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Abstract

Lazy functional languages have non-strict semantics and are purely declarative, i.e. they
support the notion of referential transparency and are devoid of side-effects. Traditional
debugging techniques are, however, not suited for lazy functional languages, since
computations generally do not take place in the order one might expect. Since algorithmic
debugging allows the user to concentrate on the declarative aspects of program semantics, and
will semi-automatically find functions containing bugs, we propose to use this technique for
debugging lazy functional programs. Because of the non-strict semantics of lazy functional
languages, arguments to functions are in general partially evaluated expressions. The user is,
however, usually more concerned with the values that these expressions represent. We address
this problem by providing the user with a strictified view of the execution trace whenever
possible. In this paper, we present an algorithmic debugger for a lazy functional language based
on strictification and some experience in using it. A number of problems with the current
implementation of the debugger (e.g. too large trace size and too many questions asked) are
also discussed and some techniques for overcoming these problems, at least partially, are
suggested. The key techniques are immediate strictification and piecemeal tracing.

Capsule review

Traditional debugging techniques do not work for non-strict functional languages, so research
on effective debugging tools is needed to make these languages practical. Nilsson and Fritzson
build on Shapiro's 'algorithmic debugging' ideas, which were originally developed for logic
programming. This approach encourages the user to focus on what values are being denned,
instead of what sequence of actions is being executed. The paper discusses how functional
algorithmic debugging can be implemented and presents a small example. As with all proposals
for functional debuggers, it will be interesting to see how well the ideas scale up to large
programs.

1 Introduction

Debugging has always been a costly part of software development, and several
attempts have been made to provide automatic computer support for this task

1 This work has been sported by the Swedish National Board for Industrial and Technical Development
NUTEK).
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(Seviora, 1987). The algorithmic debugging technique introduced by Shapiro (1982)
was the first attempt to lay a theoretical framework for program debugging, and to
take this as a basis for a partly automatic debugger.

Algorithmic debugging is a two phase process: an execution trace tree is built at the
procedure/function level during the first (trace) phase. This tree is then traversed
during the second (debugging) phase. Each node in the tree corresponds to an
invocation of a procedure or function and holds a record of supplied arguments and
returned results. Once built, the debugger basically traverses the tree in a top-down
manner, asking, for each encountered node, whether the recorded procedure or
function invocation is correct or not. If not, the debugger will continue with the child
nodes, otherwise with the next sibling. A bug has been found when an erroneous
application node is identified where all children (if any) behaved correctly.

Algorithmic debugging was first developed in the context of Prolog. In previous
research by our group, the algorithmic debugging method has been generalised to a
class of imperative languages and its bug finding properties improved by integrating
the method with program slicing (Shahmehri, 1991; Fritzson et al., 1991; Kamkar
et al, 1992; Kamkar, 1993).

Within the field of lazy functional programming, the lack of suitable debugging
tools has been apparent for quite some time (Augustsson, 1991). As has been pointed
out earlier by others (Hall and O'Donnell, 1985; O'Donnell and Hall, 1988; Toyn and
Runciman, 1986; Toyn, 1987), we feel that traditional debugging techniques (e.g.
breakpoints, tracing, variable watching, etc. in the conventional sense) are not
particularly well suited for the class of lazy functional languages, since computations
in a program generally do not take place in the order one might expect from reading
the source code.

Algorithmic debugging, however, allows a user to concentrate on the declarative
semantics of an application program, rather than its operational aspects such as
evaluation order. During debugging, the user only has to decide whether a particular
function applied to some specific arguments yields a correct result. Given correct
answers from the user, the debugger will determine which function that contains the
bug. Thus, the user need not worry about why and when a function is invoked, which
suggests that algorithmic debugging might be a suitable basis for a debugging tool for
lazy functional languages.

Obviously, there must be an externally visible bug symptom for this technique to
work, e.g. if two bugs conspire to hide each other it will not be possible to (algorith-
mically) debug the program. But if there is no bug symptom, the user is unlikely to
undertake any debugging in the first place, so this is not really any major drawback.

To test the idea in practice, support for algorithmic debugging was added to an
existing compiler for a small lazy functional language and an algorithmic debugger,
LADT (Lazy Algorithmic Debugging Tool), was implemented. The language, called
Freja (Nilsson, 1991), is essentially a subset of Miranda2 (Turner, 1985). It is based
on graph reduction and implemented using a G-machine approach3 (Augustsson,

2 Miranda is a trademark of Research Software Ltd.
3 In comparison with some other compilers for lazy functional languages, this compiler is rather basic;

in particular, it does not do any strictness analysis and it does not perform fully-lazy lambda-lifting.
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1984, 1987; Johnsson, 1984, 1987; Peyton-Jones, 1987). LADT was successfully
applied to a number of small examples, thus showing the relevance of algorithmic
debugging for lazy functional programming.

However, as we gained experience from using this early system, a number of
problems became apparent. First, the questions asked were often big and complex,
involving large data structures and unevaluated expressions. Second, storing the
complete trace is impractical for any but the smallest of problems. Finally,
the number of questions asked by the debugger for realistic programs is too
large.

To alleviate the first problem, a technique which we term strictification was
introduced. This technique is concerned with hiding the lazy evaluation order, thus
giving the user an as strict impression of lazy execution as possible. This reduces the
number of unevaluated expressions involved in questions posed to the user which, in
our opinion, tends to make them easier to understand and answer. Note that it is not
possible to simply evaluate unevaluated expressions as they are encountered during
the debugging phase, since they may represent infinite structures or non-terminating
computations.

Our current implementation thus does strictification. This leaves the last
two, rather severe, problems. We do not believe that an algorithmic debugger
will be practically usable unless they are addressed in a satisfactory manner. A
number of possible approaches for overcoming these problems, at least to some
extent, are therefore outlined in this paper after the description of the current
system.

The rest of this paper is organised as follows. In section 2 the basic problems of
debugging lazy functional programs are reviewed. Then the principles behind
algorithmic debugging are explained in section 3, and in section 4 we describe how
algorithmic debugging may be adapted for lazy functional programs. The idea of
strictification is also developed. Section 5 gives some details on the current
implementation of LADT, which is then evaluated in section 6. A few ideas for
practical implementation are presented in section 7, and related work then discussed
in section 8. Finally, some conclusions are given in section 9.

2 The need for lazy debugging tools

Consider the following functional program, where f oo is a function that clearly must
not be applied to the empty list:

foo xs = 0, i f hd xs < 0
= hd xs , o therwise ;

f i e xs = (foo x s ) : f i e ( t l x s ) ;

main = f i e [—1];

The problem is that there is no termination condition in the recursive function f i e ,
which means that f i e eventually will apply foo to the empty list since main applies
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f i e to the finite list [ — 1] . Suppose that we have strict semantics. Then we would
get an execution trace tree as shown in Fig. 1.

(

(fie (-n=>T)

(foo [-l]=»o) ( t l [-1]=»[1 ) ( fie [)=»X )

(hd [- (foo []=>l)

(hd []•=»!)

Fig. 1. Strict execution trace tree after runtime error

In the rightmost branch, we see how the application of hd to the empty list
provoked a runtime error, represented by the symbol JL ('bottom'). At this point, we
simply have to follow the edges from the leaf node towards the root, which in practice
is easily achieved by inspecting the runtime call stack, to find out that the problem is
that f i e has applied foo to [].

Now suppose that we had had lazy semantics instead. We would then get an
execution tree as shown in Fig. 2. Applying the same technique as above to this tree

( main =»X

fie [-!)=»
foo [-1]:

fie (tl t-1])

(hd I-

fie (tl [-1])=>
foo (tl [-1]) :

fie (tl (tl (-1]))

(foo (tl [-11)=»i)

(hd (tl [-1] )=»•!.")

