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Convergence in Capacity

Urban Cegrell

Abstract. In this note we study the convergence of sequences of Monge–Ampère measures {(ddcus)
n},

where {us} is a given sequence of plurisubharmonic functions, converging in capacity.

1 Introduction

It is well known that the complex Monge–Ampère operator is continuous under

monotone limits, but not continuous in the L1
loc-topology [3]. Therefore it is im-

portant to find conditions on sequences of plurisubharmonic functions so that the

sequence converges to a function having Monge–Ampère measure equal to the weak

limit of the Monge–Ampère measures of the functions in the sequence. Convergence

in capacity is such a condition and is very useful in pluripotential theory, see [2,4,11].

With notations introduced in the next section, the purpose of this paper is to prove

the following theorem.

Theorem Assume that u0 ∈ E and that {us} ⊂ E is a sequence with u0 ≤ us for all

s ∈ N. If {us} converges to a plurisubharmonic function u in Cn−1-capacity, then the

sequence of measures {(ddcus)
n} converges to (ddcu)

n in the weak∗-topology as s tends

to +∞.

This theorem is a generalization of Theorem 1.1 in [5], where the assumption

was that {us} converges to u in Cn-capacity as s tends to +∞. The theorem also

generalizes [1, Theorem 5.3], [12, Theorem 1], and [13, Theorem 5] and is quite

sharp, as shown in [12, Theorem 2(ii)].

The sequence {max( 1
s

log |z|, s log |w|)} shows that the theorem would be false

without the assumption of a common minorizing function u0 ∈ E.

2 Preliminaries

Recall that Ω ⊆ C
n, n ≥ 1 is a bounded hyperconvex domain if it is a bounded,

connected, and open set such that there exists a bounded plurisubharmonic function

ϕ : Ω → (−∞, 0) such that the closure of the set {z ∈ Ω : ϕ(z) < c} is compact in

Ω, for every c ∈ (−∞, 0). We denote by PSH(Ω) the family of plurisubharmonic

functions defined on Ω

We say that a bounded plurisubharmonic function ϕ defined on Ω belongs to E0

if limz→ξ ϕ(z) = 0, for every ξ ∈ ∂Ω, and
∫

Ω
(ddcϕ)

n < +∞. See [6, 9] for details.
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Let E be the family of plurisubharmonic functions ϕ defined on Ω, such that for

each z0 ∈ Ω there exists a neighborhood ω of z0 in Ω and a decreasing sequence

{ϕs} ⊂ E0 that converges pointwise to ϕ on ω as s → +∞ and

sup
s

∫

Ω

(ddcϕs)
n < +∞.

Furthermore, let F(⊂ E) denote those functions for which we can take ω = Ω.

For v ∈ PSH(Ω), −1 ≤ v < 0, fixed, we define the Cv
n−1-capacity by

Cv
n−1(E) = Cv(E)

= sup
{

∫

E

ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv :

− 1 ≤ w j ≤ 0, w j ∈ PSH(Ω), 1 ≤ j ≤ n − 1
}

.

Following [12] we define for E ⊂ Ω, the Cn−1-capacity as Cv
n−1 in the case when

v ∈ E0 ∩C∞(Ω), −1 ≤ v ≤ 0 is a strictly plurisubharmonic function. By [8] such a

function always exists.

Let u, us, s ∈ N, be real-valued, Borel measurable, functions defined on Ω. Then

we say that {us} converges to u in Cv–capacity as s tends to +∞ if for every compact

subset K of Ω and every ε > 0 it holds that

lim
s→+∞

Cv({z ∈ K : |us(z) − u(z)| > ε}) = 0.

Furthermore, for v ∈ E0, u0 ∈ F we define

C
v,u0

n−1(E) = Cv,u0 (E) =

sup
{

∫

E

ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv : u0 + v ≤ w j ∈ F, 1 ≤ j ≤ n − 1
}

,

and we say that {us} converges to u in C
v,u0

n−1-capacity as s tends to +∞ if for every

compact subset K of Ω and for every ε > 0 it holds that

lim
s→+∞

Cv,u0 ({z ∈ K : {|us(z) − u(z)| > ε}) = 0.

Lemma 2.1 Assume that u, us, s ∈ N, are real-valued, Borel measurable, functions.

Then the following two assertions are equivalent:

(i) the sequence {us} converges to u in Cv-capacity,

(ii) the sequence {us} converges to u in Cv,u0 -capacity.

Proof For every K ⋐ Ω, there exists a constant AK > 0 such that −u0 ≥ AK on K.

