A NOTE ON BRAUER CHARACTER DEGREES OF SOLVABLE GROUPS

YOU-QIANG WANG

ABSTRACT. Let G be a finite solvable group. Fix a prime integer p and let t be the number of distinct degrees of irreducible Brauer characters of G with respect to the prime p. We obtain the bound 3t - 2 for the derived length of a Hall p'-subgroup of G. Furthermore, if |G| is odd, then the derived length of a Hall p'-subgroup of G is bounded by t.

1. **Introduction.** All groups considered in this paper are finite and solvable. Let p be a prime. We denote by H a Hall p'-subgroup of G and by $\operatorname{IBr}_p(G)$ the set of irreducible Brauer characters of G with respect to the prime p. Let $t_p(G) = |\{\varphi(1) \mid \varphi \in \operatorname{IBr}_p(G)\}|$. We obtain a linear bound for the derived length of H in terms of $t_p(G)$. The key point in our proof is to reduce the modular case to the ordinary case for which we can apply the results in Berger [1] and Isaacs [2]. Consequently, our result is a generalization of Berger [1, Theorem 2.4] and Isaacs [2, Corollary 7] (by taking p not to divide |G|).

Let $\varphi \in \operatorname{IBr}_p(G)$ and X be a *F*-representation of *G* affording φ . We define Ker $\varphi =$ Ker X. Since any two *F*-representations of *G* affording φ are similar, Ker φ is well-defined. The following proposition may seem innocuous, but it is the key to reduce the proof of our main results.

PROPOSITION. Let $\varphi \in IBr_p(G)$. Then, for any *p*-regular element $g \in G$,

 $g \in \text{Ker } \varphi$ if and only if $\varphi(g) = \varphi(1)$.

PROOF. Let g be a p-regular element of G. By Fong-Swan Theorem, there exists $\chi \in Irr(G)$ such that $\varphi = \hat{\chi}$ (the restriction of χ to the set of p-regular elements of G). If $\varphi(g) = \varphi(1)$, the $\chi(g) = \chi(1)$, and hence $g \in \text{Ker } \chi$ by Isaacs [3, Lemma 2.19]. Furthermore, by Isaacs [3, Theorem 15.8], $g \in \text{Ker } \chi \leq \text{Ker } \varphi$. Conversely, assume that $g \in \text{Ker } \varphi$. Let X be an F-representation of G affording φ . Then X(g) is the $\varphi(1) \times \varphi(1)$ identity matrix over F. Hence $1 \in F$ is the only eigenvalue of X(g), which has the multiplicty $\varphi(1)$. By the definition of φ , $\varphi(g) = \varphi(1)$.

Received by the editors October 12, 1989.

AMS subject classification: 20C20.

[©] Canadian Mathematical Society 1991.

2. Main Results.

THEOREM. Suppose that G is solvable. Let $\varphi \in \operatorname{IBr}_p(G)$ and $M \leq G$ such that $M \leq \operatorname{Ker} \psi$ whenever $\psi \in \operatorname{IBr}_{p}(G)$ with $\psi(1) < \varphi(1)$. Then

- (1) $(O^p(M))''' \leq \operatorname{Ker} \varphi;$ (2) $(O^p(M))'' \leq \operatorname{Ker} \varphi \text{ if } 2 \not\downarrow \varphi(1);$
- (3) $(O^p(M))' \leq \operatorname{Ker} \varphi \ if 2 \not| |G|.$

PROOF. Let $N = \bigcap_{\psi \in IBr_p(G), \psi(1) < \varphi(1)} \operatorname{Ker} \psi$. Then $M \leq N$ and $N \triangle G$. Without loss of generality, we can assume that M = N.

By Fong-Swan Theorem, there exists $\chi \in Irr(G)$ such that $\hat{\chi} = \varphi$. For any $\theta \in$ Irr(G) with $\theta(1) < \chi(1)$, $\hat{\theta}$ is a Brauer character of G, and hence $\hat{\theta} = \sum_{i=1}^{k} n_i \psi_i$, where $\psi_i \in \operatorname{IBr}_p(G)$ and n_i is a non-negative integer for $i = 1, \ldots, k$. For any *i*, since $\psi_i(1) \leq i$ $\hat{\theta}(1) = \theta(1) < \chi(1) = \varphi(1), M \leq \text{Ker } \psi_i$. Let g be a p-regular element of M. By the Proposition, $\psi_i(g) = \psi_i(1)$. Thus $\hat{\theta}(g) = \sum_{i=1}^k n_i \psi_i(g) = \sum_{i=1}^k n_i \psi_i(1) = \hat{\theta}(1)$. Hence $\theta(g) = \theta(1)$. This yields that $g \in \text{Ker } \theta$. Since $O^p(M)$ is generated by all the *p*-regular elements of $M, O^p(M) \leq \text{Ker } \theta$. Notice that $M \triangle G$ implies that $O^p(M) \triangle G$. Hence, by Isaacs [2, Theorem 6] and Berger [1, Theorem 2.2], we have that

