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A NOTE ON WEIGHTED MAXIMAL INEQUALITIES

by QINSHENG LAI

(Received 11th July 1995)

In this paper, we obtain some characterizations for the weighted weak type (1,<J) inequality to hold for the
Hardy-Littlewood maximal operator in the case 0 < q < 1; prove that there is no nontrivial weight satisfying
one-weight weak type (p, q) inequalities when 0 < p jt q < oo, and discuss the equivalence between the weak
type (p, q) inequality and the strong type (p, q) inequality when p jt q.

1991 Mathematics subject classification: Primary 42B25.

1. Introduction

Let M be the Hardy-Littlewood maximal operator for locally integrable functions /
on R" defined by

M/(x) = sup - i - / \f(y)\dy.

where Q is a nondegenerate cube with sides parallel to the axes; \Q\ is the Lebesgue
measure of Q, and the supremum is taken over all cubes Q containing x.

Let w(x), v(x) be weight functions, i.e. nonnegative measurable functions taking
values in [0, oo], and 0 < p, q < oo. For a measurable set E, write w(E) = / w(x)dx, and
let XE denote its characteristic function.

During the past two decades, the two-weight weak type (p, q) inequality

(w({x : MRx) > k})k")"" < C ( 7 l/(x)|'K*)<&) " 0)

and the two-weight strong type (p, q) inequality

' (7 ) 'M/(x)'w(x)dxj '< C ( 7 \f(x)Mx)dx) '. (2)

have been intensely studied (see [3], [4], [8] or [1] and its references).
A pioneering and excellent contribution was made by B. Muckenhoupt [3], who gives

a very precise and satisfactory answer to the one-weight inequalities, i.e. w = v in (1)
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or (2), with p — q, that is to find those w for which either

\f(xWw(x)dx
)

or the corresponding weak type inequality hold. This answer is provided by what has
become known as Ap weight theory.

Later on, E. T. Sawyer made another significant and important progress in the
weighted norm inequalities for the Hardy-Littlewood maximal operator. That is,
Sawyer characterizes the two-weight strong type (p, q) inequality when 1 < p < q < oo
(see [4]). Meanwhile, he obtains a characterization for the weak type (p, q) inequality
(1) without the restriction p < q (see [6]).

Recently, further remarkable development has been made by I. E. Verbitsky. Both
(1) and (2) are characterized in the case 1 < p < oo and 0 < q < p (see [8]).

This note is a supplementary to the weight theory for the Hardy-Littlewood maximal
operator. Here we shall release some new properties of the weighted norm inequalities
for M.

This paper is set out as following. The second section contains the characterizations
of the weak type (l,q) inequality for M with 0 < q < 1. This case is not discussed in
[8], and our proof is new. In the third section, we shall see that there is no nontrivial
weight satisfying the one-weight weak type (p, q) inequality when p ^ q. This fact not
only shows how delicate Muckenhoupt's Theorem is, but also implies that the one-
weight strong type inequality is always equivalent to the corresponding weak type
inequality, if p ^ q. Therefore we shall discuss whether the weak type (p, q) inequality
is strictly weaker than the strong type (p, q) inequality in the cases w ^ v and p ^ q in
the final section. Although an example has been given in [3] to show that they are
different when w ^ v and p — q, there are no further discussions for the cases p ^ q.
For our discussion, we shall establish some necessary or sufficient conditions for the
weak type inequalities, and these are interesting in their own right.

With a little trivial modification, the argument in [1, p. 388] shows that, for any
0 < p, q < oo, the weak type (p, q) inequality (1) implies that v(x) > 0 a.e. unless
w(x) = 0 a.e., and w(x) is locally integrable unless v(x) — oo a.e. Hence we shall impose
these natural conditions on the pairs (w, v) of weight functions throughout this note.
Also we shall keep the usual conventions for multiplication in [0, oo], namely
oo • t = t • oo = oo for 0 < t < oo, 0 • oo = oo • 0 = 0, l/oo = 0 and 1/0 = oo.

2. Weak type (1, q) inequality

Theorem 1. Let 0 < q < 1. The following statements are equivalent.

