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A NOTE ON THE HEAT KERNEL ON THE HEISENBERG GROUP

ADAM SIKORA AND JACEK ZIENKIEWICZ

We describe the analytic continuation of the heat kernel on the Heisenberg group
Hn(K). As a consequence, we show that the convolution kernel corresponding to the
Schrodinger operator etsL is a smooth function on Hn(R) \ 5S, where
Ss = {(O,O,±sA:) £ Mn(K) : k = n,n + 2,n + 4, . . . }. At every point of Ss the
convolution kernel of e'sL has a singularity of Calderon-Zygmund type.

Let Hn(R) denote the (2n+l)-dimensional real Heisenberg group, that is, E n x E " x E
with the group law

{x,y,t){x',y',t') = (x + x',y + y',t + t'-^lm

for all x, x\ y, y' in R" and t and t' in R. For s in R, we define the set Ss by

Ss = {(O,O,±sA;) e Hn(R) : k = n ,n + 2,n + 4 , . . . } .

We define Hn(C) like ^ ( R ) . For (x,y,t) 6 Hn(C), we write x2 for f^ x2
T, and A and B

r= l

for it - (x2 + y2)/4 and - ( x 2 + y2)/2 respectively.
The vector fields Xr, Yr (where r = 1 , . . . , n) and T, given by

d yr d d xr d d
Xr - ^ ——, Yr = 1- —— and T = — ,

dxr 2 dt dyr 2 dt dt

form a basis for the Lie algebra of left-invariant vector fields on Hn(R). The Heisenberg
Laplacian L is defined by

r = l

The subelliptic operator L admits a spectral resolution
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116 A. Sikora and J. Zienkiewicz [2]

and therefore when Res ^ 0, one can define the operator e~sL, bounded on L2(Mn(R)),

by the spectral theorem:

e~sL = f e-*Ad£(A).
Jo

Let ps be the convolution kernel of the operator e~sL (see [5, (1.10), (1.11)]). When
s > 0, e~sL is the solution operator for the Heisenberg heat equation dsu = -Lu and pa

is called the heat kernel (see [6, (7.30), p.71].

The goal of this note is to study the analytic continuation of the heat kernel ps. This
is interesting from the point of view of the theory of analytic hypoellipticity (see [1, 2]).
Another reason to study the analytic continuation of ps is to investigate the operator La,

equal to L + iaT, where a € C (see Remark 2 below and [6, (7.53) p.73] (see also [3] for
a detailed study of the operators Lo and an explanation of the significance of La).

However, we are also motivated by the possibility of explicitly computing the kernel
of the Schrodinger propagator e'sL, where s € R, using the analytic continuation of the
heat kernel. Indeed, elsL is the solution operator for the Schrodinger equation

(1) dsu(x,y,t,s) = iLu(x,y,t,s).

In [5, p.392-394], Strichartz noticed that "In principle we could attempt to solve (1) by
analytic continuation from the solution of the heat equation". However, he abandoned
this idea as "this analytic continuation is delicate, so we approach the problem directly".
Strichartz proved that, when s e R , the convolution kernel of the Schrodinger operator
pis is a smooth function on the open set {(x,y,t) € H,,(R) : \t\ < n\s\).

In this note we propose a simple computation which allows us to handle the analytic
continuation of the heat kernel in a straightforward manner. Then, using the analytic
continuation of the heat kernel we show that pis is smooth on EIn(R) \ Ss when s € R,
and at points in Ss, the kernel pi3 has singularities of Calderon-Zygmund type. This is
in contrast to the Euclidean case where, for the standard Laplace operator A, the kernel
of the operator e"A is bounded and smooth. In this context it is interesting to note
that the convolution kernel of the operator e"^L~T^ is smooth. The smoothness of the
convolution kernel of the operator e"'i~T2> is the last result proved in this note.

A comprehensive discussion of harmonic analysis on the Heisenberg group can be
found in [5] or [6, Chapter 1].

The following theorem is the main result of this note.

THEOREM 1 . The function pi extends to an analytic function on H n (C) \5 , where
5 = {(x,y,t) e Hn(C) : ±it - n - (x2 + y2/i) € 2N}. For all {x,y,t) € Mn(C) \ 5 ,
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where

The sum (2) is absolutely uniformly convergent on compact subsets of Hn(C) \ 5 . More-

over,

(3) p [x y t\ =• }

for all s such that Re s ^ 0.