- (1) $\left(O^p(M)\right)^{\prime\prime\prime} \leq \operatorname{Ker} \chi;$
- (2) $(O^p(M))'' \leq \operatorname{Ker} \chi \text{ if } 2 \not\mid \chi(1);$
- (3) $(O^p(M))' \leq \operatorname{Ker} \chi \text{ if } 2 \not| |G|.$

By Issacs [3, Theorem 15.8], Ker $\chi \leq \text{Ker } \hat{\chi} = \text{Ker } \varphi$, and hence we have the conclusions.

Let $1 = f_1 < f_2 < \cdots < f_{t_p(G)}$ be the distinct irreducible Brauer character degrees of G. For $1 \leq r \leq t_p(G)$, let $\alpha_H(r)$ denote

 $\max\{ dl(H \operatorname{Ker} \varphi / \operatorname{Ker} \varphi) \mid \varphi \in \operatorname{IBr}_p(G), \varphi(1) \leq f_r \}.$

We notice that $\alpha_H(1) = 1$ and $\alpha_H(t_p(G)) = dl(H)$.

As a corollary of our theorem, we obtain a linear bound for the derived length of Hall p'-subgroups of G in terms of $t_p(G)$.

COROLLARY. Let G be solvable and H be a Hall p'-subgroup of G. Then we have that

(1) $\alpha_{H}(r) \leq 3r - 2$, and (2) if 2 $||G|, \alpha_H(r) \le r$.

In particular, we have that

(1) $dl(H) \leq 3t_p(G) - 2$, and

(2) if 2 / |G|, $dl(H) \leq t_p(G)$.

PROOF. Use induction on r. Suppose $\varphi \in \operatorname{IBr}_p(G)$ with $\varphi(1) \leq f_r$ so that

$$H^{\alpha_H(r-1)} \leq \operatorname{Ker} \psi$$

for all $\psi \in \operatorname{IBr}_p(G)$ with $\psi(1) < \varphi(1)$. By (1) and (3) of the Theorem, we have that

$$\left(O^p\left(H^{\alpha_H(r-1)}\right)\right)^{\prime\prime\prime} \leq \operatorname{Ker} \varphi,$$

and if $2 \not| |G|$, $\left(O^{p}\left(H^{\alpha_{H}(r-1)}\right)\right)' \leq \text{Ker }\varphi$. Since H is a Hall p'-subgroup of G, $O^{p}\left(H^{\alpha_{H}(r-1)}\right) = H^{\alpha_{H}(r-1)}$. Hence, $H^{\alpha_{H}(r-1)+3} \leq \text{Ker }\varphi$, and if $2 \not| |G|$, $H^{\alpha_{H}(r-1)+1} \leq \text{Ker }\varphi$. Thus $\alpha_{H}(r) \leq \alpha_{H}(r-1) + 3$, and if $2 \not| |G|$, $\alpha_{H}(r) \leq \alpha_{H}(r-1) + 1$. Since $\alpha_{H}(1) = 1$ and $\alpha_{H}(t_{p}(G)) = dl(H)$, we have the conclusions by induction.

REMARK. In his Ph.D. thesis at the University of Mainz, Dr. Frank Bernhardt obtains the same bound $3t_p(G) - 2$ for the derived length of H and the $2t_p(G) - 1$ bound for the p = 2 case and the odd order case. In addition, he obtains the $3t_p(G) - 2$ bound and the $t_p(G) - 1$ bound for the nilpotent length and the p-length of G respectively.

REFERENCES

- 1. T. R. Berger, *Character degrees and derived length in groups of odd order*, Journal of Algebra **39**(1976), 199–207.
- 2. I. M. Isaacs, Character degrees and derived length of a solvable group, Canadian J. Math. 27(1975), 146–151.
- 3. _____, Character theory of finite groups. Academic Press, New York, 1976.

Department of Mathematics Ohio University P.O.Box 5688 Athens, Ohio USA 45701