A NOTE ON BRAUER CHARACTER DEGREES OF SOLVABLE GROUPS

YOU-QIANG WANG

Abstract

Let G be a finite solvable group. Fix a prime integer p and let t be the number of distinct degrees of irreducible Brauer characters of G with respect to the prime p. We obtain the bound $3 t-2$ for the derived length of a Hall p^{\prime}-subgroup of G. Furthermore, if $|G|$ is odd, then the derived length of a Hall p^{\prime}-subgroup of G is bounded by t.

1. Introduction. All groups considered in this paper are finite and solvable. Let p be a prime. We denote by H a Hall p^{\prime}-subgroup of G and by $\operatorname{IBr}_{p}(G)$ the set of irreducible Brauer characters of G with respect to the prime p. Let $t_{p}(G)=\left|\left\{\varphi(1) \mid \varphi \in \operatorname{IBr}_{p}(G)\right\}\right|$. We obtain a linear bound for the derived length of H in terms of $t_{p}(G)$. The key point in our proof is to reduce the modular case to the ordinary case for which we can apply the results in Berger [1] and Isaacs [2]. Consequently, our result is a generalization of Berger [1, Theorem 2.4] and Isaacs [2, Corollary 7] (by taking p not to divide $|G|$).

Let $\varphi \in \operatorname{IBr}_{p}(G)$ and X be a F-representation of G affording φ. We define $\operatorname{Ker} \varphi=$ $\operatorname{Ker} \mathcal{X}$. Since any two F-representations of G affording φ are similar, $\operatorname{Ker} \varphi$ is welldefined. The following proposition may seem innocuous, but it is the key to reduce the proof of our main results.

Proposition. Let $\varphi \in \operatorname{IBr}_{p}(G)$. Then, for any p-regular element $g \in G$,

$$
g \in \operatorname{Ker} \varphi \text { if and only if } \varphi(g)=\varphi(1) .
$$

Proof. Let g be a p-regular element of G. By Fong-Swan Theorem, there exists $\chi \in \operatorname{Irr}(G)$ such that $\varphi=\hat{\chi}$ (the restriction of χ to the set of p-regular elements of G). If $\varphi(g)=\varphi(1)$, the $\chi(g)=\chi(1)$, and hence $g \in \operatorname{Ker} \chi$ by Isaacs [3, Lemma 2.19]. Furthermore, by Isaacs [3, Theorem 15.8], $g \in \operatorname{Ker} \chi \leq \operatorname{Ker} \varphi$. Conversely, assume that $g \in \operatorname{Ker} \varphi$. Let X be an F-representation of G affording φ. Then $X(g)$ is the $\varphi(1) \times \varphi(1)$ identity matrix over F. Hence $1 \in F$ is the only eigenvalue of $X(g)$, which has the multiplicty $\varphi(1)$. By the definition of $\varphi, \varphi(g)=\varphi(1)$.

Received by the editors October 12, 1989.
AMS subject classification: 20C20.
(c) Canadian Mathematical Society 1991.

2. Main Results.

Theorem. Suppose that G is solvable. Let $\varphi \in \operatorname{IBr}_{p}(G)$ and $M \leq G$ such that $M \leq \operatorname{Ker} \psi$ whenever $\psi \in \operatorname{IBr}_{p}(G)$ with $\psi(1)<\varphi(1)$. Then
(1) $\left(O^{p}(M)\right)^{\prime \prime \prime} \leq \operatorname{Ker} \varphi$;
(2) $\left(O^{p}(M)\right)^{\prime \prime} \leq \operatorname{Ker} \varphi$ if $2 \not \backslash \varphi(1)$;
(3) $\left(O^{p}(M)\right)^{\prime} \leq \operatorname{Ker} \varphi$ if $2 X|G|$.

Proof. Let $N=\cap_{\psi \in \operatorname{IBr}_{p}(G), \psi(1)<\varphi(1)} \operatorname{Ker} \psi$. Then $M \leq N$ and $N \triangle G$. Without loss of generality, we can assume that $M=N$.

