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Convergence in Capacity

Urban Cegrell

Abstract. In this note we study the convergence of sequences of Monge—Ampére measures { (ddus)"},
where {u;} is a given sequence of plurisubharmonic functions, converging in capacity.

1 Introduction

It is well known that the complex Monge—Ampére operator is continuous under
monotone limits, but not continuous in the L -topology [3]]. Therefore it is im-
portant to find conditions on sequences of plurisubharmonic functions so that the
sequence converges to a function having Monge—Ampére measure equal to the weak
limit of the Monge—Ampere measures of the functions in the sequence. Convergence
in capacity is such a condition and is very useful in pluripotential theory, see [2}4}11].

With notations introduced in the next section, the purpose of this paper is to prove

the following theorem.

Theorem  Assume that uy € € and that {u;} C € is a sequence with uy < u; for all
s € N. If {us} converges to a plurisubharmonic function u in C,_,-capacity, then the
sequence of measures {(ddu;)"} converges to (dd°u)" in the weak*-topology as s tends
to +o0.

This theorem is a generalization of Theorem 1.1 in [5], where the assumption
was that {u;} converges to u in C,-capacity as s tends to +oo. The theorem also
generalizes (1, Theorem 5.3], [12, Theorem 1], and [13, Theorem 5] and is quite
sharp, as shown in [12} Theorem 2(ii)].

The sequence {max( logz|, slog|w|)} shows that the theorem would be false
without the assumption of a common minorizing function u, € E.

2 Preliminaries

Recall that © C C", n > 1 is a bounded hyperconvex domain if it is a bounded,
connected, and open set such that there exists a bounded plurisubharmonic function
©: Q — (—00,0) such that the closure of the set {z € Q : p(z) < ¢} is compact in
Q, for every ¢ € (—00,0). We denote by PSH(2) the family of plurisubharmonic
functions defined on {2

We say that a bounded plurisubharmonic function ¢ defined on €2 belongs to &
iflim, ¢ p(z) = 0, for every £ € 052, and fQ (dd°p)" < +00. See [[6,9] for details.
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Let € be the family of plurisubharmonic functions ¢ defined on €2, such that for
each zy € (1 there exists a neighborhood w of z; in €2 and a decreasing sequence
{5} C & that converges pointwise to ¢ on w as s — +00 and

sup/ (ddp,)" < +o0.
s Ja

Furthermore, let F(C &) denote those functions for which we can take w = €.
For v € PSH(£2), —1 < v < 0, fixed, we define the C;,_,-capacity by

C,_1(E) = C"(E)
- sup{/dasz1 Ao Addw,_y A ddCy :
E
— 1< w0, w e PSHO), 1< j<n—1}.

Following [12]] we define for E C (2, the C,_;-capacity as C},_, in the case when
v € ENC®(N), —1 < v < 0isastrictly plurisubharmonic function. By [8]] such a
function always exists.

Let u, u,, s € N, be real-valued, Borel measurable, functions defined on €). Then
we say that {u;} converges to u in C'—capacity as s tends to +oo if for every compact
subset K of 2 and every € > 0 it holds that

lim C"({z € K : |us(z) — u(z)| > €}) = 0.

s—+o0

Furthermore, for v € &g, ug € F we define
Cl (E) = € (E) =
sup{/dd“wl/\~~/\ddcw,1_1/\dd‘v:uo+1/§wj €eF, 1<j<n— 1},
E

and we say that {u;} converges to u in C,™-capacity as s tends to +oc if for every
compact subset K of 2 and for every ¢ > 0 it holds that

lim C"™({z € K : {Jus(z) — u(z)| > €}) = 0.

s—+0o0

Lemma 2.1 Assume that u, u, s € N, are real-valued, Borel measurable, functions.
Then the following two assertions are equivalent:

(1)  the sequence {u,} converges to u in C¥-capacity,
q & pacity,
(i) the sequence {u} converges to u in C"*-capacity.

