
NON-LINEAR RECURSIVE SEQUENCES 

ELBERT A. WALKER 

The purpose of this paper is to investigate non-linear recursive sequences 
of maximum length with elements from GF(2). In particular, the question 
of whether or not a recursive sequence of maximum length can be equal to 
its dual is settled. This question, as far as the author knows, was originally 
asked by Rosser. Part I contains the necessary background for Part II, and 
in the main is a condensation of some unpublished work (1955) of W. A. Blank-
inship and R. P. Dilworth. 

PART I 

1. Let G F (2) be the field with two elements, let n be a positive integer, 
let © be the Cartesian product of n copies of GF(2)t and let / be a mapping 
from © into GF(2). A sequence a\, a2, #3, • • • of elements in GF(2) is said to 
be recursively generated by / if 

an+t = f(au ai+i, . . . , an+i-i) for i = 1, 2, 3, . . . 

/ is called a recursion or a rule of generation. The sequence ai, a2, a%, . . . is 
called a recursive sequence of span < n. It is of span n if in addition it is not 
of span < n — 1. The elements of © will be called patterns, or n-bit words, 
and the elements of GF{2) will sometimes be called bits, and denoted by 
0, 1. The mapping/ induces a mapping F of © into © in the following way. 
If S = (ai, a2, . . . , a„) is in ©, let F(S) = (a2, a3, . . . , a», /0*i, • • • > «„))• 
Hence with the mapping/ of © into GF(2), we associate the mapping F of 
© into ©, and F uniquely determines/. Distinct mappings/i and / 2 of © into 
G F (2) induce distinct mappings F\ and F2 of © into ©. If F is one-to-one, 
then / is said to be a non-singular recursion. Otherwise / is called singular. 
All recursions considered here will be assumed to be non-singular unless 
otherwise stated. 

2. Let / be a recursion, let F be the mapping of © into © determined by 
/ and let Si be in ©. Let St = F(Si-i), i = 2, 3, 4, . . . . Since © is finite, 
there exists a smallest positive integer m such that Sm+i = Si. Thus/generates 
a cycle of elements in ©, namely (Si, 52, . . . , Sm). If 7\ is some element in 
© not in the cycle (Si, S2, . . . Sm),f generates another cycle (7\ , T2} . . . Tm>) 
and these two cycles are disjoint. Continuing in this manner, © is decom
posed into disjoint cycles by / . Of course the cycle (Si, S2, . . . , Sm) is con-
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sidered the same as (S2, S3, . . . , Sm, Si). This collection of cycles determined 
by f is denoted by C, and it is easy to see t h a t / is uniquely determined by C. 
The system C of cycles is called the cyclic structure of/. Since F is one-to-one, 
it is onto, and so is a permutation of ©. If this permutation is decomposed 
into the product of disjoint cycles, this collection of cycles is identical with 
C. Thus the cyclic structure of the permutation F is identical with the cyclic 
structure of / . The sum of the lengths of the cycles in C is 2n, where n is the 
span of/. If C consists of just one cycle, that cycle is said to be a maximal 
cycle. 

3. Any mapping/ of © into GF(2), singular or non-singular, can be repre
sented uniquely as a polynomial in xi, x2, . . . , xn with coefficients in GF(2). If 
/ is linear in xi, 

f(ah a2, . . . , an) = f(ai + 1, a2, . . . , a») + 1. 

Hence / linear in xi implies / is non-singular. Assume / is non-singular. Then 
/ ( l , 0, 0, 0, . . . , 0) = 1 + / ( 0 , 0, . . . , 0) so that the term x\ appears in the 
polynomial representing / . / ( I , 1, 1, . . . , 1) = 1 + / ( 0 , 1, 1, . . . , 1) so that 
if the polynomial representing / has any non-linear terms with xi as a factor, 
it has an even number of them. If it has at least two, let 

ir and 

be distinct and let the first have smallest possible degree. The sets {ih i2j . . . , 
iT\ and {ji,j2, • . . yjs} are distinct. There is a jk not in [ii, i2, . . . , iT}. Let 
S = (ai, a2, . . . , an) be the element of © whose first co-ordinate is 1, whose 
iu i2, . . . , ir co-ordinates are 1, and the rest of whose co-orinates are 0. Let 
Sf = (&i + 1, a2, a3, . . . , an). Then F(S) = F(S'), and F is singular. Hence / 
is linear in x\. T h u s / is non-singluar if, and only if, / is dependent on X\ and 
linear in xi, and /(#i, x2, . . . , xn) = X\ + / i (x 2 , x3, . . . , xn), where /1 is a 
polynomial in x 2 , X3, . . . , x n . 