(tl [-!]=»(

Fig. 2. Lazy execution trace tree after runtime error

would not give any insight as to what the problem might be: foo is applied to an
expression that will evaluate to the empty list, that is for sure, but which function
applied foo to that expression? There is no recollection of this in any of the execution
tree records on the path from the node that caused the error to the root node, which
are the only records available to a conventional debugger in the form of the runtime
stack. The key difference is that we now have a demand stack rather than a call stack.

The presence of (partially) evaluated expressions in the lazy execution tree should
also be noted. In general, these may become very large and complicated, even if they
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only denote very simple values, thus making it even harder for a user to get a clear
understanding of what is going on.

We could also try to do a conventional trace of the lazy execution

Entering fie:
xs = [-1]

Leaving fie, result is:
(foo [-1]): (fie (tl [-1]))

Entering foo:
xs = [-1]

Apparently, f i e did not call f oo! This behaviour is probably not in agreement with
the programmer's mental model of the execution process, and it is at least not obvious
from reading the source code. In any case, lazy evaluation permits the programmer
to largely forget about evaluation order, so there is a strong case for not bothering
him with it during debugging.

To sum up, debugging of lazy functional programs is made difficult by delayed
evaluation, counter-intuitive evaluation order and partially evaluated expressions.
Because of this, traditional debugging tools and techniques are of little or no use.
Hence 'lazy' debugging tools, that address the above mentioned problems and that
conceptually fit into a lazy framework, are needed, even though these might still be
based on conventional ideas (e.g. tracing) (see also section 8).

3 Basic algorithmic debugging

In this section we describe the basic principles of algorithmic debugging. To simplify
the presentation and provide a background to our work, we use a debugger based on
the original algorithmic program debugging method by Shapiro (1982).

Algorithmic debugging is based on the notion of an externally visible bug symptom,
i.e. an execution of a program did not produce the expected result. This must have
a cause; either the topmost procedure did something wrong, or some procedure
invoked from the topmost one produced some erroneous result. By inspecting the
invocations performed from the topmost procedure, it is possible to determine what
is the case: if all invocations yielded correct results, then the topmost procedure must
be at fault. Otherwise, one of the invocations exhibits some visible bug symptom, and
we may thus apply the above reasoning over again, tracing the source of the
bug down the execution trace tree. Since the debugger cannot know what is a bug
symptom and what is correct behaviour, at least not initially, there must be an oracle,
i.e. the user, ready to supply it with this information.

Given a visible bug symptom, algorithmic debugging guarantees that the procedure
or function containing the bug will eventually be found, provided that the user
answers the question about the program behaviour correctly. If there is more than
one bug in a program, only one of them will be found. However, algorithmic
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s o r t
( I n [ 2 , 1 . 3 ] > = I 3 , 1 1

s o r t
( I n | 1 , 3 ) ) = ( 3 , 1 )

s o r t
( I n I 3 ) ) = [ 3 ]

i n s e r t
( I n 2 , I n [ 3 , U ) = 13 , 11

i n s e r t

2 , I n [1]> = U ]

i n s e r t
( I n l . t n [31 ) = ( 3 , U

( I n

s o r t i n s e r t
( I n [ ) ) - [ ] ( I n 3 , I n (1)

sort(in: list=[2.1.31. out: sort={3.11)?
> no
sort(in: list=[1.3]. out: sort=(3.1])?
> no
sort(in: list=[3], ouc sort=[3])?
>yes
insert(in:elem=l. in.Ua=[3], out:insert=(3.1])?
> no
insert(in: elem=l. in: Ust=O. out insert=(l])?

A bug has been located inside the body of
function "insert".

Fig. 3. The execution tree of an erroneous sort program and the ensuing user interaction

debugging may be applied again, once this bug is removed, in order to find the next
bug.

In more detail, algorithmic debugging proceeds as follows. The debugger first
executes the program and builds an execution trace tree at the procedure level. A node
in the tree is constructed for each procedure invocation and essential trace
information, such as the procedure name and the values of all input and output
parameters, are recorded. If any further procedure calls are made during the current
invocation, these become children of the current node. New children are inserted from
left to right as the corresponding procedures are invoked.

Once the execution has finished, the algorithmic debugger starts searching for the
bug by traversing the execution tree in a preorder manner. For each node, the
debugger interacts with the user by asking whether or not the behaviour of the
procedure invocation corresponding to the node is correct. The user may reply yes or
no to this4. If a positive answer is given, the search continues from the next branch
to the right of the current one, otherwise the search continues from the leftmost child
of the current node (if it has any). The search ends at a node exhibiting incorrect
behaviour when one of the following holds:

• No further procedure calls were made during the procedure invocation
corresponding to this node; i.e. this node has no children.

• All procedure calls performed during the procedure invocation corresponding to
this node fulfil the user's expectations.

Finally, the debugger reports the name of the offending procedure. The user's
answers are remembered in a database (which could be preserved across debugging
sessions) so that the same question does not have to be asked twice.

Figure 3 shows an example of algorithmic debugging. The bug is in the function
i n s e r t . Since the user answers no to the first two questions, the debugger moves

4 Shapiro's (1982) original method could only handle yes/no answers. A capability of handling
assertions about the intended behaviour of a procedure was presented later by Drabent,
Nadjm-Tehrani and Maluszynski (1988), and is also present in the design of GADT.
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down to the leftmost child of s o r t ( [ 1, 3 ] ) . According to the user, the behaviour
recorded in this node is correct, so the next branch to the right is investigated next.
The behaviour of that node is wrong, but its only child behaved correctly. The bug
must therefore be in the body of the procedure that is associated with this node, i.e.
in i n s e r t .

Note that, to be able to give a correct answer, the user must be given the 'full
picture' for each question, i.e. the computation must depend only on its input
parameters, and there must be no effects of the computation besides what is indicated
by the output parameters. Procedures that fulfil this criterion are said to be side-effect-
free. It is possible to achieve side-effect-freeness in programs written in imperative
languages by program transformations (Shahmehri, 1991).

Note also that programs that abort due to runtime errors as well as programs that
loop, easily can be handled within the algorithmic debugging framework (in the latter
case provided that the user interrupts the program) if procedures and functions
conceptually are allowed to return bottom, _L, representing a diverging computation.

4 Lazy algorithmic debugging

In this section, we describe how algorithmic debugging may be applied to programs
written in lazy functional languages. In section 4.1, we explain how to use the basic
algorithm on this domain. Then, in sections 4.2 and 4.3, strictification is developed
as a means for making algorithmic debugging of programs written in lazy functional
programs easier. The resulting debugging algorithm is then presented in section 4.4.
Finally, in section 4.5, we give a small example of algorithmic debugging of a
functional program.

4.1 The basic approach

Basic algorithmic debugging (Shapiro, 1982) may readily be used for lazy functional
languages since functions are side-effect-free. We do have to regard the execution
environment of a function as belonging to its input parameters, though, since a
function may contain references to free variables.

However, while gaining experience in using an early version of the debugger, the
fact that arguments to functions in general are partially evaluated expressions soon
proved to be a major problem: the user is usually concerned with the values that these
expressions represent, details of the inner workings of the underlying evaluation
machinery is often of little or no interest. Furthermore, the questions that the
debugger asked were frequently textually very large and difficult to interpret.

This problem might have been especially apparent in our case, since our compiler
does not do strictness analysis (something any good compiler would have to
do). However, strictness analysis is only an approximation, and there will always be
occasions when unevaluated expressions are passed as parameters but used later
(otherwise we would not need the lazy semantics in the first place).

This suggests that we should replace unevaluated expressions by the values they
represent, wherever possible, to give the user an impression of strict evaluation, which
probably is closer to the user's mental model of the evaluation process anyway. We
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will refer to the technique of giving an impression of strict evaluation (if possible) as
strictification from now on.

