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Operators with Closed Range,
Pseudo-Inverses, and Perturbation of Frames
for a Subspace
Ole Christensen

Abstract. Recent work of Ding and Huang shows that if we perturb a bounded operator (between Hilbert
spaces) which has closed range, then the perturbed operator again has closed range. We extend this result
by introducing a weaker perturbation condition, and our result is then used to prove a theorem about the
stability of frames for a subspace.

1 Introduction

Let H, K be Hilbert spaces. It is well known that every bounded operator T : K → H

with closed range has a generalized inverse, usually called the pseudo-inverse, or the Moore-
Penrose inverse. In a recent paper Ding and Huang [DH2] find conditions implying that
a perturbation of an operator with closed range again has closed range. They connect the
results with norm estimates for the corresponding pseudo-inverse operators.

In the first part of the present paper we extend one of Ding and Huang’s results such that
it fits with our applications in Section 3, which concerns perturbations of frames. A frame
is a family { fi}∞i=1 of elements in a Hilbert space with the property that every element in the
space can be written as a (infinite) linear combination of the frame elements. The question
we consider is whether a family {gi}∞i=1 which is “close” to a frame { fi}∞i=1 is itself a frame.
Beginning with work of Heil [H], there has been some interest in this question. Most of the
work has been done with the goal to find results which are easy to apply to frames arising
in wavelet theory, see e.g., [FZ], [GZ]. Together with Heil and Casazza, the present au-
thor has contributed with theoretical results [CC1], [C1], [C2], [CH]. From our point of
view the major drawback of the results presented so far is that they can only be applied if
{gi}∞i=1 is contained in span{ fi}∞i=1. That is, if { fi}∞i=1 is only a frame for span{ fi}∞i=1 and
not for the underlying Hilbert space, the theory can not be applied without restrictions on
{gi}∞i=1. This is a problem, e.g., in sampling theory, where sequences { f (· − λi)}∞i=1 con-
sisting of translates of the single function f ∈ L2(R) plays an important role. A sequence
{ f (· − λi)}∞i=1 can be a frame for span{ f (· − λi)}∞i=1 (see the papers [BL], [CCK] for
sufficient conditions), but as shown in [CDH] it can not be a frame for L2(R).

Easy examples suggest that such a case would be outside the scope of the theory. It
is therefore a surprise for the author that a different way of proof (involving the above
mentioned results on pseudo-inverse operators) leads to a perturbation theorem which is
very similar to previous results, but which covers the case of a frame for a subspace.
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The results presented here lead immediately to an extension of the celebrated Kadec
1/4 Theorem.

2 Operators with Closed Range

Let K, H denote Hilbert spaces and B(K,H) the set of bounded linear operators from
K into H. The range and the kernel of T ∈ B(K,H) will be denoted by RT and NT ,
respectively.

Suppose that the operator T ∈ B(K,H) has closed range. The pseudo-inverse of T is, by
definition, the uniquely determined operator T† : H→ K satisfying:

T†Tx = x, ∀x ∈ N⊥T and T†y = 0, ∀y ∈ RT
⊥.

It is well known [K, p. 231] that the operator T ∈ B(K,H) has closed range if and only if

γ(T) := inf
x∈N⊥T ,‖x‖=1

‖Tx‖ > 0.

It can be shown [DH1] that if RT is closed, then

γ(T) =
1

‖T†‖
.

Let V,W be subspaces of the same Hilbert space. If V 6= 0, the gap between V and W is
defined by:

δ(V,W ) := sup
x∈V,‖x‖=1

dist(x,W ) = sup
x∈V,‖x‖=1

inf
y∈W
‖x − y‖.

As a convention we use δ(0,W ) = 0. Usually δ is most conveniently found using the
orthogonal projection P of H onto W :

δ(V,W ) = δ(V,W ) = sup
v∈V,‖x‖=1

‖x − Px‖.

Given operators T,U ∈ B(K,H) we let

δN := δ(NT ,NU ).

