{D}_{R}^{0}(I) \cap \mathcal{D}_{R}^{1}(I). \end{aligned}$$

Additionally let *K* denote a constant of interest whose value may change from line to line; if required different constants will be denoted by K_1 , K_2 , *etc*.

2. A weighted multiplicative inequality. In [5, Theorem 9] Kwong and Zettl proved the following result:

This work was supported by the Office of Scientific Computing, U.S. Department of Energy under Contract W-31-109-Eng-38 and by the Alabama EPSCoR program of the National Science Foundation.

Received by the editors October 13, 1993; revised April 7, 1994.

AMS subject classification: Primary: 26D10; secondary: 26D15, 26D20.

Key words and phrases: weighted Landau inequalities.

[©] Canadian Mathematical Society 1995.

THEOREM 1. Suppose $1 \le p < \infty$, β , γ and α are real numbers such that

(1)
$$\beta = \frac{\alpha + \gamma}{2}$$

Then there is a constant K independent of u such that the inequality

(2)
$$\int_0^\infty t^\beta |u'|^p \le K \Big(\int_0^\infty t^\gamma |u|^p \Big)^{1/2} \Big(\int_0^\infty t^\alpha |u''|^p \Big)^{1/2}$$

holds for $u \in \mathcal{D}_{\alpha\gamma}((0,\infty))$ if $\beta > -1$ and $\gamma > -1 - p$.

We are going to extend this theorem by proving:

THEOREM 2. Let $u \in \mathcal{D}_{\alpha\gamma}((0,\infty))$, $1 \le p < \infty$, then the inequality (2) holds if and only if the following conditions are satisfied:

- (*i*) $\{\alpha, \beta, \gamma\} \neq \{p 1, -1, -1 p\}.$
- (ii) β satisfies (1).
- (iii) $\lim_{t\to 0^+} u'(t) = 0$ when $\beta \leq -1$ and $\beta > \alpha p$.
- (iv) $\lim_{t\to\infty} u'(t) = 0$ when $\beta \ge -1$ and $\beta < \alpha p$.

Also in the exceptional case $\{\alpha, \gamma\} = \{p - 1, -1 - p\}$ the inequality

(3)
$$\int_0^\infty t^{-1} |u'|^p \le K_1 \left\{ \left(\int_0^\infty t^{-1-p} |u|^p \right)^{1/2} \left(\int_0^\infty t^{p-1} |u''| \right)^{1/2} + \int_0^\infty t^{-1-p} |u|^p \right\}$$

is valid.

PROOF. That (2) implies (1) is a statement of "dimensional balance" and follows if we introduce the change of variables $t = \lambda s$ in (2). Next suppose that $\beta \neq \alpha - p$. If $\beta > \alpha - p$ we get that $(\alpha - \gamma)/2p < 1$, and if $\beta < \alpha - p$ then $(\alpha - \gamma)/2p > 1$; thus in either case $(\alpha - \gamma)/2p \neq 1$.

CASE (i). Let $\beta \leq -1$ and $\beta > \alpha - p$. Assume that (2) holds. Now

$$u'(t) = u'(s) - \int_t^s u''.$$

Since $\alpha < p-1$, $\alpha p'/p < 1$, so that $t^{-\alpha p'/p}$ is integrable if p > 1 on right neighborhoods of 0; also $t^{|\alpha|}$ is bounded near 0 if p = 1. These facts and Hölder's inequality imply that $\lim_{t\to 0^+} \int_t^s u''$ is finite; consequently $u'(0^+)$ exists. Since $t^{\beta}|u'|^p$ is integrable (by (2)) while t^{β} is not integrable on right neighborhoods of 0, $u'(0^+) = 0$. On the other hand, suppose $u'(0^+) = 0$. Because $\beta > \alpha - p$ a form of Hardy's inequality for $\mathcal{D}_L^1((0, 1])$ (see [6, Example 6.8(i)]) gives

$$\int_0^1 t^{\beta} |u'|^p \le K \int_0^1 t^{\beta+p} |u''|^p < K \int_0^1 t^{\alpha} |u''|^p$$

when $\beta < -1$, and

$$\int_0^1 t^{\beta} |u'|^p \le K \int_0^1 t^{\alpha-p} |u'|^p \le K \int_0^1 t^{\alpha} |u''|^p$$

when $\beta = -1$. The sum inequality on $\mathcal{D}^{1}_{\alpha\gamma}((0, 1))$