However, strictification is, as illustrated in the following subsection, not as
straightforward as it first might appear: not only must values be substituted for
expressions wherever possible, but the actual structure of the execution tree has to be
changed as well. Otherwise, there is no longer any guarantee that the bug will be
found.

4.2 Why substitution of values for expressions is not enough

Suppose that strictification was implemented in the obvious way, i.e. before asking
whether a function application yielded a correct result or not, any unevaluated
expressions that occur in the arguments or in the result of the application are replaced
by the results of evaluating the expressions in case they are known to the debugger
(i.e. were needed at some point during the execution)5. This, of course, has to be done
recursively should the results themselves contain any unevaluated subexpressions.
The user will then see a version of the function application which is as strict as
possible given a particular execution trace.

Unfortunately, the debugging algorithm is then no longer guaranteed to find the
bug, as illustrated below (the function add is incorrect)

db l x = add x x;
add x y = x * y;
main = db l 3;

If no strictification is performed, evaluating main would yield an execution tree as
depicted in Fig. 4. The debugger quickly concludes that the bug must be in the

main ̂ > 9
>no
dbl 3=» add 3 3
>y«9
add33=>3 '3
>no
Bug located in function "add".

Fig. 4. Lazy execution trace tree

function add since applying add to 3 and 3 yields something erroneous and since
that node has no children.

Now, suppose that we did substitute values for expression wherever possible in the
tree above and then tried to do algorithmic debugging. The result is shown in Fig. 5.

6 This could also be implemented in a more efficient way by keeping pointers from the execution tree to
the graph representation of the unevaluated expressions. Due to the nature of graph reduction, these
pointers would at the end of the execution refer to graphs representing the expressions in their most
evaluated form, which is the most we can hope for under lazy evaluation unless we are going to change
the semantics of the language by forcing further evaluation, something a debugger should not do and
that could change a terminating program into a non-terminating one.
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( dbl 3=>9 ) ( add 3 3=»9 ) (3*3=»9

main=>9
>no
dbl3=>9
>no

) Bug located in function "dbl".

Fig. 5. Incorrectly strictified execution trace tree

=>9
>no

, s dbl 3 =» 9
(dbl3=>9) >ao

add33=>9
( add 3 3-»9 ) >no

3*3=>9
>yes
Bug located in function "add"

Fig. 6. Correctly strictified execution trace tree

When asked whether main should evaluate to 9 the user answers no and the debugger
proceeds to the first child node and asks whether dbl 3 should evaluate to 9 or not.
Since the intention is that dbl should double its argument the user again answers no.
Now, since this node has no children, the debugger will come to the conclusion that
the bug is within the function dbl , which is wrong.

The problem is that in doing the substitutions (in this case first substituting 3 *
3 for add 3 3 and then 9 for 3 * 3) we are effectively pretending that these
computations take place at an earlier point in time than is actually the case, but this
is not reflected in structure of the execution tree. A correctly strictified tree and the
resulting debugging interaction may be seen in Fig. 6. Note how the nodes involved
in the substitution have become child and grand child of the dbl 3 node.

4.3 Correct Strictification

A correct way of doing strictification can be derived from the following two
observations:

• Performing a substitution of a result for an expression in one of the arguments of
a function application, corresponds to evaluation of the expression in question
before entering the function (precisely what happens in a strict language). Thus, a
new node should be inserted in the execution tree to the left of the node
corresponding to the function application.

• Performing a substitution of a result for an expression in the result of a function
application, corresponds to evaluation of the expression in question during the
invocation of the function (again as in a strict language). Thus, the node
corresponding to the function application should be given as new child (inserting
it to the right of its siblings will do).
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These transformations should be applied recursively, i.e. the new nodes must
themselves be strictified. The process is depicted in Fig. 7 for a simple case. Grey

Fig. 7. Correct strictification

nodes represent computations that have taken place elsewhere, e l , e2 and e3 are
expressions.

However, there is no need to actually perform these transformations on the
execution tree; it is sufficient to ask the questions during the debugging phase in such
an order as if the transformation had been performed. This is how strictification
presently is implemented in LADT.

4.4 Algorithmic debugging with strictification

The algorithm for algorithmic debugging with strictification is given in pseudo code
in Fig. 8. The implemented debugger, in addition to yes and no answers, also supports
' maybe' answers and a kind of simple assertions, details of which are omitted from
the pseudo code for reasons of simplicity. These features are instead outlined
informally.

Also missing from the pseudo code are checks for preventing attempts to strictify
nodes in the execution tree that already are being strictified. This can be achieved by
keeping nodes currently under strictification in a list. Then, before strictification of a
new node is started, it is checked whether it is already present in the list or not. If it
is, it can safely be ignored. Similar arrangements must be provided for the evaluation
procedures below.

Two abstract data types are assumed: exec_t ree and expr. An execution tree
node consists of a function application and its result (both of type expr) and zero,
one or more children. These are accessed by means of the functions App, Res and

https://doi.org/10.1017/S095679680000109X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000109X


Algorithmic debugging for lazy functional languages 347

(* Locates the bug in the execution tree. *)
PROCEDURE Strictify_And_Debug(tree: exec_tree)
VAR strictified_app, ev res: expr;
BEGIN

IF Status_Is_UnJcnown(App(tree)) THEN
strictified_app :=

Make_App(Fun_Name(App(tree)),
MAP Evaluate_And_Debug Args(App(tree)));

ev_res := Evaluate(Res(tree));
PrettyJPrint(strictified_app); PRINT "=>";
Pretty_Print(ev_res); PRINT "? ";
IF User_Answer =• "YES" THEN

Set_Statua_To_Correct(App(tree));
ELSE

FOR ALL c IN Children(tree) DO
Strictify_And_Debug(c);

ENDFOR;
Evaluate_And_Debug(Res(tree)) ;
(* If we get here, no bug in children. *)
PRINT "Bug located in function ";
PRINT Fun_Name(App (Tree)); PRINT "An";
EXIT; (* Exit immediately when bug found. *)

END IF;
ENDIF;
(* If we get here, the behaviour was correct •)

END;

FUNCTION Evaluate_And_Debug(e: expr): expr
BEGIN

IF Is_App(e) THEN (* Function application *)
IF (HasJBeen Evaluated(e)) THEN

Strictify~And_Debug(Tree(e)) ;
RETURN Evaluate(Res(Tree(e))) ;

ELSE
RETURN Mafce_App(Fun_Name(e),

MAP Evaluate_And_Debug Args(e));
ENDIF;

ELSEIF Is_Constr(e) THEN (* Tuple, CONS-cell... *>
RETURN Make_Constr(Constr_Narae(e),

MAP Evaluate_And_Debug Fields(e));
ELSE (* Integer, character...*)

RETURN e; (• Already fully evaluated. *)
ENDIF;

END;

FUNCTION Evaluate(e: expr): expr
BEGIN

IF Is_App(e) THEN (* Function application *)
IF (Has_Been_Evaluated(e)) THEN

RETURN Evaluate(Res(Tree(e)));
ELSE

RETURN Make_App(Fun_Name(e),MAP Evaluate Args(e));
ENDIF;

ELSEIF Is_Constr(e) THEN (* Tuple, CONS-cell... *)
RETURN Make_Constr(Constr_Name(e),

MAP Evaluate Fields(e));
ELSE (* Integer, character...*)

RETURN e; (* Already fully evaluated. *)
ENDIF;

END;

Fig. 8. Algorithmic debugging with strictification
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Chi ldren . A function Tree that returns the execution tree corresponding to a
function application is also supposed to exist. This function can, of course, only be
used if the application was evaluated during the execution, which is checked by the
function Has_Been_Evaluated.

An expression is either an application of a function to some arguments; a
constructed data object (e.g. a tuple) having zero, one or more fields; or some atomic
object such as an integer. The functions Args and F i e l d s are used to access the
arguments of an application and the fields of a constructed object, respectively.