4. Let S = (ai, a2, . . . , an) be a pattern in ©, and let S = (ai + 1, a2, . . . , 
an). Let fs be the mapping from © into GF{2) that is 1 only at S and S. 
Explicitly, 

n 

fS(xh . . . , Xn) = El (1 + ^i + Xi). 
i=2 

Note that fs = / s . Let C be the system of cycles of / . Suppose 5 and S are on 
distinct cycles in C. Let (Si, S2, . . . , S*) be the cycle containing S, and let 
(7*1, T21 . . . , rm) be the cycle containing S. For convenience, let Si = S and 
7\ = §. Then the system C; of cycles of / + fs consists of the cycle (Si, T2, 
r3 , . . . , Tm, Ti, S2, S3, . . . , Sk) and the remaining cycles of C unchanged. 
Suppose S and S are on the same cycle (Si, S2, . . . , Sk) in C. Let Si = S and 
Sr = S. Then the system C of cycles of / + fs consists of the cycles (Si, Sr+i, 
. . . , Sk), (Sr, S2, . . . , Sr_i), and the remaining cycles of C unchanged. 
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5. L e t / b e a recursion that generates a cycle C\ = (Si, S2, . . . , Sk). Suppose 
this cycle C\ has the property that if it contains the pattern (ai, a2, . . . , an) 
then it contains (&i + 1, a2, a3, . . ., an). Let (èi, Z>2, . . • , 6W) be any pattern. 
C\ contains a pattern ending in bu (#i, #2, . . . , ûV-i, ôi). If this pattern is not 
followed in d by (a2, a3, . . . , an-i, bi, b2)} then the pattern {a,\ + 1, a2, . . . , 
an_i, 6i), which is in Ci, is followed by (a2, a3, . . . , an_i, 6i, 62). Continuing 
in this manner, one gets the pattern (bi, b2j . . . , ôn) in Ci. Hence the system 
of cycles of / consists simply of the one cycle C\. If a recursion / generates 
more than one cycle, then every cycle it generates has the property that it 
contains a pattern S such that it does not contain S. Therefore/ + fs generates 
one less cycle than does/ . In general, if/ generates k cycles, then there exist 
k — 1 patterns Si, . . . , S/C_i such that 

generates just one cycle. 

PART II 

An unsolved problem concerning non-linear recursive sequences is that of 
finding a large class of recursions which generate maximal cycles. It is known 
(1) that the number of such recursions of span n is 

We begin this section by deriving some elementary properties a recursion 
must have if it generates a maximal cycle. Later we define and investigate 
the reverse, the dual ,and the reverse-dual of a recursion. 

1. L e t / be a recursion of span n that generates a maximal cycle. Then 

f(xh x2, . . . , xn) = 1 + xi + </>(x2, x3, . . . , xH), 

where </> (x2, x3, . . . , xn) is a polynomial with no constant term. 

Proof. Since / generates a maximal cycle, every n-bit word must occur in 
that cycle. Thus the n-bit word (0, 0, . . . , 0) is not a rut, that is / (0 , 0, . . . , 
0) = 1. 

2. L e t / be a recursion of span n > 1 that generates a maximal cycle. Then 
the polynomial f(xi, . . . , xn) that represents / does not contain all the linear 
terms x2, . . . , xn. 

Proof. The n-hit word (0, 0, . . . , 0) is followed by a 1. If f(xi, . . . , xn) has 
the term xn, then the n -(- 1-bit word (0, 0, . . . , 0, 1) is followed by 0, and 
if it also has the term xn_i, this pattern is followed by 0, etc. If /(xi , . . . , xn) 
has all the linear terms x2, . . . , xn, we get the sequence 0, 0, . . . , 0, 1, 0, 0, 
. . . , 0 since f(x\, • • . , xn) contains the linear term x\. But if n > 1, this 
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implies t ha t /does not generate a maximal cycle. Therefore/(xi, . . . , xn) does 
not contain all those terms. 

