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Abstract

Advances in tissue engineering for cardiac regenerative medicine require cellular-level understanding of the
mechanism of cardiac muscle growth during embryonic developmental stage. Computational methods to automatize
cell segmentation in 3D and deliver accurate, quantitative morphology of cardiomyocytes, are imperative to provide
insight into cell behavior underlying cardiac tissue growth. Detecting individual cells from volumetric images of
dense tissue, poised with low signal-to-noise ratio and severe intensity in homogeneity, is a challenging task. In this
article, we develop a robust segmentation tool capable of extracting cellular morphological parameters from 3D
multifluorescence images of murine heart, captured via light-sheet microscopy. The proposed pipeline incorporates a
neural network for 2D detection of nuclei and cell membranes. A graph-based global association employs the 2D
nuclei detections to reconstruct 3D nuclei. A novel optimization embedding the network flow algorithm in an
alternating direction method of multipliers is proposed to solve the global object association problem. The associated
3D nuclei serve as the initialization of an active mesh model to obtain the 3D segmentation of individual myocardial
cells. The efficiency of our method over the state-of-the-art methods is observed via various qualitative and
quantitative evaluation.

Impact Statement
This article discusses a 3D cell segmentation method for detecting individual cells from light-sheet
volumetric images of cardiac tissue of murine embryo. Automatized 3D segmentation is a crucial step
to deliver accurate, quantitative descriptions of cell morphology in 3D—relevant to the study of cell
structure underlying cardiac muscle growth during development, with potential applications in tissue
engineering for cardiac regenerative medicine. The article has been jointly written by development
biologists with expertise in the quantitative analysis of heart development, and computer scientists
with expertise in the development of mathematical models for image and data analysis. This
collaboration makes this research an authentic endeavor to develop impactful tools and knowledge
relevant to the biology of the cardiac muscle.
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1. Introduction

Recentworks have shown coordinated cell division during the embryonic stage(1–3) regulates the orientation
of myofibres and consequently determines heart contraction patterns. Studying morphogenesis of a
developing heart is thus crucial to accelerate fundamental research in cardiology.Novel imaging techniques,
such as light-sheet microscopy have allowed larger depth of field imaging, facilitating cellular level 3D
imaging ofmurine embryo heart. The quantification of cellular morphology in 3D is, however, restricted by
the availability of dedicated automatic computational methods. In this article, we propose a method to
segment cells from 3D light-sheet microscopy images of murine myocardial tissue (with membrane and
nuclei fluorescence) to facilitate precise extraction of morphological features of cardiomyocytes.

While light-sheet microscopy allows larger depth of field imaging, this introduces greater inference
from dense tissue leading to significant intensity heterogeneity. This adds to the challenges in identifi-
cation of individual cells (segmentation) from dense tissue samples imaged in 3D. The tissue character-
istics of the imaging organ/organism introduce significant signal variation and structural alteration. In
comparison to the more commonly used prototype organisms—zebrafish or Caenorhabditis elegans,
lower transparency of mouse myocardial tissue leads to low signal to noise ratio. Additionally, the
myocardial tissue, unlike the epithelial, has more irregular architecture as shown in Figure 1. Due to this
nonuniform structure of myocardium in the heart, regions consisting of nonmyocardial cells (shown in
Figure 1 with blue arrows) are introduced in the images. It is necessary to identify and discard these
regions at an early computational stage for a robust morphogenesis analysis of cardiomyocytes.

1.1. Related works

In the literature, few works have proposed methods for cell segmentation from 3D tissue samples. The
more commonly used approaches(4–8) employ only cell membrane images (without nuclei staining).
These methods mainly employ techniques for cell membrane image enhancement and subsequent
detection of the intermembranous regions to identify individual cells. The efficiency of these methods
relies mainly on 3D membrane enhancement to deal with the intensity in-homogeneity and incomplete
structures. Various techniques, such asHessian-based image enhancement(4,7), unsupervised clustering,(5)

and supervised machine learning(8) have been adopted in literature to obtain a noise-free prediction of the
cell membrane. The enhanced images of cell membrane are then subject to 3DWatershed(4–8) to achieve
final cell segmentation. A slightly different approach is proposed in Ref. (9), where watershed segmen-
tation is first employed to detect cells from enhanced 2Dmembrane images. The detected cellular regions
are then merged axially based on various constraints to obtain final 3D cell reconstructions. Using solely
the cell membrane for segmentation is intuitive only when nuclei information is unavailable. But as
pointed out in Ref. (4), these approaches do not allow to discriminate between cellular and noncellular
regions. This leads to significant false positives in more complex and developed tissue, such as the
myocardium.