(i) The weak type (l,q) inequality (1) holds.

(ii) There exists a constant B > 0 such that

Er (3)
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holds for all sequences {Qj) with pairwise disjoint cubes, where <x(Q) = ess infxee{t>(x)}.

(iii) The function

is in Z/'°°(w), i.e.

11*11, oo v = sup Aw({O(x) > A})l/r < oo, (4)

where Q(x, t) are the cubes centred at x with side length t, cc(Q) is defined as above, and
r = q/(\ - q).

(iv) The function

<D(x) = sup

is in Lr°°(w), where the notation a(Q) and r are the same as above.

Proof. (i)=>(ii). For A > 1 arbitrary, let E, = {x e Qj: v(x) < Aa(Qy)}, and / =
£ IQ;|a(Q;)XE,ME;)- It is obvious that UQ; e {M/(x) > I/A}. Then it follows from (1)
that

w(UQ,) < C

Then we get (2.1) with B < C, since X > 1 is arbitrary.
(ii) => (iii). Let Q c {®(x) > A} be bounded. For every x e Q , there exists a cube

Q(x, t) such that

w((2(x, 0)
IG(x, t)l«(6(x. 0)

> A. (5)

By virtue of Besicovitch's covering lemma (see [2]), from {Q(x, t)}«n o n e c a n select a
sequence {Q;} such that

(i) O C Ug;;

(ii) the sequence {Qy}can be split into £„ subsequences {gf}, (/c = 1, 2 , . . . , £„) of
disjoint cubes, where £,„ depends only on the dimension n.

Fix k, write {g*} = {Q,}. For any finite JV, by use of (3) and (5) we have

w (U e.) < p (E«(G,)iai J < BV.-< ( j
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This is J2\w(Qi) < &>~\ then (iii) with ||O||r0OW < 1%'B follows.
The implication (iii) =>• (iv) follows from the fact that for any Q(y, t) containing x

we have

* e Q(y, 0 C fi(x, 3t) c Q(y, 9t).

We shall omit the details.
(iv)=^(i). Given ). > 0, let Q; = {x : M/(x) > X). Without loss of generality we may

assume f\f\vdx = 1. Write w,(x) = w(x)x(l:aw</1«/')(x), and w2(x) = w(x) - w,(x). Then

w2(n,). (6)

For the second term in (6) it follows from (iv) that

w2(O,) < w({x : 0>(x) > I"")) < ;.''||6||;.M,W. (7)

On the other hand, it is obvious that

"(0)121 " * '

therefore, using the well-known weighted weak type (1,1) inequality (e.g. see [1,
p. 151 and p. 390]), we get

\) < \2nXq/T>:x f\f{x)\v(x)dx = 12T" (8)

Substituting (7) and (8) into (6), we conclude the required assertion. Theorem 1 is
proved.

Remark 1. The argument used above is available in the case p > 1 and 0 < q < p
That is, this procedure leads to a new proof of Verbitsky's weak type inequalities for
the Hardy-Littlewood maximal operator.

As an application of Theorem 1, we obtain the following interesting fact.

Proposition 1. For any 0 < q < 1 there is no weight function w(x) satisfying the one-
weight, weak type (1, q) inequality (1) except w(x) = 0 a.e.

Proof. Suppose w(x) verifies the one-weight weak type (\,q) inequality (1) with
some 0 < q < 1. L e t / = xe(x) in (1); we get w(Q)l/q < Cw(Q), therefore w(R") < co. To
obtain a contradiction, we shall prove that such w(x) violates condition (iv) on
Theorem 1.

Write Qt = 2(0, 0. the cube centred at the origin with side length t (c.f. Theorem 1
(iii)), and a(Q) = essinfxen{w(x)}. Noting that <x(Q,)\Q,\ < w(Q,) < w(R"), we have
a((2r) -*• 0 when t -*• co.
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Suppose oc(6,) > 0 for all t. Then for any given Q,o, there exists t > t0 such that
«(6,) = a«2,\ei0), since «(Q.) = min{a«2,0), <x(e,\e,0)} and «(&) -* 0.