3. Let / b e a recursion of span n that generates a maximal cycle. Then 
the polynomial that represents / has an even number of terms. 

Proof. The n-bït word ( 1 , 1 , . . . , 1) is followed by a 0. Hence/( l , 1, . . . , 1) 
= 0 and so f(x\, . . . , xn) has an even number of terms. 

4. Definitions. One cycle is the reverse of another if either cycle can be 
obtained from the other by taking the bits in reserve order. One cycle is the 
dual of another if either can be found from the other by replacing all 0's by 
l's and all l's by 0's. One cycle is the reverse-dual of another if it is the reverse 
of the dual (the same as the dual of the reverse) of the other. The recursion 
corresponding to the reverses of the cycles generated by / is called the reverse 
of / , and is denoted by Rf. The recursion corresponding to the duals of the 
cycles generated b y / is called the dual of/, and is denoted by Df. The recursion 
corresponding to the reverse-dual of the cycles of / is called the reverse-dual 
of / , and is denoted by RDf. 

5. It is fairly clear that the cyclic structure of / , Rf, Df, and RDf are the 
same as far as the number of cycles in each and the lengths of cycles in each 
are concerned. In particular, if / generates a maximal cycle, then so do Df, 
Rf, and RDf. 

6. Since every recursion / can be represented by a polynomial, it is of 
some interest to determine the polynomials representing Rf, Df, and RDf in 
terms of the one representing / . A moment's reflection shows that if 

f(xi, x2, . . . , xn) = xi + /i(x2, . . . , * » ) 
then 

Rf(xi, . . . , * „ ) = xi +fi(xn, . . . , x2), 
and 

Df{Xi, . . . , Xn) = Xi + / l ( l + X2, 1 + Xz, . . . , 1 + Xn). 

From these follow then that 

RDf(xu . . . , xn) = xi +fi(xn + 1, . . . , x2 + 1). 

7. Since f(x\, . . . , xn) = xi + / i (x 2 , . . . , xn) implies that 

Rf(xh . . . , xn) = xi +fi(xn, . . . , x2), 

we see that / and Rf agree on those patterns which are symmetric in the 
last (n — 1) bits. 

8. Suppose a cycle (So, Si, ... , 5*-i) is the same as its reverse. Suppose 
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this cycle contains a pattern which is its own reverse, and for convenience 
let it be So. Let S / be the reverse of the pattern S*. Then S0 = So', Si = Sk-i, 
. . . , Sj! = Sk-/, . . . . There is at most one j such that j = k — j , namely 
j = \k. Therefore, if a cycle is the same as its reverse, then it contains at 
most two patterns which are their own reverses. If k is odd, there is at most 
one such pattern, and as a matter of fact, exactly one such pattern. It is 
possible for a cycle of even length to be its own reverse and contain no pattern 
which is its own reverse., For example, the cycle ( (01), (10) ) is such a 
cycle. Now, using these facts we can prove the following theorem. 

THEOREM. / / / == Rf, then f generates at least 2[*n+^]~1 cycles. If n > 3, then 
f does not generate a maximal cycle. 

Proof. There are 2^n+i] n-b\t words which are their own reverses. Since 
/ = Rf, a cycle which contains one of these n-b\t words is its own reverse. But 
a cycle that is its own reverse can contain at most two n-bit words that are 
their own reverses. Hence there must be at least 2 [ î W +^_ 1 cycles generated 
by f. If n > 3, 2[^+2"]-1 > 2, so t h a t / does not generate a maximal cycle. 

9. We are now going to settle the question as to whether or not a cycle 
of maximal length can be equal to its dual. It has just been shown that if 
n > 3, a maximal cycle of span n is not equal to its reverse. The corresponding 
statement is true for the dual of a maximal cycle, but the proof of it is a 
little more complicated. We begin with a lemma, of which no proof seems 
readily available in the literature. 