Using this notation Ding and Huang [DH2, Theorem 3.1] have proven a stability result for
the closedness of the range of an operator:

Theorem 2.1 Let T,U ∈ B(K,H) and suppose that T has closed range. If δN
2 + ‖T −U‖2 ·

‖T†‖2 < 1, then RU is closed, and

‖U †‖ ≤
‖T†‖

(1− δN
2)1/2 − ‖T −U‖ · ‖T†‖

.

Theorem 2.1 can be reformulated by saying that if an operator T has closed range and U

is a small perturbation of T (in the sense that ‖T−U‖ < (1−δN
2)1/2

‖T†‖ ), then also U has closed
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range. We need a more general stability result which will be the key to our most important
frame result in the next section.

Theorem 2.2 Let T,U ∈ B(K,H). Suppose that δN < 1 and that there exist numbers
λ1 ∈ [0; 1[, λ2 ∈ ]−1;∞[ and µ ≥ 0 such that

‖Tx −U x‖ ≤ λ1‖Tx‖ + λ2‖U x‖ + µ‖x‖, ∀x ∈ K.(1)

Then

(i) γ(U ) ≥ (1−λ1)γ(T)(1−δN
2)1/2−µ

1+λ2

(ii) If RT is closed and λ1 + µ
γ(T)(1−δN 2)1/2 < 1, then RU is closed and

‖U †‖ ≤
(1 + λ2)‖T†‖

(1− λ1)(1− δN
2)1/2 − µ‖T†‖

.

Proof (i) For x ∈ K,

‖U x‖ ≥ ‖Tx‖ − ‖Tx −U x‖ ≥ (1− λ1)‖Tx‖ − λ2‖U x‖ − µ‖x‖,

so

‖U x‖ ≥
(1− λ1)‖Tx‖ − µ‖x‖

1 + λ2
,

and

γ(U ) = inf{‖U x‖ | x ∈ N⊥U , ‖x‖ = 1} ≥
(1− λ1) inf{‖Tx‖ | x ∈ N⊥U , ‖x‖ = 1} − µ

1 + λ2
.

Now (i) follows by the calculation in [DH2, Lemma 3.4], where it is shown that
inf{‖Tx‖ | x ∈ N⊥U , ‖x‖ = 1} ≥ γ(T)(1− δN

2)1/2.
(ii) RU is closed if γ(U ) > 0, and by (i) this is satisfied if λ1 + µ

γ(T)(1−δN 2)1/2 < 1. Also,

in this case U † exists, and

‖U †‖ =
1

γ(U )
≤

1 + λ2

(1− λ1) 1
‖T†‖ (1− δN

2)1/2 − µ
=

(1 + λ2)‖T†‖

(1− λ1)(1− δN
2)1/2 − µ‖T†‖

.

Remark From the point of view that U is considered as a perturbation of T it might be
surprising that λ2 can be arbitrarily large. But in a special case it is necessary to restrict λ2,
namely if U is not a priori known to be bounded. In this case the boundedness of U follows
from the inequality (1) if we assume that λ2 < 1. We need this observation in Theorem 3.2.

In concrete cases it can be difficult to estimate δN . Therefore it is important to notice
that this number can be avoided in some special cases. Recall that an operator T ∈ B(K,H)
is said to have an index if dim(NT) < ∞ or if dim(H/RT) < ∞. In this case the index is
defined as

ind(T) = dim(NT)− dim(H/RT).
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We shall only work with operators T which have closed range, in which case dim(H/RT) =
codim(RT). In our terminology [G, Theorem V.3.6] now reads:

Theorem 2.3 Let T,U ∈ B(K,H). Suppose that T has closed range and that T has an index.
If there exist λ, µ ≥ 0 such that λ + µ

γ(T) < 1 and

‖Tx −U x‖ ≤ λ‖Tx‖ + µ‖x‖, ∀x ∈ K,

then U has closed range. Furthermore dim(NU ) ≤ dim(NT), codim(RU ) ≤ codim(RT), and
ind(U ) = ind(T).

3 Applications to Frames

In this section H denotes a separable Hilbert space with the inner product 〈·, ·〉 linear in
the first entry. We begin with some definitions.