Now we can choose a sequence tn -*• oo increasing and satisfying a(Qr;i) =
a(2,n\2,j i l). Given e > 0, there exists an m such that w(<2,n\QIm) < e/2 for all n > m,
since W(R") < oo. Observing that

and combining this with the fact that <x(Q,n) -> 0, we conclude a(<2,n)l2,J -»• 0(n -> oo).
Then it follows that the associated <D(x), defined in Theorem 1 (iv), is infinite for all x. Thus
w({O(x) > /.}) = w(R") for all A > 0, and O(x) is not in Lr°°(w) except w(Rn) = 0. This
contradiction completes the proof of Proposition 1.

3. One-weight weak type inequality

Proposition 1 suggests the following statement.

Theorem 2. There is no nontrivial weight satisfying the one-weight weak type (p, q)
inequality (1) when p ^ q and 0 < p, q < oo.

While this fact, particularly in the case p < q, seems to be well known in the folklore,
we have been unable to find any explicit proof, and so for the convenience of the
reader we include a complete proof.

Proof. We divide the proof into the following two propositions. The statement for
the case of 0 < p < q < oo follows from Proposition 3 immediately. Meanwhile,
suppose 0 < q < p < oo and p ^ 1, it is easy to verify that the one-weight weak type
(p, q) inequality implies w e L\dx) and it contradicts Proposition 2. This completes
Theorem 2.

Proposition 2. Let 0 < q < p < oo and p ^ 1. Ifve Ll(dx), then the weak type (p, q)
inequality (1) holds only ifw(x) = 0 a.e.

Proof. Suppose v is integrable, and (w, v) verifies the weak type (p, q) inequality
(1), then it is obvious that the inequality

holds for all cubes Q, where a = ul/(l~p) and p = p/(p - 1).
Let Q, be the same as that in the proof of Proposition 1, and B, — Qrt\Qr Adopting

an idea in [7], for each B, we define a median value associated with weight v by the
expression
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where

s, = sup{s > 0 : |{x e B, : v(x) < s}\ < \B,\/2]

and

52 = inf {s > 0 : \{x e B, : v(x) > s)\ < |B,|/2}.

It is easy to see that

/ v(Xydx/\B,\ > (vBtT/2 (10)
JB,

for all real numbers a (c.f. [7, p. 6]).
Since v e Ll(dx), it follows from (10) that

vBi\B,\ < 2 / v(x)dx -> 0 (t - • oo).

Given t0, for every t > t0 it follows from (9) and (10) that

C ~ 162,1

IGal

Hence w(Q,0) must be 0 according to (11). The proof of Proposition 2 is completed.

Proposition 3. Given 0 < p < q < oo. Suppose the weak type (p, q) inequality (1) holds
for all measurable functions f and X > 0, then for a.e.x e R" either w(x) = 0 or
v(x) = oo.

Proof. Let 0 < p < q < oo. Suppose, in order to derive a contradiction,
|(x e R" : w(x) > 0, v(x) < oo}| > 0. Then there exists an M > 0 such that

|£| = | x € Rn :w(x)>^-,v(x) <M 1 > 0.

Put vE(x) = v(x)xE(x); then vE is locally integrable. One can choose x0 e E being a
Lebesgue point of both w and vE and also a point of density of E. Meanwhile we may
assume v(x0) > 0. Then for every positive integer n there exists a cube Qn centred at
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x0 and satisfying \Qn\ -»• 0(n -*• oo) and

Let/(x) = XcncM- It follows from (1) and (12) that

< c(jj{xYv(x)dx^ '

Therefore

Keep x0 e E in mind. It follows from (13) and the Lebesgue Differentiation Theorem

that

< w(xoy
/q < Cv(xo)

l/P -0 = 0.

This contradiction completes the proof of Proposition 3.

Remark 2. The idea used in Proposition 3 deduces the following statement, we shall
omit the proof.

Proposition 4. Given 0 < p < oo. Suppose the weak type (p, p) inequality (1) holds
for all measurable functions f and X > 0. Then w(x) < Bv(x) a.e. Furthermore, for the best
constants B and C in (1), we have B < C.