There is also a database that can be queried about the status of a function
application. Initially, the status is 'unknown'. This is changed to 'correct' whenever
the user answers that an application behaved correctly. Thus the same question need
not be asked twice. The remaining function and procedure names should hopefully
be self-explanatory.

There are, of course, cases when the user might be unwilling to supply a definite yes
or no answer to a question, either because he really does not know the answer, or
because the question seems to be large and complicated. Thus, there is an option to
answer 'maybe this is correct, I don't know'. This effectively lets the user postpone
answering the question and get on with the debugging in the hope that a bug is
positively identified before he is faced with this question again.

Initially, a 'maybe' answer is treated as 'no'. Thus the children of the current node
will be searched. If no bug is found, the algorithm will eventually get back to the node
that the user was unsure about, knowing that all its children behaved correctly. At
this point, the user is again asked about the node. If he this time indicates that the
result is correct, debugging will proceed as usual, the only difference being that the
user has had to answer more questions than otherwise would have been the case. If
the answer is that the result is incorrect, then there must be a bug in the applied
function. However, if the users insist on answering 'maybe', the algorithm is forced
to conclude that there might be a bug in the function applied. This is reported to the
user and the algorithm then continues as if the result was correct, since it is still
possible that a more definite bug will be found.

The assertion facility gives a user a possibility to suppress questions regarding a
particular function (thus asserting its correctness). This has proved to be a quite
convenient feature, but obviously it is very primitive as far as assertions go.

4.5 Algorithmic debugging of a small program

The following Freja program, that is supposed to calculate the first five prime
numbers, contains a bug in the function not_div_x defined locally in s ieve , (the
operator equal (= =) should be replaced with the operator not equal (~ =)):

shownums [] = [ ] ;
shownums (x:xs) = shownum x + + " "++ shownums xs;

filter p [] = [];
fi l ter p (x:xs) = filter p xs, if p x

= filter p xs, otherwise;
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from n = n : from (n + 1);

take 0 xs = [];
take (n + 1) [] = [];

take (n+1) (x:xs) = x : take n xs;

sieve (x : xs) = x : sieve (filter not_div_x xs)

where

not_div_x y = (y mod x = = 0);

»

primes = sieve (from 2);

main = shownums (take 5 primes);

The interaction between the user and the debugger, when the above program is
executed, is shown below, with bold face indicating the user's input and responses.
The questions have been numbered for easy reference. The user may answer 'y' for
'yes', 'n ' for 'no' and 'm' for 'maybe' to the questions. He may also issue commands
that control various printing options and give assertions; 'h ' for 'help' gives a list of
all available options. Note that missing arguments in applications (i.e. instances of
partial applications) are indicated with an underscore ('_') and that an ellipsis ('...')
is used to represent tails of long lists and tails that are not evaluated. Also, note that
any variables used by a function that are part of its environment, are shown to the
user in a whe re-clause (see, for example, question 8). The notation foo. f i e
indicates that function f i e is declared locally in function foo:

2 4 8 16 32

1) Did the program behave correctly?
(y/n/m/h)? n

2) main => "2 4 8 16 3. . . "
(y/n/m/h)? n

3) primes => [2,4,8,16,32,...]

(y/n/m/h)? n

4) (from 2) => [2,3,... ]
(y/n/m/h)? y

5) (sieve [2,3,...]) =* [2,4,8,16,32,...]
(y/n/m/h)? n

6) (from 3) => [3, . . . ]
(y/n/m/h)? uet

(from 3) => [3: (from ($plus 3 1))]
(y/n/m/h)? y

7) (filter (sieve.not_div_x _ where x = 2)

[3: (from (fplus 3 1))]) =>
12 FPR4
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[4, 6, 8,10, 12, 14, 16,18, 20, 22, . . . ]
(y/n/m/h)? n

8) (sieve.not_div_x 3 where x = 2) => False
(y/n/m/h)? n

Bug located in function sieve.not_div_x

Clearly, the numbers 2, 4, 8, 16 and 32 are not the first five prime numbers, so the
answer to question 1 has to be no. The same holds for questions 2 and 3 as well. The
application in question 4 reduces to a list of numbers starting with 2 and 3, which
seems to be correct. However, s ieve applied to this list should evaluate to a list of
prime numbers, which is obviously not the case in question 5. The answer to this
question is therefore again no.

To be able to answer question 6, the user first requests unevaluated tails of lists to
be shown (the command uet) . Since (from 3) reduces to a list starting with 3 and
having (from 4) as its tail, this reduction is correct.

The expression in question 7 should filter out everything divisible by 2 from the list
of natural numbers starting from 3. Apparently, however, we are left with all even
numbers from 4 and upwards, so this is wrong. Finally, in question 8, the offending
function is found. Since 3 is not divisible by 2 the expression ought to have yielded
t r u e .

For comparison, an unstrictified version of question 2 is given below. It is not too
hard to infer the answer to this question, but it is clearly not as straightforward as
above. The result of the reduction is a list whose head is the first prime number (2)
and whose tail is an expression that according to its specification should evaluate to
the remaining prime numbers. Therefore, the answer to the unstrictified version of the
question is yes, whereas the answer to the strictified question is no since the tail in fact
evaluates to something erroneous:

main =>
['2':
(fappend

(shownums
(take 4 (sieve (filter

(sieve.not_div_x _ where x = 2)
(from (fplus 2 1))))))))]

(y/n/m/h)? y

A larger example may be found in the appendix.

5 Implementation

In this section we present some implementation details on our debugger, LADT.
First, in section 5.1 the modifications of the compiler needed to support algorithmic
debugging are outlined. Section 5.2 then describes the implementation of the
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debugger. Section 5.3 explains why perfect strictification is not achieved in the present
implementation of the debugger.

5.7 Modifications of the compiler

As noted in section 4.1, free variables must somehow be dealt with. Being a G-
machine implementation, Freja is based on graph reduction using supercombinators.6

A source program containing functions with free variables is transformed into
supercombinator form by lambda-lifting (Peyton-Jones, 1987).7 Since only basic
lambda-lifting is performed (i.e. free variables are taken out as extra parameters
rather than maximal free expressions, which is the case when doing fully-lazy
lambda-lifting), followed by r|-reduction and removal of redundant supercombin-
ators, there is a one-to-one mapping between the functions in the source program and
the supercombinators in the object program. This is very convenient, but in a more
realistic language this might not be the case, and one would also have to take other
source constructs (e.g. list comprehensions) into account.

Therefore, by implementing the algorithmic debugging on the supercombinator
form of a program, no extra work is needed to take out free variables; this is already
done as a part of the basic compilation process. To support algorithmic debugging,
the compiler only has to add some extra debugging information to each
supercombinator definition and insert calls to tracing routines in the object code so
that an execution tree may be built at runtime. Note that this has to be done for
system supplied supercombinators as well, even though we know they are correct,
since we need a complete trace tree to perform strictification during the debugging
phase.

The extra information that is needed consists of the name of the function
corresponding to the supercombinator, the arity of the supercombinator, and the
number of free variables that have been taken out as extra parameters as well as the
names of these variables. The information is needed so that questions from the
algorithmic debugger may be phrased in terms of the original source program rather
than in terms of the transformed program, which would be very inconvenient for the
user.

Calls to two different tracing routines are inserted in the code of a supercombinator,
one called the beginning and one just before each possible exit point. The routine that
is called first creates a node in the trace tree and records the values of all parameters
(including the abstracted free variables); the second routine records the result of the
supercombinator application. Thus one node in the trace tree will be created
whenever a supercombinator reduction is initiated, which happens exactly when the
corresponding function is applied to enough arguments, i.e. at least as many
arguments as the arity of the function.

In case of a program error (which terminates execution immediately), a call to a
special routine is made that first fixes any tree nodes for which no results as yet have

6 A supercombinator is basically a function without free variables.
7 Lambda-lifting is the process of abstraction out free variables as additional function arguments.