A family { fi}∞i=1 ⊆ H is a frame (for H) if

∃A,B > 0 : A‖ f ‖2 ≤
∞∑
i=1

|〈 f , fi〉|
2 ≤ B‖ f ‖2, ∀ f ∈ H.

A and B are called frame bounds.
{ fi}∞i=1 ⊆ H is a frame sequence if { fi}∞i=1 is a frame for span{ fi}∞i=1.
{ fi}∞i=1 ⊆ H is a Bessel sequence if at least the upper frame bound B exists. In this case

one can define a bounded operator by

T : `2(N)→ H, T{ci}
∞
i=1 :=

∞∑
i=1

ci fi .

T is usually called the pre-frame operator. Composing T with its adjoint operator T∗ gives
the frame operator

S : H→ H, S f =
∞∑
i=1

〈 f , fi〉 fi .

If both of the frame conditions are satisfied, then S is invertible and self-adjoint, which
immediately leads to the frame decomposition

f = SS−1 f =
∞∑
i=1

〈 f , S−1 fi〉 fi, ∀ f ∈ H.

The possibility of making such a decomposition of every f ∈ H is the reason for the
importance of frames. For a more detailed discussion we refer to [HW].

Our goal here is to arrive at a perturbation theorem for frame sequences. Before we state
our main result we need a lemma, which is proven in [C3]:
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Lemma 3.1

(i) A Bessel sequence { fi}∞i=1 is a frame sequence if and only if RT is closed.
(ii) A Bessel sequence { fi}∞i=1 is a frame for H if and only if RT = H.
(iii) If { fi}∞i=1 is a frame, then the optimal bounds (i.e., maximal lower bound, minimal upper

bound) are A = 1
‖T†‖2 , B = ‖T‖2.

To Bessel sequences { fi}∞i=1, {gi}∞i=1 ⊆ H we associate the pre-frame operators T,U .
Corresponding to those operators we use the notation δN from Section 2. The use of
pseudo-inverse operators leads to a surprisingly simple argument for the lower frame
bound in our main theorem:

Theorem 3.2 Let { fi}∞i=1 ⊆ H be a frame sequence with bounds A,B. Let {gi}∞i=1 ⊆ H and
suppose that there exists numbers λ2,∈ [0; 1[ and λ1, µ ≥ 0 such that

∥∥∥ n∑
i=1

ci( fi − gi)
∥∥∥ ≤ λ1

∥∥∥ n∑
i=1

ci fi

∥∥∥ + λ2

∥∥∥ n∑
i=1

cigi

∥∥∥ + µ
( n∑

i=1

|ci|
2
)1/2

(2)

for all scalars c1, . . . , cn (n ∈ N). Then {gi}∞i=1 is a Bessel sequence with upper bound

B
(
1 +

λ1+λ2+ µ√
B

1−λ2

)2
. If furthermore δN < 1 and λ1 + µ√

A(1−δN 2)1/2 < 1, then {gi}∞i=1 is a

frame sequence with lower bound A(1− δN
2)
(
1−

λ1+λ2+ µ
√

A(1−δN
2)1/2

1+λ2

)2
.

Proof { fi}∞i=1 is a Bessel sequence, so we can define a bounded linear operator

T : `2(N)→ H, T{ci}
∞
i=1 =

∞∑
i=1

ci fi .

Furthermore ‖T‖ ≤
√

B and RT is closed. The condition (2) implies that

∥∥∥ n∑
i=1

cigi

∥∥∥ ≤ ∥∥∥ n∑
i=1

ci( fi − gi)
∥∥∥ +

∥∥∥ n∑
i=1

ci fi

∥∥∥
≤ (1 + λ1)

∥∥∥ n∑
i=1

ci fi

∥∥∥ + λ2

∥∥∥ n∑
i=1

cigi

∥∥∥ + µ
( n∑

i=1

|ci|
2
)1/2
, ∀{ci}

n
i=1,

so ∥∥∥ n∑
i=1

cigi

∥∥∥ ≤ 1 + λ1

1− λ2

∥∥∥ n∑
i=1

ci fi

∥∥∥ +
µ

1− λ2

( n∑
i=1

|ci|
2
)1/2
, ∀{ci}

n
i=1.