Therefore, Cv(E ∩ K)An−1
K ≤ Cv,u0 (E).
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On the other hand, for u0 + v ≤ w j ∈ F, 1 ≤ j ≤ n − 1, it follows from

[10, Theorem 4.1] that for each m > 0 it holds that

χ{w1>−m} · · ·χ{wn−1>−m}ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv =

χ{w1>−m} · · ·χ{wn−1>−m}ddc max(w1,−m) ∧ · · · ∧ ddc max(wn−1,−m) ∧ ddcv.

Hence,

χ{u0+v>−m}ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv =

χ{u0+v>−m}ddc max(w1,−m) ∧ · · · ∧ ddc max(wn−1,−m) ∧ ddcv ,

and therefore we have that

∫

E∩K

ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv

=

∫

E∩{u0+v>−m}∩K

ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv

+

∫

E∩{u0+v≤−m}∩K

ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv

≤ mn−1Cv(E ∩ K) +
1

m

∫

Ω

−(u0 + v) ddcw1 ∧ · · · ∧ ddcwn−1 ∧ ddcv

≤ mn−1Cv(E ∩ K) +
1

m

∫

Ω

(ddc(u0 + v))
n.

3 Convergence in Capacity

Lemma 3.1 Assume that µ is a positive measure defined on Ω that vanishes on all

pluripolar sets, u0 ∈ E and µ(Ω) −
∫

Ω
u0dµ < +∞. Assume that {us} ⊂ E is a

sequence with u0 ≤ us for all s ∈ N. If {us} converges in the sense of distributions to a

function u, then

lim
s→+∞

∫

Ω

us dµ =

∫

Ω

u dµ.

Proof Without loss of generality we can assume that u0 ∈ F and {us} ⊂ F. Let

dλ be the Lebesgue measure, and use [6, Theorem 2.1] to choose ũs ∈ E0 ∩ C(Ω̄),

ũs ≥ us, such that
∫

Ω

(ũs − us)(dµ + dλ) <
1

s
.

Then {ũs} converges in the sense of distributions to a function u, and

lim
s→+∞

(

∫

Ω

us dµ−

∫

Ω

ũs dµ
)

= 0.
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Therefore, it is enough to prove that

lim
s→+∞

∫

Ω

ũs dµ =

∫

Ω

u dµ.

To simplify the notation we let ũs be denoted by us, and therefore in the rest of this

proof {us} ⊂ E0 ∩C(Ω̄). Theorem 6.3 in [4] implies that there are functions ψ ∈ E0,

f ∈ L1((ddcψ)
n) with µ = f (ddcψ)n, and by [4, Lemma 5.2] we have that for every

p < +∞ it holds that

lim
s→+∞

∫

Ω

us dµp =

∫

u dµp,

where µp = min( f , p)(ddcψ)
n. The monotone convergence theorem now gives us

that

lim
s→+∞

∫

Ω

us dµ = lim
s→+∞

∫

Ω

us dµp + lim
s→+∞

∫

Ω

us( f − min( f , p))(ddcψ)
n

≥

∫

Ω

u dµp +

∫

Ω

u0( f − min( f , p))(ddcψ)
n −−−−→

p→+∞

∫

Ω

u dµ.

On the other hand, by Fatou’s lemma,

lim sup
s→+∞

∫

Ω

us dµ ≤

∫

Ω

u dµ,

which yields the desired conclusion.

Lemma 3.2 Let v ∈ E0(Ω). Assume that u0 ∈ F, and that {us} ⊂ F is a sequence

with u0 ≤ us for all s ∈ N. If {us} converges to a function u in Cv,u0 -capacity, then

lim
s→+∞

∫

Ω

w1(ddcus)
j ddcw2 ∧ · · · ∧ ddcwn− j ∧ ddcv =

∫

Ω

w1(ddcu) j ddcw2 ∧ · · · ∧ ddcwn− j ∧ ddcv 1 ≤ j ≤ n − 1,

for all w j ∈ F, u0 + v ≤ w j , j = 1, . . . , n − j.

Proof By [6, Theorem 5.5], µ = ddcw1 ∧· · ·∧ddcwn−1 ∧ddcv satifies the conditions

of Lemma 3.1. Integration by parts shows the statement in this lemma is true for

j = 1. Assume now that the lemma is true for j < n − 1. We shall prove it is true for
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j + 1. Let w1, . . . ,wn− j−1 be as in the statement, and let ε > 0 be given. Then

∫

Ω

w1(ddcus)
j+1 ∧ ddcw2 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

−

∫

Ω

w1(ddcus)
j ∧ ddcu ∧ ddcw2 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

=

∫

Ω

(us − u) (ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

=

∫

{|us−u|>ε}

(us − u) (ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

+

∫

{|us−u|≤ε}

(us − u) (ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

= Is + IIs .