(4)
$$\int_0^1 t^\beta |u'|^p \le K \Big\{ \int_0^1 t^\gamma |u|^p + \int_0^1 t^\alpha |u''|^p \Big\}$$

follows trivially. By existing theory (take $I = [1, \infty)$, $\delta := (\alpha - \gamma)/2p < 1$, and $\epsilon = 1$ in [1, Example 1]) we obtain the sum inequality

(5)
$$\int_1^\infty t^\beta |u'|^p \le K \left\{ \int_1^\infty t^\gamma |u|^p + \int_1^\infty t^\alpha |u''|^p \right\}$$

on $\mathcal{D}_{\gamma\alpha}([1,\infty))$. Addition of (4) and (5) gives the sum inequality on the entire interval. Set $t = \lambda s$. Then $u_{\lambda} := u(\lambda s)$ is in $\mathcal{D}_{\alpha\gamma}((0,\infty))$ so that

$$\int_0^\infty s^\beta |u'_\lambda(s)|^p \, ds \le K \Big\{ \int_0^\infty s^\gamma |u_\lambda(s)|^p \, ds + \int_0^\infty s^\alpha |u''_\lambda(s)|^p \, ds \Big\},$$

which is equivalent to the inequality

(6)
$$\int_0^\infty t^\beta |u'(t)|^p dt \le K \left\{ \lambda^\phi \int_0^\infty t^\gamma |u(t)|^p dt + \lambda^{-\phi} \int_0^\infty t^\alpha |u''(t)|^p dt \right\}$$

where $\phi = (\alpha - \gamma)/2 - p$. (2) follows by minimizing the right side of (6) with respect to λ (the minimization is possible since $(\alpha - \gamma)/2p \neq 1$).

The other possibilities concerning β follow a similar logic.

CASE (ii). Assume $\beta > \max\{-1, \alpha - p\}$. Then Hardy's inequality for $\mathcal{D}_{R}^{1}((0, 1])$ (see [6, Example 6.8(ii)]), Minkowski's inequality, and the integrability of t^{β} on (0, 1] gives

(7)
$$\int_0^1 t^\beta |u'|^p \le K \Big\{ \int_0^1 t^\alpha |u''|^p + |u'(1)|^p \Big\}.$$

Since [1, Lemma 2.1]

(8)
$$|u'(1)| \le K \left\{ \int_{1}^{2} |u| + \int_{1}^{2} |u''| \right\}$$

a standard Hölder's inequality argument applied to (8) in conjunction with (7) yields that

(9)
$$\int_0^1 t^{\beta} |u'|^p \le K \Big\{ \int_0^\infty t^{\gamma} |u|^p + \int_0^\infty t^{\alpha} |u''|^p \Big\}$$

Since (5) remains valid, addition of (5) and (6) gives the sum inequality on $(0, \infty)$ and the the same scaling argument as in the previous case may be applied.

CASE (iii). If $\beta < \alpha - p$ and $\beta < -1$, Hardy's inequality for $\mathcal{D}_{L}^{l}([1,\infty))$ (see [6, Example 6.9(i)]), Minkowski's inequality, Lemma 2.1 of [1], *etc.*, give as in Case (ii) the sum inequality (5). On the other hand since $(\alpha - \gamma)/2p > 1$, existing theory (see [1, Example 2]) gives

(10)
$$\int_0^1 t^{\beta} |u'|^p \le K \Big\{ \int_0^1 t^{\gamma} |u|^p + \int_0^1 t^{\alpha} |u''|^p \Big\};$$

we then add and scale as before.