12-2
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been recorded and then immediately invokes the algorithmic debugger. Nodes are
fixed by inserting a special result, 'error', which is semantically equivalent to a
diverging computation, i.e. bottom or _L. If a program goes into an infinite loop, the
user may force termination by pressing CTRL-C. The tree is then fixed in the same
manner as if a program error had occurred.

The Freja compiler consists of some 10,000 lines of C-code (not counting blank
lines and comments). In this respect, the modifications needed for supporting
algorithmic debugging were fairly minor, a rough estimate is that about 400 lines had
to be modified or added.

5.2. The algorithmic debugger

LADT itself is implemented in about 3,000 lines of C. The debugger is linked with the
compiled Freja program that is going to be debugged, forming a single executable.
When it is run, the Freja program is first executed and the trace tree is built. Then the
debugger is invoked and algorithmic debugging begins.

The debugger consists of two main parts: routines for building the tree, and
routines for performing the actual debugging. The tree is constructed by making calls
to the two trace routines, as described above. Arguments to supercombinators and
returned results are all pieces of graph located on the functional program's own
private heap. To preserve them for the execution tree, we chose to copy them off the
heap, though other schemes could be devised. Note, however, that it is not possible
to simply keep a pointer to them, since that would result in the substitution of values
for expressions without the corresponding change of the tree structure, as application
nodes are physically overwritten in the course of the graph reduction process (see
section 4.2). The copying algorithm must be able to handle circular graphs; otherwise,
the debugger might end up in an infinite loop.

To facilitate equality testing on graphs, equal graphs are mapped into the same
storage using a hashing algorithm, i.e. before any graph node is built, it is checked to
see whether an equal graph node already exists. Thus pointer comparison can be used
to test for graph equality within the debugger, and the pointers themselves can be
used for further hashing when indexing the execution trace tree in order to perform
the strictification reasonably efficiently.

5.3 Why perfect strictification is not achieved

Since the results of all applications that have been evaluated during the program
execution have been recorded by the algorithmic debugger, it should theoretically be
possible to do a perfect strictification. Unfortunately, this is quite difficult to do
using the above approach to strictification.

Consider an unevaluated application (foo (1 + 2)) (that would evaluate to 7,
say). Suppose further that the value of ( foo (1 + 2)) is indeed needed later on, but
that the subexpression (1 -f- 2) is shared with some other expression, the value of
which is needed before the value of (foo (1 + 2)) is needed. Then the debugger
would record that the result of ( foo 3) is 7, but it would not know anything about
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the result of (foo (1 + 2 ) ) . Therefore, it is not possible to substitute 7 for this
application during strictification.

In an attempt to somewhat compensate for this imperfectness of the strictification,
the debugger explicitly evaluates some system function applications in a few special
cases when it is safe to do so. Clearly, better strictification would be preferable.

6 Evaluation

6.1 Experience in using the debugger

LADT has so far been used to successfully debug a number of toy programs,
including programs calculating Fibonacci numbers and solving the eight queens
problem, as well as a somewhat larger program to evaluate arithmetic expressions
(around 250 lines of code).

The number of questions that on average has to be answered to find a bug of course
varies drastically with the size and type of the program. Finding a bug in the
expression evaluator seemed to require some 50-60 questions to be answered on
average. There is clearly room for further improvements here.

6.2 Problems with the current implementation

The present LADT implementation has two severe problems that make it difficult or
impossible to apply to real, large programs. The main one is the size of the trace tree:
currently every single reduction is recorded, which means that the size easily could
become hundreds of megabytes. The situation is akin to running a lazy functional
program without garbage collection. Also, building the tree takes a long time. Though
we have not done any extensive measurements, execution seemed to be slowed down
by two or three orders of magnitude when doing tracing. This means that it might
take a long time before debugging even can start.

Now, it would certainly be possible to keep the trace on secondary storage, even
if tracing (as well as strictification) then would become even more expensive. Indeed,
one might even argue that the sizes of primary memories within a not too distant
future will be large enough to accommodate traces of such sizes. However, the
fundamental problem is that there is no upper bound on the size of trace, and that
problem remains however we store the trace.

The other big problem is that far too many questions are asked. This makes LADT
a very tedious debugging tool to use, especially since a large number of the questions
are irrelevant. It might well be the case that a user can see exactly what is wrong in
a result returned from function. If this information could be conveyed to the
debugger, rather than a simple yes or no answer, it should be possible to discard
many irrelevant questions.

Yet another problem with the current implementation of the debugger is that
perfect strictification is not achieved. This means that the user sometimes will have to
deal with unevaluated expressions when there should not have been any need to do
so. While static strictness analysis probably would make the problem less apparent,
strictification is still better than just using static strictness analysis for our purposes.
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7 Ideas for practical implementation

Despite its problems, we have found the debugger useful, and it should even be
possible to debug quite large programs as long as they are applied to test cases of
reasonable size. We think that this approach to debugging is basically sound and
promising in the context of lazy functional languages. But we would obviously like
to do better. Thus, in this section, a number of ideas that address the above
mentioned problems and extend the basic approach are outlined, with the aim of
making algorithmic debugging for lazy functional languages practical.

The ideas are summarized in the list below and then explained further in the
following sections:

• Thin tracing: if it is known beforehand that some functions or modules are correct
(e.g. library routines), it should not be necessary to trace everything, thereby
reducing the size of the trace as well as the number of questions asked.

• Piecemeal tracing: do not store the entire trace at once. Instead, parts of the trace
can be constructed as and when they are needed by rerunning the program that is
being debugged.

• immediate strictification: instead of building a lazy execution trace tree and
applying strictification on it afterwards, a strictified tree could be built directly.

• Slicing: if the user is able to be more specific as to what is wrong, rather than just
saying that something is wrong, it ought to be possible to make use of this
information to reduce the number of questions asked by applying program slicing.

• A smarter user interface: it is often the case that the details of large data structures
are of no interest in answering questions. Thus it would be beneficial to be able to
suppress such details.

7.1 Thin tracing

Presently, LADT records every single reduction that takes place during execution.
Quite a few of these are applications of language primitives and library functions
which may reasonably be assumed to behave correctly. Thus the user should not be
asked about the behaviour of such functions, in which case there seems to be little
point in tracing such applications in the first place.

Furthermore, large systems are usually built modularly, so it is not unreasonable
to assume that it frequently will be the case that there are large number of well tested,
trusted modules and a few, new 'prime suspects' when a bug manifests itself.

So under a thin tracing scheme, only a subset of the reductions would be traced,
based on assumptions regarding the correctness of certain modules. Clearly, this will
also reduce the number of questions that are asked and the time taken to build the
tree. However, not having the entire trace at our disposal means that strictification
cannot be performed as it is currently done, i.e. during the debugging phase.
Therefore, a new approach to strictification must be adopted to use thin tracing.

There is also a more subtle problem as to what is meant by a function being
'correct'. For a first-order function it is obvious: a function is correct if it computes
the expected result for whatever arguments it is applied to. During debugging, this

https://doi.org/10.1017/S095679680000109X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000109X


Algorithmic debugging for lazy functional languages 355

means that a user no doubt would indicate that an application of the function is
correct, and the entire branch in the execution trace tree emerging from that point
may thus be cut away.

But for a higher-order function that takes another function as an argument, it
would be a rather bold claim that the result is correct for arbitrary arguments: the
supplied function is effectively behaviour that has been abstracted out of the higher-
order function, and claiming that the higher-order function produces the correct
results when some arbitrary behaviour is being plugged back in cannot be justified.
It is only possible to say that the higher-order function uses the supplied function in
the intended way.

For our purposes, this means that the branch in the execution trace tree
corresponding to the application cannot be cut away. The question about the
application of the higher-order function could, of course, be suppressed, but if the
node has many children, then more questions would be asked on average than if the
question had not been suppressed.