4. Discussion of equivalence between (1) and (2)

Theorem 2 indicates that the one-weight weak type (p, p) inequalities are always
equivalent to the corresponding strong type inequalities, when 0 < p ^ q < oo. What
would happen when w ^ vl That is, whether the weak type (p, q) inequalities with p / q
are strictly weaker than the strong type (p, q) inequalities in general? The answer is
positive, and we shall give some examples. The example for the case p < q might have
been known but for which we can find no statement in literature. Therefore we include
it for completeness.

In the following examples and further discussion we shall use the well known
A(p, q) condition (1 < p < q < oo):
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MO)1'*
4 = sup ^ < oo ( p = l ) , (14)

and the S(p, q) condition (1 < p < q < oo):

' <oo (15)a
for all cubes (2, where p' = p/(p — 1) and a — v il/p °. These two conditions characterize
the weak type inequality (1) and the strong type inequality (2) respectively (see [1]).

Example 1. Suppose 1 < p < q < oo. Consider the real line Rl. Let w(x) =
xq~]X[o.oo)(x)' a n d v(x) — 1 o n [—1|O] a n d oo elsewhere. We shall verify that
(w, v) e A(p, q), but the function / (x) = X[_l0](

x) shows that they do not satisfy the
strong type (p, q) inequality.

To prove (w, v) e A(j>, q), we only need to verify the A(p, q) condition for all intervals
{a, b) with —1 < a < 0 and 0 < b < oo. Then it is obvious that

, ! • ' "
(l\/q , .

<fl, frWa, fe)1/p' = W fe|a|'/P m
b — a b — a

This completes Example 1.
In order to create examples in the case q < p, we introduce a sufficient condition

for the weak type inequalities with q < p, because Verbitsky's weak type condition
concerns some sort of maximal function, and it is difficult to be calculated in
practice.

Definition 1. Suppose l < p , 0 < ^ < p < o o and (w, v) is a pair of weight functions.
Let \/r=\/q-l/p. We say that (w, v) e B(p, q) if

(p = l) (16)

hold for all sequences {Qj) of disjoint cubes, where a = ir1/lp~1).
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We give now a class of B(p, q) functions.

Example 2. Given p > 1, suppose (u, v) e A(p,p) and Q c R" such that «(Q) < oo.
Write w(x) = u(x)xQ(x), then (w, v) e B(p, q) for all 0 < q < p with B < A(u(Q)l/r), where
A and B are the constants in (14) and (16) respectively.

Indeed, for any cube Q, it follows from the A(p, p) condition (14) that

< Arw(Q

< ^w(Q nfi) (p = l).

Therefore (w, y) e B(p, q) and B < >4(u(Q))1/r.

Theorem 3. /f(w, y) e B(p, q), then the weak type inequality (1) holds for all A > 0
and measurable f. Moreover, for the best constants B in (16) and C in (1), we have

C < £„£,

where the absolute constant £,„ depends only on the dimension n and is associated with
Besicovitch's Covering Lemma (see the proof of Theorem 1).

Proof. Let Q(x, t) be the cube Q centred at x with side length (. Let

\f(y)\dys u p f
i»o \Q(x, t)\ JQ(XI)

be the Hardy-Littlewood centred maximal operator. It is well known that

Mcf{x) < Mf(x) < 3"Mc/(x).

From this observation, we shall prove (1) for Mcf instead of Mf. Let ft c
{x : Mcf(x) > k\ be bounded. For every x e Q, there exists a cube Q(x, t) such that

Let {Q*}, (fc = 1,2,..., £n) be the sequences selected from {Q(x, r)}xen according to
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Besicovitch's covering lemma (see the argument following (5)). Fix k. If p > 1, then
the inequality (17) and Holder's inequality show

(18)

By another use of Holder's inequality with exponent p/q and r/q, the right side of
(18) is bounded by

\1/P / / . _ i . . ... _ , ' \ r/q\ q/r

since {Q*}, are disjoint and (w, v) e B(p, q).
On summing over k, (18) and (19) yield

j 'i'w(fi) < ̂  (J \f(yfv{y)dyj

Then we get the required assertion since Q is arbitrary.
When p = 1, the previous argument is still available, if we replace a(^Qk

i)
Up in (18)

and (19) by ||u"lz6?lloo = l/(essinfxeef v(x)). Theorem 3 is proved.