CASE (iv). If $\beta < \alpha - p$ and $\beta \ge -1$, we can show that $\lim_{t\to\infty} u'(t) = 0$ by an argument similar to Case (i). Hardy's inequality for $\mathcal{D}_R^1([1,\infty))$ (see [6, Example 6.9(ii)]) then leads trivially to (5). Adding this to (10) (the argument of Case (iii) continues to apply) and finishing the argument as before completes the proof.

Now suppose that $\beta = \alpha - p$. Let $N = t^{\beta}$, $W = t^{\gamma}$, $P = t^{\alpha}$. Let $f(t) = t^{\delta}$ where $\delta := (\alpha - \gamma)/2p = 1$. Then combining Examples 1 and 2 of [1] gives the sum inequality

(11)
$$\int_0^\infty N|u'|^p \le K(\epsilon) \Big\{ \epsilon^{-p} \int_0^\infty W|u|^p + \epsilon^p \int_0^\infty P|u''|^p \Big\}.$$

In particular this implies that $t^{\beta}|u'|^{p}$ is integrable on $(0, \infty)$. (This fact is needed in the argument below.)

To obtain (2) we modify an argument previously given in the proof of [2, Theorem 2.1]: Define a bi-infinite partition $\{t_i\}_{-\infty}^{\infty}$ by letting $t_0 = 1$ and $t_i = 2^i$. Let ϕ be a C_0^{∞} function with support on [-3/4, 1] such that $0 \le \phi \le 1$ and $\phi = 1$ on [-1/2, 0]. For $m \in \mathbb{Z}$ and $u \in \mathcal{D}_{\alpha\gamma}((0, \infty))$ set

(12)
$$y_m(t) = u(t)\phi((t-t_m)/t_m)$$

where t_m is a point of the partition defined above. It follows that y_m has support on $[t_{m-2}, t_{m+1}]$ and $y_m = u$ on $[t_{m-1}, t_m]$. It is not difficult to show applying Leibniz's rule of differentiation that there is a constant *C* independent of *u* and *m* such that

(13)
$$|y''_m(t)| \le C \sum_{i=0}^2 |u^{(i)}| / t_m^{2-i}$$
, a.e.

Next we recall that if $\alpha = \beta = \gamma = 0$, then (2) is a special case of a far more general and well known Gabushin inequality (*cf.* [3]). (Also note that if p > 1 the unweighted inequality follows from Case (ii) above.) Substituting (12) into this inequality and using (13) gives

(14)

$$\begin{pmatrix} \int_{t_{m-1}}^{t_m} |u'|^p \end{pmatrix} \leq \left(\int_{t_{m-2}}^{t_{m+1}} |y'_m|^p \right) \\
\leq K \left(\int_{t_{m-2}}^{t_{m+1}} |y_m|^p \right)^{1/2} \left(\int_{t_{m-2}}^{t_{m+1}} |y''_m|^p \right)^{1/2} \\
\leq K C^{1/2} \left(\int_{t_{m-2}}^{t_{m+1}} |u|^p \right)^{1/2} \left(\int_{t_{m-2}}^{t_{m+1}} \sum_{i=0}^2 |u^{(i)}|^p / (t_m^{2-i})^p \right)^{1/2}$$

We multiply the last line of (14) by t_m^{β} , noting both that β satisfies (1) and that if $t \in [t_{m-2}, t_{m+1}]$, then $1/4 \le t/t_m \le 2$ because of the nature of the partition. This gives

(15)
$$\int_{t_{m-1}}^{t_m} t^{\beta} |u'|^p \le K_1 \left(\int_{t_{m-2}}^{t_{m+1}} t^{\gamma} |u|^p \right)^{1/2} \left(\int_{t_{m-2}}^{t_{m+1}} \sum_{i=0}^2 t^{\alpha - (2-i)p} |u^{(i)}|^p \right)^{1/2}$$

for a constant K_1 independent of u. Summing (15) over m and using the discrete sum form of the Cauchy-Schwartz inequality yields that