By the induction hypotheses we have that

lim
s→+∞

∫

Ω

w1(ddcus)
j ∧ ddcu ∧ ddcw2 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv =

∫

Ω

w1(ddcu) j+1 ∧ ddcw2 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv 1 ≤ j < n − 1.

Hence, it remains to estimate Is + IIs . We have that

| IIs | ≤ ε

∫

Ω

(ddc(u0 + v))n−1 ∧ ddcv,

| Is | ≤

∫

{|us−u|>ε}

−2u0(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

≤ 2

∫

Ω

(−u0 + max(u0,−N))(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

− 2

∫

{|us−u|>ε}

max(u0,−N)(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

≤ 2

∫

Ω

(−u0 + max(u0,−N))(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

− 2

∫

{|us−u|>ε}∩{v>−ε}

u0(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

+ 2N

∫

{|us−u|>ε}∩{v≤−ε}

(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv.
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By the induction hypotheses, we have that

2

∫

Ω

(−u0 + max(u0,−N)) (ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

−−−−→
s→+∞

2

∫

Ω

(−u0 + max(u0,−N)) (ddcu) j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv,

which is small when N is big enough. For N fixed, then

2N

∫

{|us−u|>ε}∩{v≤−ε}

(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv −−−−→

s→+∞
0,

since {us} tends to u in Cv,u0 -capacity. Also

−2

∫

{|us−u|>ε}∩{v>−ε}

u0(ddcus)
j ∧ ddcw1 ∧ · · · ∧ ddcwn− j−1 ∧ ddcv

≤ −2

∫

Ω

u0(ddcu0 + v)n−1 ∧ ddc max(v,−ε).

≤ 2ε

∫

Ω

(ddc(u0 + v))n.

The proof is complete, since ε > 0 was arbitrary.

Proof of the Theorem It is enough to prove this theorem for u ∈ F. For if ψ is

any negative plurisubharmonic function, then {max(us, ψ)} tends to max(u, ψ) in

Cv-capacity, and since u0 ∈ E, there is to every compact subset K of Ω a function

uK ∈ F(Ω) such that u0 ≤ uK with equality near K. Also by Lemma 2.1 we can

equally well work with Cv,u0 -capacity. We claim

(3.1) lim
s→+∞

∫

Ω

v(ddcus)
n
=

∫

Ω

v(ddcu)
n,

We have
∫

Ω

v(ddcus)
n
=

∫

Ω

us(ddcus)
n−1 ∧ ddcv

=

∫

Ω

(us − u)(ddcus)
n−1 ∧ ddcv +

∫

Ω

u (ddcus)
n−1 ∧ ddcv ,

and Lemma 3.2 yields that

lim
s→+∞

∫

Ω

u(ddcus)
n−1 ∧ ddcv =

∫

Ω

v(ddcu)
n,

and from the proof of Lemma 3.2 it follows that

lim
s→+∞

∫

Ω

(us − u)(ddcus)
n−1 ∧ ddcv = 0.
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Hence, we have that (3.1) is true.

Let now v ∈ E0 ∩ C∞(Ω), −1 ≤ v < 0, be a strictly plurisubharmonic function.

Equality (3.1) together with an application of [7, Lemma 2.1] completes the proof of

the theorem.

The following corollary generalizes [14, Theorem 3.5].

Corollary 3.3 Assume that u0 ∈ E and that {us} ⊂ E is a sequence with u0 ≤ us

for all s ∈ N, v ∈ E0 ∩ C∞(Ω), −1 ≤ v ≤ 0, is a strictly plurisubharmonic function

and that f is a negative and locally bounded plurisubharmonic function. We can assume

v + f ≥ −1. If {us} converges to a plurisubharmonic function u in Cv+h-capacity for

every h ∈ E0, f ≤ h, then the sequence of measures { f (ddcus)
n} converges to f (ddcu)

n

in the weak∗-topology as s tends to +∞.

Proof We have already observed that we can assume that u0 ∈ F so {us} ⊂ F. If

f ∈ E0, then the corollary follows from (3.1). To complete the proof we need only

observe that every negative and locally bounded plurisubharmonic function is locally

equal to a function in E0(Ω).
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[1] P. Åhag and R. Czyż, On the Cegrell classes. Math. Z. 256(2007), no. 2, 243–264.
http://dx.doi.org/10.1007/s00209-006-0067-2

[2] T. Bloom and N. Levenberg, Capacity convergence results and applications to a Bernstein-Markov
inequality. Trans. Amer. Math. Soc. 351(1999), no. 12, 4753–4767.
http://dx.doi.org/10.1090/S0002-9947-99-02556-8
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