Figure 1. View of an entire mouse embryo heart (left) and enlarged view of a cropped portion (right). The
green and blue channels correspond to cardiomyocyte membranes and nuclei, respectively. Epicardial

and endocardial cells without membrane staining are marked by blue arrows.
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In presence of bothmembrane and nuclei images, the nuclei information can aid in determining precise
cell locations. Very fewworks in literature(10,11) have employedmultifluorescence images, cell membrane
and nuclei, to guide cell segmentation. Azuma andOnami(10) achieve this by using detected nuclei regions
as the seed for watershed method to segment cells from C. elegans embryo images. The nuclei
segmentation is performed using the difference of Gaussian filtering. This approach relies heavily on
the correct choice of parameters and is inadequate in spatially resolving nuclei from low-resolution 3D
images. An alternative approach was developed by Pop et al.(11), where the intensity clustering technique
was employed for 3D nuclei detection from confocal microscopy images of murine heart. This was
followed by coupled activemesh initialized at the detected nuclei and evolved using themembrane cues to
obtain 3D cell segmentation. The 3D active mesh approach is robust to noisy and discontinuous
membrane structure avoiding leakage in the cell membrane. However, the clustering approach is
dependent on image intensity and tends to over-segment nuclei due to the intensity heterogeneity. Neither
of these methods combines the nuclei and membrane information to aid in their detection and for the final
cell segmentation.

In order to deal with the aforementioned challenges and shortcomings of state-of-art methods in 3D cell
segmentation from tissues, we propose a method that exploits the robustness of convolutional neural
network for detection, efficiency of a graph-based association method, and active mesh to obtain 3D
reconstruction of cardiomyocytes Ca3D.

1.2. Main contributions

In this article, we propose a novel approach to 3D cell segmentation from multifluorescence image of
cardiac tissue of a mouse embryo. A single convolutional neural network is designed to first obtain nuclei
and membrane detection from 2D slices of a 3D volumetric image. The neural network is designed to
disregard nuclei from nonmyocardial regions at an initial computational stage. The 3D nuclei recon-
struction is then obtained via solving an optimization problem, which associates detected 2D nuclei along
the axial direction. This global nuclei association approach aids in delineating cells along axial direction
whilemaintaining amore regular 3D structure. A linear optimization embedded in an alternating direction
method of multipliers is designed to solve the association problem. The global association problem can
easily employ biologically inspired constraints within the optimization framework. Further, this also
eliminates nuisances of over-detection due to intensity heterogeneity as observed in clustering(11) and
local heuristics-based approaches(9). Finally, an active mesh initialized at the detected 3D nuclei is
evolved using cell membrane-based force function to segment individual cells from the cluttered
environment. The overview of the proposed method is shown in Figure 2. The main highlights of the
article are summarized as follows:

Figure 2. Overview of Ca3D cell segmentation method.
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– A hybrid pipeline that exploits a multitask neural network (mutually benefit from the multichannel
signal) for 2D detection and an optimization method to reconstruct 3D nuclei from 2D detections.
The final cell segmentation is obtained by employing an active contour model initialized at the 3D
nuclei detections and evolved using the membrane information.

– The optimization problem is designed to associate 2D nuclei along axial direction to obtain 3D
nuclei reconstruction. The global association problem is formulated as a linear optimization
problem with quadratic cost and biologically inspired cost function.

– A novel algorithm is designed which embeds the linear optimization in an alternating direction
method of multipliers to solve the association problem.

The article is organized as follows. In Section 2, the detailed pipeline developed for 3D cell segmentation
is described. In Section 3, we describe in detail the mathematical formulation for obtaining 3D
reconstruction from 2D detection. In Section 4, we provide the extensive experimental evaluation and
comparison with existing methods for 3D cell segmentation. Finally, we conclude the article discussing
the advantages of our method and future directions.

2. Ca3D: Pipeline for 3D Segmentation of Cardiomyocytes

The proposed hybrid method exploits convolutional neural networks and classical image processing
approaches to obtain robust cell segmentation from 3D images of tissue. The different steps of this
pipeline are described in detail in the following subsections.

2.1. Multitask learning for membrane and nuclei detection

Themembrane cue is invariably necessary to segment cells from immuno-fluorescent images(4,7–10) but as
discussed in Ref. (10) combining the nuclei and membrane is more conducive for cell segmentation from
tissue samples. This is specifically more relevant for cardiomyocyte segmentation which demonstrates
significant variation in cell morphology and noncellular structures. In the convolutional neural network
community, the efficacy of multitask learning has been demonstrated in the literature(12,13), for various
image analysis applications. We exploit the multitask neural network approach to combine the membrane
and nuclei information at an initial detection stage for more robust detection.