(16)
$$\int_0^\infty t^\beta |u'|^p \le K_1 \Big(\sum_{m=-\infty}^\infty \int_{t_{m-2}}^{t_{m+1}} t^\gamma |u|^p \Big)^{1/2} \Big(\sum_{m=-\infty}^\infty \int_{t_{m-2}}^{t_{m+1}} \Big(\sum_{i=0}^2 t^{\alpha-(2-i)p} |u^{(i)}|^p \Big) \Big)^{1/2}.$$

Because each *t* belongs in at most three intervals $[t_{m-2}, t_{m+1}]$ and by Minkowski's inequality applied to the last integral in (16), it follows that

(17)
$$\int_0^\infty t^\beta |u'|^p \le K_2 \Big(\int_0^\infty t^\gamma |u|^p \Big)^{1/2} \Big[\sum_{i=0}^2 \Big(\int_0^\infty t^{\alpha - (2-i)p} |u^{(i)}|^p \Big) \Big]^{1/2}.$$

Assume now that $\beta < -1$ so that $\gamma < -1 - p$. Because $\alpha and <math>\beta < -1$ an argument given in Case (i) using the integrability of $t^{\beta}|u'|$ (established in equation (11) above) shows that $\lim_{t\to 0^+} u'(t) = 0$. Similarly the fact that

$$\frac{-\beta p'}{p} > \frac{1}{p-1} > 0$$

together with Hölder's inequality applied to the integral in the identity

$$u(t) = u(s) - \int_t^s u^t$$

demonstrates that $\lim_{t\to 0^+} u(t)$ exists. Since $\gamma < -1$ the limit is 0. This shows that $\mathcal{D}_{\alpha\gamma}((0,\infty)) = \mathcal{D}_L((0,\infty))$. Since $\alpha - p < -1$, the Hardy inequalities (see [6, Example 6.7]

(18)
$$\int_0^\infty t^{\alpha-2p} |u|^p \le K_3 \int_0^\infty t^{\alpha-p} |u'|^p,$$

(19)
$$\int_0^\infty t^{\alpha-p} |u'|^p \le K_4 \int_0^\infty t^\alpha |u''|^p$$

hold on $\mathcal{D}_{\alpha\gamma}((0,\infty))$. Iterating (18) and (19) yields the second order Hardy inequality

(20)
$$\int_0^\infty t^{\alpha-2p} |u|^p \le K_5 \int_0^\infty t^\alpha |u''|^p.$$

Substitution of (19) and (20) into (17) yields (2). The case $\beta > -1$, $\gamma > -1 - p$ is covered by Theorem 1. Summarizing, (2) holds for all choices of α , β , and γ satisfying (1) except possibly for

(21)
$$\begin{aligned} \alpha &= p - 1, \\ \beta &= -1, \\ \gamma &= -1 - p, \end{aligned}$$

which was to be proved.

We next show by a counterexample that (2) cannot hold in the exceptional case (21), Let

$$u_{\delta}(t) := \begin{cases} u_{1,\delta}(t) = t^{1+\delta} & \text{for } t \in [0,1] \\ u_{2,\delta} = \left((1+\delta)t^{1-\delta} - 2\delta \right) / (1-\delta) & \text{for } t \in (1,\infty) \end{cases}$$

where $\delta > 0$ is a parameter. Since u_{δ} and u'_{δ} are continuous at $1, u_{\delta} \in \mathcal{D}_{\alpha\gamma}((0, \infty))$. To prove that (2) cannot hold for this family of functions it is sufficient to show that if