Proof For every K € (2, there exists a constant Ay > 0 such that —uy > Ag on K.
Therefore, C"(E N K)Ay ' < C"*(E).
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On the other hand, for uy + v < w; € JF, 1 < j < n — 1, it follows from
[10, Theorem 4.1] that for each m > 0 it holds that

Xfm>—m} """ X{wa_1>—mpddwy A --- Nddw,_y Nddv =

X{m>—m} " X{wo_>—mydd  max(wy, —m) A - - A dd° max(w,,_,, —m) A\ ddv.

Hence,

Xfuotvs—myddwi A -+ Nddw,_y Addv =
X {ug+v>—m}dd max(wy, —m) A - - - A dd° max(w,_y, —m) A dd‘v,

and therefore we have that

/ ddwy A -+~ Nddw,_ A\ ddy
ENK
= / ddwy A - ANddw,_; A\ ddy
EN{up+v>—m}NK
+ / ddwi A -+ ANddw,_1 A\ ddy
En{uo+v<—m}NK

1
<m"'CYENK)+ %/ —(up +v)ddw; A -+ Addw,_; N ddy
Q

IN

m" ICY(ENK) + l/ (dd(ug +v))". [ ]
mJjg

3 Convergence in Capacity

Lemma 3.1 Assume that i is a positive measure defined on €) that vanishes on all
pluripolar sets, uy € & and p(2) — fQ updp < +oo. Assume that {u;} C Eisa
sequence with uy < ug for all s € N. If {u,} converges in the sense of distributions to a
function u, then

lim usdu:/udu.
Q Q

s—+o0

Proof Without loss of generality we can assume that uy € J and {u;} C J. Let
d) be the Lebesgue measure, and use [6, Theorem 2.1] to choose ii; € €y N C(£2),
iis > us, such that

/(ﬁs —u)(du+dX) < l.
Q S

Then {d,} converges in the sense of distributions to a function u, and

SEIPOO(/Qusduf/Qﬂsdu> =0.
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Therefore, it is enough to prove that

lim ﬁsdu:/udu.
Q Q

s—+o0

To simplify the notation we let ii; be denoted by u,, and therefore in the rest of this
proof {u;} C €,NC(L2). Theorem 6.3 in [4]] implies that there are functions 1) € &,
f € LY((dd“))") with = f(dd“))", and by [4, Lemma 5.2] we have that for every
p < +oo it holds that

lim usdp, = /udup,
Q

s—+0o0

where 11, = min(f, p)(dd“)". The monotone convergence theorem now gives us
that

lim usdp = lim usdp, + lim us(f — min(f, p))(dd¢))"
Q

s—+0o0 o) s—+00 o) s—+00

2/ud,up+/uo(f—min(f,p))(ddfw)"—)/ud,u.
Q Q ptoo Jo

On the other hand, by Fatou’s lemma,

limsup/usdug/udu,
s—+oo Q Q

which yields the desired conclusion. ]

Lemma 3.2 Letv € &y(Q). Assume that uy € F, and that {u,} C F is a sequence
with uy < us for all s € N. If {u} converges to a function u in C"* -capacity, then

lim wi (dd ug) ddwy A -+ A ddw,_; Ndd'v =

s—+00 9]

/wl(dd“u)jddfwz/\-~-/\ddcwn_j/\ddfv 1<j<n—1,
Q

forallw; € F,ug+v<wj, j=1,...,n—j.

Proof By [[6) Theorem 5.5], u = dd‘wy A - - - Add°w,_; A\ dd°v satifies the conditions
of Lemma 31l Integration by parts shows the statement in this lemma is true for
j = 1. Assume now that the lemma is true for j < n — 1. We shall prove it is true for
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j+ 1. Letwy,...,w,_;j_ beasin the statement, and let € > 0 be given. Then

/ wi (dd ug) A ddCwy A - A dd‘w,_j_y A dd‘v
Q
—~ / wi(ddug)! A ddu A ddwy A - A ddw,_ ) A ddy
Q
= /(us — ) (ddu)? A ddwy A -+ A ddw,_j_, N ddv
Q
= / (us — u) (ddus)? A ddwy A - Addw,—j_y A ddy
{|us—u|>e}
+ / (us — u) (ddus) A ddwy A -+ A dd'w,_;_ Nddy
{Ju—u <<}
=L +1I.