On the other hand, if it is known that the function that is supplied as an argument
is correct as well, then the application could be treated as in the first-order case. This
suggests that some simple 'correctness calculation' should be performed on higher-
order applications.

7.2 Piecemeal tracing

Even if it is possible to substantially reduce the size of the trace using thin tracing,
there is still no guaranteed upper bound on the size of the trace tree. Indeed, as long
as the trace for a whole execution is going to be stored, there can be no general, fixed
such upper bound.

An interesting alternative would then be to store only so much trace as there is
room for. Debugging is then started on this first piece of trace. If this is enough to find
the bug, all is well. Otherwise, the program to be debugged is re-executed, and the
next piece of the trace is captured and stored. Re-executing the program is not a
problem, since pure functional programs are deterministic, but any input to the
program must obviously be preserved and reused. We will refer to such a tracing
scheme as piecemeal tracing from now on.

Note that such a scheme also would be beneficial from a time perspective: not only
does it allow the user to start debugging quicker, but it might also be cheaper overall,
since we hopefully avoid tracing of large portions of the execution trace tree.

The question is, then, how to select the piece of the trace to be stored in a sensible
way? Just storing reductions as they happen until the trace storage is full would not
be very useful since it may then happen that a very deep but narrow piece of the tree
is captured. If the top reduction is actually correct, the program would have to be
rerun immediately to get the next piece of the trace. It would be better if trace
corresponding to the next n questions, regardless of what the answers to these
questions will be, could be stored.

This leads to the idea of introducing a distance measure on the nodes in the tree
based on the number of questions that would have to be answered to get from one
node to another (if this is possible, otherwise the measure is undefined). We term this
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measure the query distance, and the idea is illustrated in Fig. 9. The nodes are labelled
with their query distance from the root node, and the grey arcs are labelled with the
answer that would take a user from one node in the execution trace tree to the other
during algorithmic debugging.

Fig. 9. Query distances from the root node

Given a cache for execution trace tree nodes, piecemeal tracing can be performed
as follows. Suppose that a particular node in the trace tree has been reached during
debugging, and that it is found that more trace is needed to proceed. Call this
particular node the current node.

Now the entire program is re-executed. (There is a good reason for re-executing the
entire program, as will become clear in the next section.) Only nodes reachable from
the current node (i.e. nodes for which the query distance is defined relative to the
current node) are stored in the cache. When the cache is full, nodes with the largest
query distance relative to the current node are thrown out in favour of nodes with a
smaller query distance. Then nodes corresponding to the next n questions will be in
the cache when the tracing is completed, where n depends upon the size of the cache.

Thus, an arbitrary upper bound may be imposed on the trace size, but obviously,
the larger the size of the cache, the fewer times the program will have to be rerun. The
piecemeal tracing scheme makes it possible to trade space for time as is appropriate
for any specific implementation. However, as is the case with thin tracing, the entire
trace is no longer available during debugging, which means that strictification cannot
be performed as it is currently done. This problem is addressed in the next subsection.

7.3 Immediate strictification

In the present LADT system, a lazy execution trace tree reflecting the real order in
which reductions take place is built during the trace phase. Strictification is performed
afterwards, during the debugging phase, by recursively substituting values for
expressions while asking for confirmation, as described in section 4.3.

This means that the debugger is effectively redoing work that has already been done
during execution of the program that is being debugged. Also, as noted earlier, some
strictification opportunities are missed by LADT, which means that only ap-
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^•^ —.—
(sqr (l+2)=»(l+2)»(l+2)j ( (1+2) * (l+2)=>9)

(1+2^3 }

Fig. 10. Lazy execution trace tree Fig. 11. Strict execution trace tree

proximative strictification is achieved. Furthermore, doing strictification afterwards
is only possible if the entire trace, containing every single reduction, is available to the
debugger. Thus thin and piecemeal tracing cannot be integrated with the current
implementation of the debugger.

As observed in passing in section 4.2, it would not be necessary to perform any
substitutions at all if we kept pointers from the execution trace tree to the
corresponding pieces of graphs, since these would be in their most evaluated form
once the execution was completed. Not only would it then not be necessary to have
access to the complete trace during debugging, but it would also solve the problem
with approximate strictification. But, as explained in the aforementioned section,
correct strictification also requires the structure of the execution tree to be changed.
So it is possible to build a tree with the correct (i.e. strict) structure directly during
tracing rather than afterwards?

Indeed, this seems to be possible. The basic idea is that whenever a redex (reducible
expression) is created during the execution of code corresponding, to a function, a
node referring to this redex is also inserted at the appropriate place in the execution
trace tree. Since a strict language would not create the redex for later evaluation, but
evaluate it directly, the' appropriate place' is as a child node of the node corresponding
to the current function invocation. The key observation is that the creation of a redex
in the lazy case corresponds to strict evaluation of that expression.

The redexes also have to be tagged with pointers referring back to the corresponding
nodes in the execution trace tree so that this node can be found once the redex is
reduced. Having this back pointer is also convenient during garbage collection, since
pointers in the execution trace tree must then be updated when pieces of graph are
moved around. We will therefore, in the following, assume that there is a single
pointer from the execution tree to any graph node (and vice versa). This means that
once a reduction has taken place, any piece of graph that has reached its final form
is copied into the execution trace tree. However, there are several design options here,
and it might be better not to copy anything, leaving it where it is.

The above also explains why the entire program should be re-executed during
piecemeal tracing: it is only after completing the execution that each piece of graph
will be in its most evaluated form. If we tried to only re-evaluate a particular function
application, we would not know when to stop, since we would not know which parts
of the result that actually were going to be used later on (assuming that the result is
a list, for example).

Hopefully, the following example should give a feeling for what we are trying to
achieve. Suppose that we were to execute the following (bug free) program:
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Figs. 12-15

sqr x = x • x;
main = sqr (1 + 2 ) ;

Figure 10 shows the corresponding lazy execution tree, i.e. it reflects the order in
which the reductions actually happens, while Fig. 11 shows the strict tree, i.e. the tree
that we are trying to construct using immediate strictification.

First, main is invoked. It builds two redexes, 1 + 2 and sqr (1 + 2) . Thus nodes
corresponding to these are inserted into the execution trace tree in the order in which
they are created. Note how the sqr node refers to the 1 + 2 node so that there is only
one pointer from the execution tree to each redex. Since the result of main is the
result of the latter redex, the result field of the tree node for main points at the tree
node for sq r to preserve the single pointer property. The situation is shown in Fig.
12.
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The next thing that happens, as can be seen from the lazy execution tree, is that the
sqr function is invoked to reduce sqr (1 + 2) to (1 + 2) * (1 + 2). This means
that sqr has built a new redex, so the corresponding node is inserted into the
execution tree. This is depicted in Fig. 13. Since the result of sqr (1 + 2) is the result
of (1 + 2) * (1 + 2 ) , the result field of the sqr execution tree node has been
redirected to the new node.

The 1 + 2 is reduced to 3. This creates no new redexes, but the result of the
reduction is copied into the tree (see Fig. 14). Finally, 3 * 3 is reduced to 9. Again,
no new redexes are created so it only remains to copy the result into the tree (see Fig.
15). Compare the resulting strictified tree with the strict tree in Fig. 11.

7.4 Slicing

Obviously, the more information the user is able to supply the system with per
question, the fewer questions the system has to ask to locate the bug. For example,
if a user indicates that a particular element in a list is not what it is supposed to be,
the system can disregard any computations that are not relevant for the production
of this particular element. This technique is a variation of program slicing (Weiser,
1982, 1984) and it could reduce the number of questions asked during algorithmic
debugging considerably.