A Cauchy sequence argument now shows that
∑∞

i=1 cigi actually converges for all {ci}∞i=1 ∈
`2(N), and in (2) and the above estimates the finite sequences {ci}n

i=1 can be replaced by
{ci}∞i=1 ∈ `

2(N). If we define an operator

U : `2(N)→ H, U{ci}
∞
i=1 =

∞∑
i=1

cigi,
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we have

‖T{ci}
∞
i=1−U{ci}

∞
i=1‖ ≤ λ1‖T{ci}

∞
i=1‖+λ2‖U{ci}

∞
i=1‖+µ‖{ci}

∞
i=1‖, ∀{ci}

∞
i=1 ∈ `

2(N)

and

‖U{ci}
∞
i=1‖ ≤

1 + λ1

1− λ2
‖T{ci}

∞
i=1‖ +

µ

1− λ2
‖{ci}

∞
i=1‖

≤
(1 + λ1)

√
B + µ

1− λ2
‖{ci}

∞
i=1‖, ∀{ci}

∞
i=1 ∈ `

2(N).

This estimate shows that {gi}∞i=1 is a Bessel sequence with the upper bound

(
(1 + λ1)

√
B + µ

1− λ2

)2

= B

(
1 +
λ1 + λ2 + µ√

B

1− λ2

)2

.

Now we assume that δN < 1 and λ1 + µ√
A(1−δN 2)1/2 < 1. Since γ(T) = 1

‖T†‖ ≥
√

A we have

that λ1 + µ
γ(T)(1−δN 2)1/2 < 1, so by Theorem 2.2, RU is closed. Therefore {gi}∞i=1 is a frame

sequence by Lemma 3.1. The optimal lower bound is 1
‖U†‖2 = γ(U )2, and

γ(U )2 ≥

(
(1− λ1)

√
A(1− δN

2)1/2 − µ

1 + λ2

)2

= A(1− δN
2)

(
1−
λ1 + λ2 + µ√

A(1−δN 2)1/2

1 + λ2

)2

.

Remarks 1) The condition λ2 < 1 is only used in the proof of the existence of the upper
bound, so if we know that {gi}∞i=1 is a Bessel sequence we can remove this assumption (but
our estimate for the upper bound is no more valid then).

2) It is possible to show a similar result with δN replaced by the gap between the ranges
of the operators U ,T.However, the proof is more involved, cf. [CFL].

Easy examples show the optimality of the bounds on λ1, λ2, µ in Theorem 3.2: the con-
clusion fails if (2) is only satisfied with λ1 = 1 (or λ2 = 1 or µ =

√
A, δN = 0). If { fi}∞i=1

is a frame for H, it is known that Theorem 3.2 holds with δN replaced by 0 and that {gi}∞i=1

is a frame for H, cf. [CC1]. This leads trivially to an extension of the celebrated Kadec’s
1/4 Theorem; observe that we denote the index by n and that i denotes the complex unit
number in the following result:

Proposition 3.3 Let {λn}∞n=1, {µn}∞n=1 ⊆ R. Suppose that {eiλnx}∞n=1 is a frame for
L2(−π, π) with bounds A,B. If there exists a constant L < 1/4 such that

|µn − λn| ≤ L and 1− cosπL + sin πL <

√
A

B
,
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then {eiµnx}∞n=1 is a frame for L2(−π, π) with bounds

A

(
1−

√
B

A
(1− cosπL + sinπL)

)2

,B(2− cosπL + sin πL)2.

Proof This is just a trivial adjustment of the standard proof of Kadec’s 1/4 Theorem. Ob-
serving that ‖

∑
cneiλn(·)‖2 ≤ B

∑
|cn|2 for all finite sequences {cn}, the estimates from [Y,

p. 42] gives that

∥∥∥∑ cn(eiλn(·)− eiµn(·))
∥∥∥ ≤ √B(1− cosπL + sinπL)

(∑
|cn|

2
)1/2
≤
√

A
(∑

|cn|
2
)1/2
.