LEMMA. If f(xi, . . . , xn) = xi, then the number of cycles generated by f is 
even, for n > 2. 

Proof. If &1&2 . . . an is any pattern, then the sequence obtained beginning 
with this pattern is ai<22 . . . anaia2 . . . an . . . . Therefore to compute the 
number of cycles generated b y / is the same problem as computing the number 
of strings of beads of length n that can be constructed using two kinds of 
beads, where two strings are considered the same if one is a rotation of the 
other. It is easily verified that this number is 

where F(l) = 2 and 

F(k) = 2* - £ F{r). 
r\Jc 
r<k 

F(d) is, in fact, the number of patterns that are equal to themselves at slides 
of multiples of d only. Hence such a pattern and its slides contain exactly d 
distinct patterns, from which it follows that d~lF{d) is the number of strings 
of beads n long of this nature. Summing over all divisors d of n yields the 
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total number of strings of beads. This number G(n) we wish to show is even. 
Observing that 

E F{d) = 2W 

d\n 

and applying the Môbius inversion formula yields 

F(n) = E y.{n/d)2d. 
d\n 

Therefore we get 

GOO - E ^ - E E ^ ^ . 
d\n <* d\n r\d & 

If n is odd we see immediately that Fid) and hence drlF{d) is even for all 
d\n. Thus we need consider only the case where 

d = 2ap1
aip2

a2 . . . ps
as 

where a > 0, and pu pi, • . • , Ps are distinct odd primes.* Now 

F(d) = E l n(r)2dlT 

r\d 

and each non-vanishing term in the sum has a factor 

2^a-1Pial-1P2a2-1-"P8as-1 

Hence 

where m is an integer. Since d\F(d), 

. a\ . 0,2 . as I . „ 

p\ P2 . . -ps \m. 

Put 

m = upi P2 . . . Ps , 

where u is an integer. Then 
F(d) _ 2i2°""12 ,i0i~1P202-1...ps°8-1-a} 

A necessary condition that d~lF{d) be odd is a\ = a2 = . . . = as = 1 and 
a = 1 or 2; that is, if d = 2£i£2 . . . ps or d = 4:pip2. . . £s. We show in each 
of these cases that d~lF{d) is odd. Let d = 2£i£2 . . . ps> Then 

F(d) = 2d ± 2dl ± 2"2 ± . . . ± 2 

where J, di, d2, . • • , are all the divisors of d. Hence F{d) is twice an odd 
number and since d\F{d), d~lF(d) is odd. If d = 4£i£2 . . . ps then since 

TO = E M(r)2d/r 

r |d 

T h e author wishes to thank the referee for furnishing a correct proof for this case. 
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and ju(r) = 0 if 4 divides r, 

F(d) = 2d ± 2dl ± 2d2 ± . . . db 22 

where d, d\, d2} . . . , 2, are all the even divisors of d. Hence F{d) is four times 
an odd number and since d\F(d), d~lF(d) is odd. Now let 

n = 2 pi p2 . . . ps . 

Since n > 2, either s > 0 ,or a > 1. If 5 = 0, n = 2a, a > 1 and 

_, . v F(d) F(l) F(2) F(t) , A F(2r) 

= 2 + 1 + 3 + ]C (even numbers). 

Hence G(«) is even. If s > 0, a = 0, then each term of 

is even. If 5 > 0, a = 1, then the divisors d, for which d~lF(d) is odd, are 
the numbers d = 2#ig2. . . qr, where qi, q2, . . . , qr is a subset of £i, p2j . . . , ps. 
The number of such divisors is 2s so that G(n) is even. Finally, if 5 > 0, a > 1, 
the divisors dy for which d~lF(d) is odd, are of the forms d = 2qiq2 . . . qr or 
^ = 4gig2 . . . ?r where gi, g2, . . . , ?r is a subset of /?i, p2, . . . , £s. The number 
of such divisors is 2 , + 1 . Hence, again G(n) is even. 