By the induction hypotheses we have that

lim wi(ddu)! A ddu A ddwy A -+ A ddw,_j_, Nddv =

s—+o0 0

/ wy (ddu)™ A ddwy A - A ddw,_j_y Nddv 1< j<n-—1.
Q
Hence, it remains to estimate I, + II; . We have that
|| <e / (dd(up + v))" 1 A dd°,
Q
|| < / —2ug(ddus)’ A ddwy A - A ddw,— iy A ddy
{lus—u|>e}
< 2/(—u0 + max(ug, —N))(ddu;)? A ddwy A -+ A ddw,_;_1 A ddv
Q
-2 / max(uy, —N)(dd us)? A ddwy A -+ - A ddw,—j—y A ddy
{|us—u|>c}
< 2/(—u0 + max(ug, —N))(ddu;)? A ddwy A -+ A ddw,_j_1 A ddv
Q
-2 / up(dd us)! A\ ddwy A -+ A ddw,— iy A ddy
{lus—u|>e}n{v>—c}

+2N (ddu)! A ddwy A - A dd'w,_;_ Ndd.
{lus—u|>e}n{v<—e}
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By the induction hypotheses, we have that
2 / (—up + max(ug, —N)) (ddu,)’ A ddwy A --- A ddw,_j_, \ddv
Q

R 2/(7140 +max(ug, —N)) (ddu)? A ddwy A -+ A Adw,_;_ N dd"y,
Q

s—+o0o

which is small when N is big enough. For N fixed, then

2N (dd°us)? A ddwy A -+ A ddw,_j_y A ddv — 0,

{Ju—u[>e}n{r<—z} s+oo

since {u;} tends to u in C"* -capacity. Also

-2 / uo(dd us)’ A ddwy A - -+ A ddw,_j—y A ddy
{|us—u|>e}n{v>—c}
< —2/ 1o (dduy +v)" 1 A dd° max(v, —¢).
Q

< 25/(dd“(uo +v))".
Q

The proof is complete, since € > 0 was arbitrary. ]

Proof of the Theorem It is enough to prove this theorem for u € JF. For if ) is
any negative plurisubharmonic function, then {max(u,¢)} tends to max(u, ) in
C"-capacity, and since 1y € &, there is to every compact subset K of €2 a function
uf € F(Q) such that uy < uX with equality near K. Also by Lemma 2.1 we can
equally well work with C"* -capacity. We claim

(3.1) lim v(dduy)” :/v(ddcu)”7
s—+00 o) O

We have

/v(dd“us)” = / ug(ddu)" "t A ddy
Q Q
= /(uS —w)(ddu)"" ' A ddcv+/ u (ddu)" "' A ddv,
0 o
and Lemma[3.2]yields that
lim w(ddu)" ' Addy = / v(dd‘u)",
s=+oo J Q

and from the proof of Lemma[3.2]it follows that

lim (us — u)(ddu,)" "' A ddv = 0.
Q

s—+00
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Hence, we have that (3.1)) is true.

Letnow v € g NC>®(Q), —1 < v < 0, be a strictly plurisubharmonic function.
Equality (B.I) together with an application of [7, Lemma 2.1] completes the proof of
the theorem. ]

The following corollary generalizes [14}, Theorem 3.5].

Corollary 3.3 Assume that uy € € and that {u;} C & is a sequence with uy < u,
foralls € N, v € EgNC>®(Q), —1 < v <0, is a strictly plurisubharmonic function
and that f is a negative and locally bounded plurisubharmonic function. We can assume
v+ f > —1 If {u;} converges to a plurisubharmonic function u in C**"-capacity for
every h € &g, f < h, then the sequence of measures { f(dd“u;)"} converges to f(dd“u)"
in the weak™ -topology as s tends to +o0.

Proof We have already observed that we can assume that uy € F so {u;} C F. If
f € &y, then the corollary follows from (B)). To complete the proof we need only
observe that every negative and locally bounded plurisubharmonic function is locally
equal to a function in Ey(£2). [ |
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