A similar version could have been written down using Theorem 3.2, assuming only
that {eiλnx}∞n=1 is a frame sequence. The version presented here is closely related to [DS,
Lemma 3], which gives the same conclusion if

L <
ln
(

A
4B(e−1) + 1

)1/2

π
,

however without estimates of the frame bounds. For A = B this condition is L <
0.1173 · · · , where we have the usual Kadec condition L < 1/4.

Proposition 3.3 was independently and simultaneously observed by Balan [B].
In the general situation described in Theorem 3.2, the assumption δN < 1 is needed, as

demonstrated by the following example:

Example 3.4 Let {ei}∞i=1 be an orthonormal basis for H. Then { fi}∞i=1 := {e1, e2, 0,
0, 0, . . .} is a frame sequence. Given ε > 0, let

{gi}
∞
i=1 =

{
e1, e2,

ε

3
e3,
ε

4
e4, . . . ,

ε

n
en, . . .

}
.

An easy calculation shows that δN = 1. By choosing ε small enough we can make {gi}∞i=1

as close to { fi}∞i=1 as we want, in the sense that

∥∥∥ n∑
i=1

ci( fi − gi)
∥∥∥ ≤ ε

3

( n∑
i=1

|ci |
2
)1/2
, ∀{ci}

n
i=1,

but {gi}∞i=1 is not a frame sequence.
As observed in Section 2, the introduction of δN can be avoided if the operator T has an

index. This condition has a nice interpretation in terms of the underlying frame sequence
{ fi}∞i=1: dim(H/RT) < ∞ means that { fi}∞i=1 is a frame sequence for a space of finite
codimension in H, and the case dim(NT) < ∞ corresponds to what Holub [Ho] calls a
near-Riesz basis for span{ fi}∞i=1, meaning that { fi}∞i=1 consists of a Riesz basis for this space
plus finitely many elements. In the later case, Holub also shows that the excess, i.e., the
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number of elements which need to be deleted in order to obtain a Riesz basis for the space,
is equal to dim(NT).

Theorem 3.5 Let { fi}∞i=1 be a frame sequence and suppose that the corresponding pre-frame
operator T has an index. Let {gi}∞i=1 ⊆ H and suppose that there exist numbers λ, µ ≥ 0 such
that λ + µ

γ(T) < 1 and

∥∥∥ n∑
i=1

ci( fi − gi)
∥∥∥ ≤ λ∥∥∥ n∑

i=1

ci fi

∥∥∥ + µ
( n∑

i=1

|ci |
2
)1/2

for all scalars c1, . . . , cn (n ∈ N). Then {gi}∞i=1 is a frame sequence. The corresponding pre-
frame operator U has an index, and dim(NU ) ≤ dim(NT), codim(RU ) ≤ codim(RT) and
ind(U ) = ind(T).

The part of Theorem 3.5 concerning the relation between various dimensions is partic-
ulary interesting in the case where T is a Fredholm operator, meaning that both dim(NT)
and codim(RT) are finite. In this case Theorem 3.5 says that a perturbation can increase the
dimension of the spanned space, but the excess will decrease with the same amount. This
general result can be illustrated by an easy example in R3: Let {ei}3

i=1 be an orthonormal
basis for R3 and let

{ fi}
3
i=1 = {e1, 0, 0}, {gi}

3
i=1 =

{
e1,

1

2
e2, 0

}
.

{ fi}3
i=1 spans a one-dimensional subspace, and the excess is 2. {gi}3

i=1 is a perturbation of
{ fi}3

i=1 in the sense of Theorem 3.5, {gi}3
i=1 spans a 2-dimensional subspace, and the excess

is 1.
For more results relating different perturbation conditions and excess, we refer to [CC2].
In concrete applications of the theorems discussed here it seems to be most convenient

to find a value for µ such that ‖
∑n

i=1 ci( fi − gi)‖ ≤ µ(
∑n

i=1 |ci|2)1/2 for all sequences
{ci}n

i=1. This is what we did in Proposition 3.3, and this is also the key principle in [FZ]. In
terms of the operators T,U this corresponds to estimating ‖T −U‖.
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