P R O O F : By virtue of the well known formula for the heat kernel on the Heisenberg
group (see [6, (7.36), p.71], or [5, (5.20)])

.. ,x_ 2 r\ncost\_f-\(x*+y2)coth\^

4
A"eitA /-A(x + j/)cothA\1 Z100 A"eitA / - A ( x 2 + j / 2)cothA\

4^)"+! 70 (sinhA)"6XPV 4 J
\ ne~ltx

say. We note that, if A > 0 and m £ N, then

~ i / - i \

=-(2fc+m)A

k=0

(k — 1\ (k — 1N

where I 1 — 1 if k = 0 and I 1 = 0 otherwise. Now
V k ) \ k

(4)

1'0 ( n + r ! ) ^ ^ ) * (^£^M) dA
A B ( c o t h A - l ) \ _,,{ k ) A e x p ( A ( y l 2 A ; n ) ) e x p ( K—^ ^J dA

= /
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fc=0 j=0 1=0

-rdX

l\(j + l-l\(n + A Bj

2{k

Note that, for any compact subset K of Hn(C) \ 5, the sum in the last line of (4) is
absolutely uniformly convergent on K and that for all {x,y,t) € Hn(R) all expressions in
the formula (4) are absolutely convergent. Indeed, there exists a constant CK such that

- " - ' - 1 \/(x,y,t)€K.

Next,

and

Hence
OO OO 00

k=0 j=0 1=0 (n + 2{k \n+j + l

oo oo oo

<r>r
n

Z^ (j + 1)1
j=0 w y '

Now we note that, for any (x, y, t) £ Hn(

and sup A(coth A — 1) = 1, so
A

oo oo oo

-SEE
fc=0 j=0 (=0

n + k - 1\H +1- l\/n

) ){
CX) OO OO

fc=0 j=0 (=0 3 )
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-L w " " r n ' ± 4 ' " e x p ( -f E
2

The Lebesgue monotone convergence theorem proves the absolute convergence for all

We obtain (2) by virtue of the identity

fn + k-\\fm+l-\\_(n +m+h-1
h

k+l=h

and (4). To conclude the proof of (3) we note that L is a homogeneous operator so (3)
holds when s > 0 (see [6, Proposition 7.3, p.71]) and both sides of (3) are analytic as a
function of s when Re s > 0. D

COROLLARY 2 . When s € K, the convolution kernel of the Schrodinger operator
pis is smooth on Hn(R) \ Ss, where Ss = {(0,0, ±sk) e Hn(K) : k = n, n + 2, n + 4 , . . . }.
At every point of Ss, the kernel PiS has a singularity of Calderon-Zygmund type.

PROOF: Corollary 2 is a straightforward consequence of (3), and (4) or (2). D

REMARK 1. There is an alternative proof of Theorem 1. One can use the formula [5,
(2.28)] to prove that P(x,y,t) is equal to

k A-n-2k

k=0 x k[ {-A + n + 2k)n+1+k J\ n + kB + (-A + n + 2k),

An argument similar to that in the proof of Theorem 1 shows that the above sum is
uniformly absolutely convergent on any compact subset of Hn(C) \ 5.

REMARK 2. In [6, (7.53), p.73], Taylor noticed that, when s > 0 and | Rea | < n,

(5) Ke-,La{x,y,t) =p3(x,y,t-isa),

where Ke-,La is the convolution kernel of the operator e~sLa and La = L + iaT. By
virtue of Theorem 1, (5) holds also when | Rea | = n. Note that, when | Rea | = n, the
kernel Ke-.La, s > 0 is no longer smooth and it has a singularity of Calderon-Zygmund
type at the point (0,0, slma).

We would like to end with another observation, concerning a full Laplace operator
on the Heisenberg group. We define this operator by the following formula

7 — \ ' v2 i v 2 T 2 — T T 2
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THEOREM 3 . For any s 6 K \ {0}, the convolution kernel of the operator e lsL

extends to an analytic function on Hn(C).

P R O O F : Write 7 for e"1^4. We denote the convolution kernels of the operators e~'sL

and e-s{jL-T2) by Ke_ilL and Ke..^L.tf, respectively. Note that (see [6, (7.36)] and (3))

e h + n 'y' '

1 /•0

-. r—- I
(47T7)n+1 Jo

A"cos(a/(7s))
;—V-TT
(sinhA)"

^ - A ( x 2

-
V 47s

dA.

Hence Ke.,iyL+Ti) is an analytic function on Hn(C). Now to finish the proof it is enough

to note that

1 / 00 "u ~t \
Ke-i,z{x,y,t) = Ke-,{^L+^T*){x,y,t) = —^Ke.,^L+T2A ——, ——, - J

7 \ ^y-y yj'y 7/

for all s > 0 and (x, y, t) e Hn(M) (see [4, (18)]). D

REMARK 3. When Res > 0, one can use the theory of analytic hypoellipticity to in-

vestigate the smoothness and analyticity of the kernel Ke_,z see, for example, [1, 2].

However, analytic hypoellipticity cannot be used directly to investigate the convolution

kernel of K 1 when Re s — 0.
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