Now we give some pairs of weight functions which verify the weak type (p, q)
inequality (1) with q < p, but not the corresponding strong type inequality (2).

Example 3. Choose Q c R" bounded. Set w = 1, and v(x) = 1 on Q and oo
elsewhere.

Note that

) ( P ^ l )

Then we have (w, u) e B(p, q) for all 1 < q < p and 0 < q < p = 1. But it is obvious that
the function/(x) = Xn(x) makes the left side of (2) infinite, when q < 1. That is, this
(w, v) demonstrates that the weak type inequality (1) is different from the strong type
inequality (2), when q = l < p o r O < g < p = l .
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Example 4. Given 1 < q < p < oo. Let w(x) = x'~'(—logx)'"1 on (0,1/2] and 0
elsewhere, and v(x) = xp~'(—logx)2f>~2 on (0, 1/2] and oo elsewhere.

Observe that CT(X) — l/(x(— logx)2) on (0, 1/2] and 0 elsewhere. It has been verified
(see [3, p. 218]) that the pair of weight functions U(x) = l/(x(— logx)2) and
K(x) = l/(x(-logx)) satisfies the 4(1, 1) condition on (0, 1/2], therefore the A{q, q)
condition on (0, 1/2]. By use of our notation, this is

sup{(fl, *) c (0, 1/2]: W ( ° f : ( ; ' b ) 1 / ' ' } = C < oo. (21)

Combining (21) and (20), we have (w, v) e B(p, q). But the function/(x) = <r(x) violates
the strong type (p, q) inequality.

Example 5. Let 0 < q < 1 < p < oo. Set w(x) = |x|«"'(- log |x|)«"' on [-1/2,0) and
0 elsewhere, and u(x) = xp"'(— logx)2p~2 on (0, 1/2] and oo elsewhere.

For every sequence {(a;, fy)}; of pairwise disjoint intervals on R1, only at most one
among them, which contains 0, makes a contribution to the left sum in (16). Write this
interval, if it exists, by (a, b). Furthermore we may assume —1/2 < a < 0 and
0 < b < 1/2. Observe that (- logx)*"1 < ( - log lal)'"1 on (0, \a\]. Then we have

w(q, b)Uqa(a, b)""' = (/f x"~\- logx^dx)1'^ x~\ 2 1 7 '
=

b-a ~ b+\a\
< C(- log \a\y"(- log b)~l/p' < C(log 2)"1/r. (22)

It follows from (22) and (20) that (w, v) e B(p, q). But the function /(x) = a(x) shows
that the strong type (p, q) inequality does not hold.

Remark 3. The following theorem shows that our B(p, q) conditions are just
between the strong type inequality and the weak type inequality.

Theorem 4. Suppose 1 < p < oo, 0 < q < p and (w, v) as a pair of weight functions.
If there exists a constant C such that the strong type inequality (2) holds for all
measurable f, then (w, v) 6 B(p, q). Furthermore, for the best constants C and B in (2) and
(16), we have B < C.

Proof. Let {Q;} be a sequence of disjoint cubes. When p > 1, the proof concerns
testing (2) by a function/(x) = T.jMx) w»th
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where l/q' — 0 if q = 1. We shall omit the details.
Suppose p= 1. Let at = ess infx€C. v(x). For arbitrary n > 1, set E, = {x e Q : i>(x) <

then |£;| > 0 and v(Ej) < oo. Choose a nondegenerate cube Ky c Qs satisfying
\Ej nRj\> 0, then v(Ej D Rj) > 0. Set

and /(x) = Yl'jLi fj(x)- Observe that

\ \QJ\«J ) vi

- 1 ~ !

It follows from the strong type inequality (2) that

•• //„ f(x)dx\
^ ( £ S L(M/(x))'w(x)rfxj > f ^

Thus we obtain (w, y) e B(/?, ^) with B < C, since >/ > 1 is arbitrary. The proof of
Theorem 4 is completed.
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