10. Let / and g be recursions of span n. If / and g disagree on the n-bit 
word S, then from 4, Part I, we see t h a t / + / s and g agree on S and >S and 
on all patterns on which / and g agree. Thus the recursion / may be changed 
into the recursion g by adding a suitable set of fs's to / . From 5, Part I, we 
see that adding hs to any recursion h changes the parity of the number of 
cycles generated by h. If S = (ai, a2, . . . , an) then 

n 

hs(xh . . . , xn) = n (1 + at + xi)i 

and adding hs to A adds the term x2x3 . . . xn, among other terms, to the 
polynomial representing h. If one adds an odd number of ^ ' s to h one adds 
the term x2x^ . . . xn, among other terms, to the polynomial representing h. 
Now let / be the recursion such that f(xi, . . . , xn) = Xi and let g be any 
recursion of the same span that generates an odd number of cycles. If n > 2, 
/ generates an even number of cycles, so to change/ into g requires the adding 
of an odd number of f$s to / , and hence the adding of the term x2x3 . . . xn, 
among other terms to the polynomial representing / , which is X\. Hence the 
polynomial representing g has the term x2x% . . . xn. Conversely, if g is any 
recursion of span n such that the polynomial representing it has the term 
x2Xz . . . xn, then one must add an odd number of fs's to / to get g, and this 
implies that g generates an odd number of cycles. These remarks we sum up 
in the following theorem. 
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THEOREM. A recursion of span n > 2 generates an odd number of cycles if, 
and only if, the polynomial representing it has the term x2x% . . . xn. 

COROLLARY. If a recursion of span n > 2 generates a maximal cycle, then 
the polynomial representing it has the term x2x%. . . xn. 

11. We are now in a position to prove that if n > 2 and / generates a 
maximal cycle, then / F^ Df. In fact, we will prove a more general result. 

THEOREM. If n > 2 and a recursion f generates an odd number of cycles, 
then f ^ Df. 

Proof. From 6, Part II, it is easy to see that if the polynomial representing 
/ contains a term 

then this term is a term of the polynomial representing Df if, and only if, 

X iiX i2 • • • X ir 

is a factor of an odd number of terms of the polynomial representing / . Since 
/ generates an odd number of cycles, the polynomial representing it contains 
the term x2x%. . . xn. If that polynomial contains a term besides 1, Xi, and 

then it contains a term which is a factor of only itself and 
x2Xz . . . xn. That term then is a factor of an even number of terms, and there
fore is not a term of the polynomial representing Df. If 

f{xi, . . . , xn) = 1 + #1 + x2x3 . . . xn or Xi + %2Xz . . . xn 

then 

Df{xu . . . , xn) = 1 + xi + (1 + *2) (1 + #3) . . . (1 + *;„) 
or *i + (1 + x2)(l + #3) . . • (1 + xn), 

and is obviously not the same as/(xi , . . . , xn). Hence in any case, / ^ Df. 

COROLLARY. If n > 2 and f is a recursion generating a maximal cycle, then 

12. THEOREM. Ifnis even and if fis a recursion of span n > 2 which generates 
an odd number of cycles, then Rf 7^ Df, and hence f 9^ RDf. 

Proof. From 6, Part II, it follows that the polynomials representing the 
recursions / and Rf have the same structure with regard to the number of 
terms which are the product of a given number of variables. There are n — 1 
possible terms which are the product of n — 2 variables, namely X3X4 . . . xn, 
x2Xi . . . xn, . . . , x2Xs . . . xn-i. Since the polynomial representing / contains 
the term x2Xz . . . xn, we see from the proof of the theorem in 11, Part II, 
that the polynomial representing Df contains precisely those terms which 
are the product of n — 2 variables that the polynomial representing / does 
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not contain. Thus for Rf to be equal to Df it is necessary that n — 1 be even. 
If n is even then n — 1 is odd so that Rf ^ Df and / 7^ RDf. 

COROLLARY. If n > 2 is even and f generates a maximal cycle then Rf 9^ Df 
and RDf ^ / . 

For n odd it can happen that Rf = Df. It happens in the case n = 5, as 
shown by the polynomial 

f(Xi, X2, X$, XAj #5) = 1 + Xi + X4 + X5 + X4X5 + X2X3X5 + X2X3X4 + X2X3X4X5. 
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