$$Q(u_{\delta}) := \frac{(\int_{0}^{\infty} t^{-1} |u_{\delta}'|^{p})^{2}}{(\int_{0}^{\infty} t^{-1-p} |u_{\delta}|^{p})(\int_{0}^{\infty} t^{p-1} |u_{\delta}''|)},$$

then

(22)
$$\lim_{\delta \to 0} Q(u_{\delta}) = \infty.$$

A calculation yields that

(23)
$$\int_0^\infty t^{-1} |u_{\delta}'|^p = \frac{2(1+\delta)^p}{p\delta}$$

(24)
$$\int_0^\infty t^{p-1} |u_{\delta}''|^p = \frac{2\delta^p (\delta+1)^p}{p\delta}$$

Moreover

(25)
$$\int_{1}^{\infty} t^{-1-p} |u_{2,\delta}|^{p} < \int_{1}^{\infty} t^{-1-p} \left(\frac{1+\delta}{1-\delta}t^{1-\delta}\right)^{p} = \frac{(1+\delta)^{p}}{p\delta(1-\delta)^{p}},$$

so that

(26)
$$\int_0^\infty t^{-1-p} |u_{\delta}|^p = \frac{1}{p\delta} + \int_1^\infty t^{-1-p} |u_{2,\delta}|^p < \frac{1}{p\delta} + \frac{(1+\delta)^p}{p\delta(1-\delta)^p}.$$

Combining (25) and (26) and substituting them together with the estimates (23) and (24) into (22) gives

$$\lim_{\delta \to 0} Q(u_{\delta}) \ge \lim_{\delta \to 0} \frac{2(1+\delta)^p}{\delta^p \left(1 + \frac{(1+\delta)^p}{(1-\delta)^p}\right)} = \infty.$$

It remains to prove (3) in the exceptional case: Let f(t) = t, $N = t^{-1}$, $W = t^{-1-p}$, $P = t^{p-1}$, and $J_{t,\epsilon} = [t, t(1 + \epsilon)]$ in condition (C₃) of [1]. Then a calculation (see [1, (2.13)] shows that

(27)
$$\int_{J_{t,\epsilon}} N|u'|^p \le K \left\{ \epsilon^{-p} S_2 \int_{J_{t,\epsilon}} W|u|^p + \epsilon^p S_1 \int_{J_{t,\epsilon}} P|u''|^p \right\}$$

where

(28)
$$S_1 := t^p \Big((\epsilon t)^{-1} \int_t^{t(1+\epsilon)} s^{-1} \, ds \Big) \Big((\epsilon t)^{-1} \int_t^{t(1+\epsilon)} s^{-1} \, ds \Big)^{p-1} \le 1$$

(29)
$$S_2 := t^{-p} \Big((\epsilon t)^{-1} \int_t^{t(1+\epsilon)} s^{-1} \, ds \Big) \Big((\epsilon t)^{-1} \int_t^{t(1+\epsilon)} s^{(p+1)/(p-1)} \, ds \Big)^{p-1} \le (1+\epsilon)^{p+1}$$

Let \mathcal{J}_{ϵ} denote the collection of all $J_{t,\epsilon}$, $t \in (0,\infty)$. Let *n* be a positive integer. Since every $s \in (0,n)$ is the center of some $J_{t,\epsilon} \in \mathcal{J}_{\epsilon}$ (take $t = 2s/(2+\epsilon)$) we may appeal to the Besicovitch covering theorem (*cf.* [4, Theorem 1.1, p. 2]) to extract finitely many families $\Gamma_1, \ldots, \Gamma_l$ of disjoint intervals in \mathcal{I}_{ϵ} where *l* is independent of *n* to cover (0, *n*). From (27), (28), and (29) it follows that