By Fong-Swan Theorem, there exists $\chi \in \operatorname{Irr}(G)$ such that $\hat{\chi}=\varphi$. For any $\theta \in$ $\operatorname{Irr}(G)$ with $\theta(1)<\chi(1), \hat{\theta}$ is a Brauer character of G, and hence $\hat{\theta}=\sum_{i=1}^{k} n_{i} \psi_{i}$, where $\psi_{i} \in \operatorname{IBr}_{p}(G)$ and n_{i} is a non-negative integer for $i=1, \ldots, k$. For any i, since $\psi_{i}(1) \leq$ $\hat{\theta}(1)=\theta(1)<\chi(1)=\varphi(1), M \leq \operatorname{Ker} \psi_{i}$. Let g be a p-regular element of M. By the Proposition, $\psi_{i}(g)=\psi_{i}(1)$. Thus $\hat{\hat{\theta}}(g)=\sum_{i=1}^{k} n_{i} \psi_{i}(g)=\sum_{i=1}^{k} n_{i} \psi_{i}(1)=\hat{\theta}(1)$. Hence $\theta(g)=\theta(1)$. This yields that $g \in \operatorname{Ker} \theta$. Since $O^{p}(M)$ is generated by all the p-regular elements of $M, O^{p}(M) \leq \operatorname{Ker} \theta$. Notice that $M \triangle G$ implies that $O^{p}(M) \triangle G$. Hence, by Isaacs [2, Theorem 6] and Berger [1, Theorem 2.2], we have that
(1) $\left(O^{p}(M)\right)^{\prime \prime \prime} \leq \operatorname{Ker} \chi$;
(2) $\left(O^{p}(M)\right)^{\prime \prime} \leq \operatorname{Ker} \chi$ if $2 \not \backslash \chi(1)$;
(3) $\left(O^{p}(M)\right)^{\prime} \leq \operatorname{Ker} \chi$ if $2 \chi|G|$.

By Issacs [3, Theorem 15.8], $\operatorname{Ker} \chi \leq \operatorname{Ker} \hat{\chi}=\operatorname{Ker} \varphi$, and hence we have the conclusions.

Let $1=f_{1}<f_{2}<\cdots<f_{t_{p}(G)}$ be the distinct irreducible Brauer character degrees of G. For $1 \leq r \leq t_{p}(G)$, let $\alpha_{H}(r)$ denote

$$
\max \left\{d l(H \operatorname{Ker} \varphi / \operatorname{Ker} \varphi) \mid \varphi \in \operatorname{IBr}_{p}(G), \varphi(1) \leq f_{r}\right\}
$$

We notice that $\alpha_{H}(1)=1$ and $\alpha_{H}\left(t_{p}(G)\right)=d l(H)$.
As a corollary of our theorem, we obtain a linear bound for the derived length of Hall p^{\prime}-subgroups of G in terms of $t_{p}(G)$.

Corollary. Let G be solvable and H be a Hall p'-subgroup of G. Then we have that
(1) $\alpha_{H}(r) \leq 3 r-2$, and
(2) if $2 X|G|, \alpha_{H}(r) \leq r$.

In particular, we have that
(1) $d l(H) \leq 3 t_{p}(G)-2$, and
(2) if $2 \times|G|, d l(H) \leq t_{p}(G)$.

Proof. Use induction on r. Suppose $\varphi \in \operatorname{IBr}_{p}(G)$ with $\varphi(1) \leq f_{r}$ so that

$$
H^{\alpha_{H}(r-1)} \leq \operatorname{Ker} \psi
$$

for all $\psi \in \operatorname{IBr}_{p}(G)$ with $\psi(1)<\varphi(1)$. By (1) and (3) of the Theorem, we have that

$$
\left(O^{p}\left(H^{\alpha_{H}(r-1)}\right)\right)^{\prime \prime \prime} \leq \operatorname{Ker} \varphi
$$

and if $2 \nmid|G|,\left(O^{p}\left(H^{\alpha_{H}(r-1)}\right)\right)^{\prime} \leq \operatorname{Ker} \varphi$. Since H is a Hall p^{\prime}-subgroup of G, $O^{p}\left(H^{\alpha_{H}(r-1)}\right)=H^{\alpha_{H}(r-1)}$. Hence, $H^{\alpha_{H}(r-1)+3} \leq \operatorname{Ker} \varphi$, and if $2 \not X|G|, H^{\alpha_{H}(r-1)+1} \leq$ $\operatorname{Ker} \varphi$. Thus $\alpha_{H}(r) \leq \alpha_{H}(r-1)+3$, and if $2 \nmid|G|, \alpha_{H}(r) \leq \alpha_{H}(r-1)+1$. Since $\alpha_{H}(1)=1$ and $\alpha_{H}\left(t_{p}(G)\right)=d l(H)$, we have the conclusions by induction.

Remark. In his Ph.D. thesis at the University of Mainz, Dr. Frank Bernhardt obtains the same bound $3 t_{p}(G)-2$ for the derived length of H and the $2 t_{p}(G)-1$ bound for the $p=2$ case and the odd order case. In addition, he obtains the $3 t_{p}(G)-2$ bound and the $t_{p}(G)-1$ bound for the nilpotent length and the p-length of G respectively.

References

1. T. R. Berger, Character degrees and derived length in groups of odd order, Journal of Algebra 39(1976), 199-207.
2. I. M. Isaacs, Character degrees and derived length of a solvable group, Canadian J. Math. 27(1975), 146151.
3. \qquad Character theory of finite groups. Academic Press, New York, 1976.

Department of Mathematics

Ohio University
P.O.Box 5688

Athens, Ohio
USA 45701