The approach that seems to be the most suitable is dynamic slicing, since dynamic
slices are more precise than are static ones (Kamkar, 1993). Perhaps something
similar to what Kamkar has done could be used (Kamkar et al. 1992; Kamkar,
1993). Amongst other things, this would require keeping track of data dependencies,
i.e. which node in the execution tree that corresponds to the function application that
computed a certain value. Note, however, that some such information would be
present in the strictified tree ' for free' if strictification is performed as outlined in the
previous section. Thus, it might be possible to do a coarse, approximative, but yet
useful, slicing without much extra effort.

7.5 A smarter user interface

Even if strictification helps in making the questions asked by the debugger easier to
understand and answer, they are still large if large data structures are involved.
Frequently, the details of such structures are not important when it comes to
answering questions about the correctness of the behaviour of a function application.
As a trivial example, consider the function to append two lists. The actual elements
in the list are not important for the behaviour of the function, something which is
reflected by the polymorphic type of the function which indicates that it can append
lists of any specific type.

This suggests that it might be possible to use type information and other static
properties to construct heuristics regarding which parts of large data structures that
are interesting, and thus should be presented to the user, and which that are not and
thus should be suppressed, at least initially. The gain of a scheme like this could be
considerable.
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By building a window- and pointer-based graphic user interface, the usability of the
debugger would be further enhanced, e.g. suppressed subcomponents could be
expanded by clicking on them and erroneous parts of data structures could easily be
marked for computing a slice. (See also Westman and Fritzson, 1993.)

8 Related work

In this section, related work on debugging for lazy functional languages will be
reviewed and compared with our work.

Hall and O'Donnell (1985; O'Donnell and Hall, 1988) propose a number of
approaches to debugging for lazy functional languages in two articles. Their focus is
on implementing debugging tools within an interactive, purely functional en-
vironment, the main argument for this being portability. They use the language
Daisy, a lazy descendant of Lisp.

One suggested approach is to transform the source code of the entire program so
that it produces a trace of its execution as well as its normal value. The trace should
then be printed before the value of the program so that it is still possible to see
something, even if the program happens to loop.

The main problem with this, as Hall & O'Donnell also point out, is of course that
the very printing of the trace might turn an otherwise terminating program into a
non-terminating one, e.g. if the trace contains references to infinite data structures or
to diverging computations, the values of which would not usually be needed.
Furthermore, the method presupposes that all types of values, including functional
ones, can be printed in a sensible way from within the language. This is not necessarily
the case in all functional languages (e.g. Miranda), thus the portability argument is
somewhat undermined.

Hall & O'Donnell therefore suggest another approach where the user by means of
an interactive debugging function may traverse and evaluate the target program,
change variable bindings, evaluate and print expressions in various contexts, etc.
Thus the user is allowed to observe, control and modify the execution of a program,
all within a purely functional environment. To achieve this, access is needed to the
system eva l function. Also, if the user happens to invoke a non-terminating
computation, e.g. by asking for some infinite structure to be printed, it must be
possible to interrupt the computation and recover.

Clearly, however, there is still a problem with printing. If the target program is
written in a lazy style, chances are that infinite structures and diverging computations
will occur frequently, thus making debugging a rather elaborate process involving a
lot of trial, error and interrupt. One could conceive special support within the
language, e.g. a non-evaluating printing mechanism, but such an ad hoc extension
would at the best have very dubious semantics.

Toyn and Runciman (1988; Toyn, 1987) argue that even if it is nice to have
interactive programming environments, the need for debugging tools for compiling
language implementations cannot be neglected. They propose a system in the context
of a combinator reduction machine, where the graph is annotated in such a way, and
the reduction mechanism modified accordingly, that the computation history of the
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various pieces of graph on the heap is always maintained as annotations in the graph.
Thus it is possible, at any time instant, to take a 'snapshot' of the computation, i.e.
to present a finite source-level textual representation of the state of the computation.
A snapshot would typically be taken when the program aborts due to a runtime error,
or when the user interrupts it because it has entered an infinite loop.

It is less obvious how one should get a good, revealing snapshot on a computation
that terminates but produces the wrong result. In his thesis, Toyn (1987) proposes
traditional bottom-up testing to deal with this case.

Kishon et al. (1991, 1992) have taken a formal and systematic approach to
debugging as well as other monitoring activities, e.g. profiling. Starting from a
denotational continuation semantics of an arbitrary language, they automatically
derive a monitoring semantics by composing the language specification with a
monitor specification. For example, by composing with a tracing specification, the
meaning of a program in the language would be changed to be a trace in addition to
its original value.

The key difference between this approach and Hall's and O'Donnell's (in the
context of lazy functional languages), apart from the former being more systematic
and general, is that the computation in this framework is observed from outside the
language, which means that there is no problem with printing of infinite structures,
etc. On the other hand, unevaluated values will show up in the trace instead,
necessitating some kind of work around to get rid of them. Sturrock (1992) has tried
to use Kishon's framework to build a strictifying algorithmic debugger for a lazy
functional language but reports problems.

Kamin (1990) starts from an operational semantics of a lazy language and changes
it so that a program in the language has a tree-structured trace of its execution as its
meaning. However, in contrast to Kishon's system, Kamin relies on a meta-
evaluation rule to get rid of as many unevaluated values as possible. The rule simply
states that values should be shared, i.e. they should be represented by pointers to
unique heap-allocated objects. Thus, when the computation has terminated, any
value will be seen in its most evaluated form. Since the structure of the trace tree is
determined by the syntactic structure of the program i.e. as would be the case in a
strict language), the result resembles very much what we would get under the
immediate strictification scheme as discussed in section 7.3.

The general goal of Kamin's work is to demonstrate a hypertextual approach to
trace-based debugging. Thus the user is provided with facilities for browsing through
the trace, visualize large data structures, etc.

Hazan and Morgan (1993) take a source-level transformational approach to
debugging. A program is transformed by their tool so that an explicit call path is
constructed and passed around during execution. The path records the static call
structure, i.e. it contains information that would be present on a call stack in an
implementation of a strict language. However, it contains only the names of the
functions, not any parameter values.

The idea is then that the path is appended to any error messages in the code so that
in the event of a program error, in addition to the error message, one can see which
instance of a function invocation that caused the problem. Note that if the path also
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contained parameter values, there would again be problems with printing if there
happened to be any infinite structures, etc. Though clearly somewhat limited in scope,
the tool has been found useful, and it is used extensively in the maintenance and
development of a large Miranda system (about 12,000 lines of code).

Another debugger that has been used in practice is part of a programming
environment for rapid prototyping developed at Technische Hochschule Darmstadt
(Henhapl et al., 1991). This debugger, however, is conventional in the sense that it is
based on setting breakpoints and single stepping, and it does not address the problem
of unevaluated function arguments and results.

Finally, the algorithmic debugger by Naish (1992) should also be mentioned. This
debugger is for a functional language which is implemented by transformation into
Prolog and it is implemented within the prolog system.

It should be noted that several of the above approaches are based on tracing in
some form. Kamin even argues that tracing might well be inevitable in the context of
lazy functional languages. Thus some of the trace related ideas for making a practical
implementation of our algorithmic debugger might also have applications in other
types of debuggers. For example, a strictified tree could be used as a basis for more
or less ordinary debugging.

9 Conclusions

This paper has argued that algorithmic debugging is a suitable technique for
debugging lazy functional programs. An algorithmic debugger, LADT, has been
implemented for a lazy functional language, and has been found to be useful in
debugging some program examples. A process called strictification is performed on
the execution trace to give the user an impression of strict evaluation. This makes the
debugging process independent of the complexity of lazy evaluation order, and also
helps the user to focus on the high-level declarative semantics of the application
program.