$$\begin{split} \int_{\tilde{\Gamma}_i} t^{-1} |u'|^p &\leq K \Big\{ \epsilon^{-p} (1+\epsilon)^{p+1} \int_{\tilde{\Gamma}_i} t^{-1-p} |u|^p + \epsilon^p \int_{\tilde{\Gamma}_i} t^{p-1} |u''|^p \Big\} \\ &\leq K \Big\{ \epsilon^{-p} (1+\epsilon)^{p+1} \int_0^\infty t^{-1-p} |u|^p + \epsilon^p \int_0^\infty t^{p-1} |u''|^p \Big\} \end{split}$$

where $\tilde{\Gamma}_i := \bigcup \{ J_{t,\epsilon} : J_{t,\epsilon} \in \Gamma_i \}$. Hence

$$\int_0^n t^{-1} |u'|^p \le Kl \Big\{ \epsilon^{-p} (1+\epsilon)^{p+1} \int_0^\infty t^{-1-p} |u|^p + \epsilon^p \int_0^\infty t^{p-1} |u''|^p \Big\}.$$

Since *n* is arbitrary, we finally obtain the inequality

$$\int_0^\infty t^{-1} |u'|^p \le Kl \Big\{ \epsilon^{-p} (1+\epsilon)^{p+1} \int_0^\infty t^{-1-p} |u|^p + \epsilon^p \int_0^\infty t^{p-1} |u''|^p \Big\}.$$

We substitute the elementary inequality

 $(1+\epsilon)^{p+1} \le 2^p (1+\epsilon^{p+1})$

into (30). This gives an inequality of the form

$$\int_0^\infty t^{-1} |u'|^p \le 2^p K l\{(\epsilon^{-p} + \epsilon)I_1 + \epsilon^p I_2\}$$

where

$$I_1 := \int_0^\infty t^{-1-p} |u|^p$$

$$I_2 := \int_0^\infty t^{p-1} |u''|^p.$$

If $I_2 \ge I_1$, set $\epsilon = (I_1/I_2)^{1/2p} \le 1$. Then

$$(\epsilon^{-p} + \epsilon)I_1 + \epsilon^p I_2 \le (\epsilon^{-p} + 1)I_1 + \epsilon^p I_2$$

 $\le 2(I_1I_2)^{1/2} + I_1.$

If $I_2 < I_1$, set $\epsilon = 1$. This gives the upper bound

$$(\epsilon^{-p} + \epsilon)I_1 + \epsilon^p I_2 \le 2I_1 + I_2$$
$$\le 2I_1 + (I_1I_2)^{1/2}.$$

In either case (3) follows with $K_1 = 2^{p+1}Kl$. The proof is complete.

A WEIGHTED LANDAU INEQUALITY

REFERENCES

- 1. R. C. Brown and D. B. Hinton, Sufficient conditions for weighted inequalities of sum form, J. Math. Anal. Appl. 123(1985), 563-578.
- _, Interpolation inequalities with power weights for functions of one variable, J. Math. Anal. Appl. 2. . 172(1993), 233-240.
- **3.** V. N. Gabushin, Inequalities for norms of a function and its derivatives in L_p metrics, Mat. Zametki 1(1967), 291-298.
- 4. M. De Guzman, Differentiation of Integrals in \mathbb{R}^n , Lecture Notes in Math. 481, Springer-Verlag, Berlin, 1975.
- 5. M. K. Kwong and A. Zettl, Norm inequalities of product form in weighted L^p spaces, Proc. Roy. Soc. Edinburgh Sect. A 89(1981), 293-307.
- 6. B. Opic and A. Kufner, Hardy-type Inequalities, Longman Sci. Tech., Harlow, Essex, United Kingdom, 1990.

Department of Mathematics University of Alabama Tuscaloosa, Alabama 35487-0350 U.S.A.e-mail: dicbrown@ua1vm.ua.edu

Department of Mathematics University of Tennessee Knoxville, Tennessee 37996-1300 U.S.A. e-mail: hinton@novell.math.utk.edu

Mathematics and Computer Science Division Building 221 Argonne National Laboratory Argonne, Illinois 60439 U.S.A. e-mail: kwong@mcs.anl.gov

41