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A NOTE ON BRAUER CHARACTER DEGREES
OF SOLVABLE GROUPS

YOU-QIANG WANG

ABSTRACT.  Let G be a finite solvable group. Fix a prime integer p and let ¢ be the
number of distinct degrees of irreducible Brauer characters of G with respect to the
prime p. We obtain the bound 3¢ — 2 for the derived length of a Hall p’-subgroup of
G. Furthermore, if |G| is odd, then the derived length of a Hall p’-subgroup of G is
bounded by ¢.

1. Introduction. All groups considered in this paper are finite and solvable. Let p
be a prime. We denote by H a Hall p/-subgroup of G and by IBr,,(G) the set of irreducible
Brauer characters of G withrespect to the prime p. Let 1,(G) = |{ ¢(1) | ¢ € IBr,(G)}]|.
We obtain a linear bound for the derived length of H in terms of #,(G). The key point in
our proof is to reduce the modular case to the ordinary case for which we can apply the
results in Berger [1] and Isaacs [2]. Consequently, our result is a generalization of Berger
[1, Theorem 2.4] and Isaacs [2, Corollary 7] (by taking p not to divide | G|).

Let ¢ € IBr,(G) and X be a F-representation of G affording ¢. We define Ker ¢ =
Ker X. Since any two F-representations of G affording ¢ are similar, Ker ¢ is well-
defined. The following proposition may seem innocuous, but it is the key to reduce the
proof of our main results.

PROPOSITION.  Let ¢ € IBry(G). Then, for any p-regular element g € G,

g € Ker p ifand only if (g) = ¢(1).

PROOF. Let g be a p-regular element of G. By Fong-Swan Theorem, there exists
X € Irr(G) such that ¢ = ¥ (the restriction of x to the set of p-regular elements of G).
If p(g) = ¢(1), the x(g) = x(1), and hence g € Ker x by Isaacs [3, Lemma 2.19].
Furthermore, by Isaacs [3, Theorem 15.8], g € Ker x < Ker ¢. Conversely, assume that
g € Ker ¢. Let X be an F-representation of G affording ¢. Then X(g) is the ¢ (1) X (1)
identity matrix over F. Hence 1 € F is the only eigenvalue of X(g), which has the
multiplicty ¢(1). By the definition of ¢, ¢(g) = ¢(1). [
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2. Main Results.

THEOREM. Suppose that G is solvable. Let ¢ € IBr,(G) and M < G such that
M < Kery whenever ¢ € IBry(G) with(1) < ¢(1). Then

(1) (0°(M))" < Kerg;

2) (0°D)" < Kerp if2 J ¢(1);

(3) (0°) <Kerg if2 f|G.

PROOF. Let N = ﬂwemrp((;)le‘p(l)Kerw. Then M < N and NAG. Without loss
of generality, we can assume that M = N.

By Fong-Swan Theorem, there exists x € Irr(G) such thaty = ¢. For any 6 €
Irr(G) with 6 (1) < x(1), 6 is a Brauer character of G, and hence § = Zf-‘zl n;;, where
i € IB1,(G) and n; is a non-negative integer for i = 1,..., k. For any i, since (1) <
é(l) =0(1) < x(1) = p(1), M < Ker);. Let g be a p-regular element of M. By the
Proposition, 1i(g) = ¥i(1). Thus §(g) = TX, nii(g) = S, mii(1) = 6(1). Hence
0(g) = 0(1). This yields that g € Ker 8. Since OP(M) is generated by all the p-regular
elements of M, O°P(M) < Ker 6. Notice that MAG implies that OP(M)AG. Hence, by
Isaacs [2, Theorem 6] and Berger [1, Theorem 2.2], we have that

(1) (0°()"” < Kerx;

@) (07)" < Kerx if2 J x(1);

3) (0°() < Kerx if2 }|G].

By Issacs [3, Theorem 15.8], Kerxy < Kerx = Ker ¢, and hence we have the conclu-
sions. n

Let1 = f; < f2 < -+ < fi,(6) be the distinct irreducible Brauer character degrees of

G.For 1 < r <t,(G), let ay(r) denote

max{ di(HKer ¢/ Ker¢) | ¢ € IBr,(G), p(1) < f,}.

We notice that ag(1) = 1 and aH(tp(G)) = dI(H).
As a corollary of our theorem, we obtain a linear bound for the derived length of Hall
p/-subgroups of G in terms of #,(G).

COROLLARY. Let G be solvable and H be a Hall p'-subgroup of G. Then we have
that

(1) ay(r) <3r—2,and

(2) if2 [ |G|, ag(r) <r.
In particular, we have that

(1) di(H) < 3t,(G) — 2, and

(2) if2 [ |G, di(H) < t,(G).

PROOF. Use induction on r. Suppose ¢ € IBr,(G) with ¢(1) < f; so that

HY (=D < Kerv
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for all ¢ € IBr,(G) with ¢ (1) < ¢(1). By (1) and (3) of the Theorem, we have that

(Op(HaH(r—l)))/” < Ker @,

and if 2 /|G|, (O”(H"”("”))/ < Keryp. Since H is a Hall p’-subgroup of G,
0" (H®#=V) = H®=D. Hence, H**""*3 < Ker, and if 2 f |G|, H*)* <
Ker . Thus ay(r) < ay(r — 1)+ 3, and if 2 f |G|, au(r) < ay(r — 1) + 1. Since
ag(l) =1and aH(tp(G)) = dI(H), we have the conclusions by induction. [

REMARK. Inhis Ph.D. thesis at the University of Mainz, Dr. Frank Bernhardt obtains
the same bound 3¢,(G) — 2 for the derived length of H and the 21,(G) — 1 bound for the
p = 2 case and the odd order case. In addition, he obtains the 31,(G) — 2 bound and the
1,(G) — 1 bound for the nilpotent length and the p-length of G respectively.
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