However, as it stands, LADT cannot be considered to be a practically usable
system, mainly due to the prohibitively large trace size for any real world problem,
and because far too many questions have to be answered during debugging. Thus we
have also suggested a number of techniques in this paper to alleviate these and other
problems. Thin tracing should be used so that only relevant applications are traced.
By using piecemeal tracing, the debugger can handle traces of arbitrary size at the
expanse of re-executing the program when more trace is needed.

Since both thin tracing and piecemeal tracing means that strictification cannot be
performed during the debugging phase, as is presently the case, a method for building
a strictified tree directly during the trace phase, immediate strictification, was
suggested.

Finally, it was argued that the debugger should employ dynamic slicing to reduce
the number of questions asked, and that heuristics based on type information and
other statically inferable properties should be used to performed sensible pretty
printing of questions to reduce their size.

If all these techniques can be successfully integrated, we believe that a practically
useful algorithmic debugger for lazy functional languages could be built.
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Declaration

This article is based on material that has been presented at PLILP'92 (Nilsson and
Fritszon, 1992) and at AADEBUG'93 (Nilsson and Fritzson, 1993). Basically, these
two papers have been integrated and an appendix has been added.

Appendix

In this appendix a larger example is presented. The program below is a simple
scanner. The bug is in the function showtoken; the case for Assign is missing.

| | Simple Scanner

I I
| | Test program for Algorithmic Debugger

I I
Ver. 1.00, 1993-05-02I I

| | Character recognizers

is_digit x = '0' < = x < = '9';
is_upper x = 'A' < = x < = 'Z';
is_lower x = 'a' < = x < = 'z';
is_alpha x = is_upper x \/ is_lower x;
is_alphanum x = is_alpha x \/ is_digit x;
is_idrtail x = is_alphanum x \J x = = '_';

I I
| | Standard routines

I I
dropwhile p [] = [];
dropwhile p (x:xs) = dropwhile p xs, if (p x)

= (x:xs), otherwise;
takewhile p [] = [];
takewhile p (x:xs) = x: (takewhile p xs), if (p x)

= [], otherwise;
map f [ ] = [ ] ;
map f (x:xs) = (f x):map f xs;
layn [] = [];
layn (x:xs) = x + + "\n" + + layn xs;

foldl op a [] = a;
foldl op a (x:xs) = foldl op (op a x) xs;

I I
| | Conversion routines
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char_to_num
char_to_num

char_to_num
char_to_num

char_to_num
char_to_num

char_to_num

char_to_num
char_to_num

char_to_num

'0' =
'1' =
'2' =

'3' =
'4' =

'5' =
'6' =

'7' =
'8' =

'9' =

0;

i;
2;

3;

4;
5;

6;

7;
8;
9;

Datatypes

type token = Err [char] | Int num | Idr [char] | Plus |
Minus | Times | Divide | Leftpar |
Rightpar | Semicol | Assign | Print | Eof;

is_error (Err msg) = True;
is_error x = False;
is_eof x = (x = = Eof);

| | Show functions

I I
showtoken (Err cs)
showtoken (Int n)
showtoken (Idr cs)
showtoken Plus
showtoken Minus
showtoken Times
showtoken Divide
showtoken Leftpar
showtoken Rightpar
showtoken Semicol
showtoken Print
showtoken Eof

show_tokens ts

= "Error: " + + cs;

= "Int " + + shownum n;
= "Idr " + + cs;

= "Plus";
= "Minus";

= "Times";
= "Divide";

= "Leftpar";

= "Rightpar";
= "Semicol";
= "Print";

= "Eof";

= layn (map showtoken ts);

Scanner

scan_token [char] — > (token, [char]);

scan_token []
scan_token (' ':xs)
scan_token ('\n':xs)

= (Eof, []);
= scan_token xs;
= scan_token xs;
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scan_token ('\t':xs) = scan_token xs;
scan_token ('|':'|':xs) = scan_token (dropwhile neqlf xs)

where neqlf x = (x ~ = '\n');;
scan_token (' + ':xs) = (Plus, xs);
scan_token (' —':xs) = (Minus, xs);

xs) = (Times, xs);
xs) = (Divide, xs);
xs) = (Leftpar, xs);
xs) = (Rightpar, xs);
xs) = (Semicol, xs);
' = ':xs) = (Assign, xs);
'RVlVNVT'rxs) = (Print, xs);

scan_token (V

scan_token ('/'
scan_token ('('
scan_token (')'
scan_token (';'
scan_token (':'
scan_token ('P'
scan_token (x:xs) = scan_int (x:xs), if (is_digit x)

= scan_idr (x:xs), if (is_alpha x)
= (Err ('"" + + [x] + + "' not allowed,

xs), otherwise;

scan_int :: [char] — > (token, [char]);

scan_int xs = (Int val, rest)
where

val = foldl mullOadd 0
(map char_to_num

(takewhile is_digit xs));
rest = dropwhile is_digit xs;
mullOadd x y = 10 * x + y;

scan_idr :: [char] — > (token, [char]);

scan_idr (x:xs) = (Idr (x:idrtail), rest)

where

idrtail = takewhile is_idrtail xs;

rest = dropwhile is_idrtail xs;

scan :: [char] — > [token];

scan xs = [tok], if is_eof tok
= tok : (dropwhile is_error (scan rest)),

if (is_error tok)
= tok : (scan rest), otherwise
where

(tok, rest) = scan_token xs;

FPR4
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Main routine

input = "a : = 2; b : = 5; a : = b * (a + b); PRINT a;";

main = show_tokens (scan input);

The interaction between the user and the debugger that follows when the above
program is executed is given below. As can be seen, the program only outputs the
first token and then gives a runtime error (PE, Program Error). The user starts by
loading a few assertions and then lists them. Then he starts debugging. The
commands s t r and n o s t r switch between printing lists of characters as strings and
as lists of characters, while the command uet turns on printing of unevaluated tails
of lists.

I d r a
PE
Program reduced to Program Error (ie aborted).
Fixing execution tree, will then start algorithmic
debugging.

Did the program behave correctly?
(y/n/m/h)? load scanner.assert

Assertions loaded from file scanner.assert.
(y/n/m/h)? list

dropwhile
takewhile
map

layn
foldl

char_to_num
(y/n/m/h)? n

$main

=>

"Idr a\n. . . "

(y/n/m/h)? nostr
(y/n/m/h)? uet
(y/n/m/h)? resee
$main
=>

['I'.'d'.V,' ','a','\n': ERROR (execution aborted)]
(y/n/m/h)? n

main
=>

['I','d', V,' ','a','\n': ERROR (execution aborted)]
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(y /n /m/h)? n

input
=>
['a',' ',':',' = ',' ','2',';',' ','b',' ',...]
(y/n/m/h)? y

(scan ['a',' ',':',' = ',' ','2',';',' ','b',' ',...])

[(Idr ['a']): (scan [' ',':',' = ',' ','2',';',' ','b',' ',':',...])]
(y/n/m/h)? str
(y/n/m/h)? resee
(scan "a : = 2; b ...")

[(Idr "a"): (scan " : = 2; b :...")]
(y/n/m/h)? y

(show_tokens [(Idr "a"): (scan " := 2; b :...")])
=>
"Idr a\n. . . "
(y/n/m/h)? nostr
(y/n/m/h)? resee
(show_tokens [(Idr ['a']):
(scan [' ',':',' = ',' ','2',';',' ','b',' ',':',...])])

=>
['I','d','r',' ','a','\n': ERROR (execution aborted)]
(y/n/m/h)? n

(is_idrtail ' ')
=>
False
(y/n/m/h)? y

(showtoken (Idr ['a']))

(y/n/m/h)? y

(scan [' ',':',' = ',' ','2',';',' ','b',' ',': ,...])
>̂
[Assign: (scan [' ','2',';',' ','b',' ',':',' = ',' ','5',...])]
(y/n/m/h)? y

(showtoken Assign)

13-2
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ERROR (execution aborted)
(y/n/m/h)? n
Bug located in function showtoken.
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