The neural network is trained on 2D slices of nuclei and membrane images. The network is designed
with a partially shared encoder between the nuclei and membrane channels to mutually benefit from one
another. Further, due to low resolution, spatially delineating two nuclei is a challenging task. In this
scenario, the membrane cue is advantageous to spatially resolve nuclei. An additional constraint for a
robust delineation of the nuclei is employed via detection of intermembranous (inverted membrane
signal) regions, which would ideally denote the cytoplasmic regions of the myocardial cells. An initial
convolution block encodes the features from nuclei andmembrane, which are then concatenated and input
to the common encoder. Two separate decoder-blocks input the original features and output from the
encoder to provide pixel-wise prediction of the nuclei and membrane region. The cytoplasmic region

(a) (b) (c) (d) (e) (f)

Figure 3.Deep learning results of 2D detection of membrane (green) and nuclei (blue) (from three different
ventricular regions) are shown in (b,d,f). The corresponding original images are shown in (a,c,e).
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detection is performed via another branch which uses input from the membrane features and nuclei-
membrane encoder output. The detailed network architecture is shown in Figure 4. The neural network is
trained on the combined loss function from the three channels,

Lm Im, bIm� �
þLd I imð Þ, bI im� �� �

þLd I n , bI n� �
: (1)

Here Im , I n are the ground truth for membrane and nuclei, whereas bIm , bI n are the corresponding
predictions. I im is the intermembranous regions denoted by 1� Imð Þ , which is precomputed and
augmented (nonmyocardial regions are removed) during the ground truth generation process.

Dice lossLd is used for nuclei and invertedmembrane detection whereas mean squared loss,Lm is used
for membrane detection. The final refined 2D nuclei prediction is obtained as an overlap of nuclei and
intermembranous region prediction. This aids in discarding the nonmyocardial cell nuclei and noisy
detection. Sample prediction results of the nuclei andmembrane are shown in Figure 3. As can be seen, the
enhanced membrane signal and the desired nuclei are obtained with significantly good precision.

2.2. 3D nuclei detection via association

The 3D nuclei structure can be obtained from the 2D detections. This can be achieved by associating the
2D detections axially to construct the 3D nuclei. A naïve approach is to employ local heuristics (such as
position, size, etc.)(9,14) to solve the association problem, but often lead to irregular and erroneous 3D
structures. In Refs. (15–17), the authors present more sophisticated formulations for 3D segmentation by
association. Xu et al.(17) employ a graph-based global association to associate 2D detections for 3D
neuron segmentation. In Ref. (15), Mukherjee et al. used a graph-based method which solves the
minimum spanning tree problem to associate disjoint objects and achieve 3D neuron segmentation. An
attraction force-based association of disjoint objects in 3D is designed byRef. (16). These aforementioned
methods(15,16,18) have been designed for segmenting neurons, which demonstrate a tubular tree-like
geometry unlike cell nuclei that are more convex in structure. A robust data association for 3D nuclei
segmentation forms the core of our method since this serves as the initialization of an active mesh model
for 3D cell segmentation. Here, we design a novel graph-based association approach to detect 3D nuclei
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Figure 4. Proposed neural network architecture is shown in the figure. The size of convolution kernel and
the channel (height�width� channel size) for each layer are shown in the above figure. The channel size

in each layer is also marked above each block in the diagram.
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while maintaining the convex geometry and certain biological constraints. In this section, we formally
define the mathematical formulation of the association problem.

Let I be the 3D volumetric image of nuclei and I z be a 2D image (zth slice of the volumetric image I) in
the domain 0,1½ �. LetΦ= ojz

� �
z = 1…Ns , j = 1…nz

a set consisting of binary object on 2D images and ojz∩okz =∅,

where j,k ∈ 1…nzf g. Here, Ns denotes the number of 2D slices and nz denotes the number of 2D objects in
zth slice. Ψ= ψp

� �
p= 1…N 3

, where N3 is the total number of 3D objects in the volumetric image I and

ψp∩ψq =∅. For 3D nuclei detection, we seek to find a functionF :Φ↦Ψ. The mapping,F, is accomplished
by solving a constrainedoptimization problem,which simultaneously selects a 2Dobject and a link connecting
two 2D objects from consecutive z-slices. The problem is defined as follows:

min
Yi,j

X
i, j

C i,jY i,j þCs,iY s,iþCt,iY t,iþCiY iþ
X
k

Qi,j,kY i,jY j,k

( )
s:t:

X
i, j ∈ ε

Y i,j =
X
j,k ∈ ε

Y j,k ;Y i,j ∈ 0,1f gY i ∈ 0,1f g:
(2)

Here a graph structure is imposed on the ensemble of 2D detections. Each 2D nuclei detection oiz is
considered as a node xi in the graph (Figure 5a). The connectivity between nodes is defined such that xi in
stack z is connected to a node xj in the subsequent stack zþ1. Each node in the graph is connected to a
source, s and a sink, t. The edge between two nodes xi and xj is denoted by an indicator functionY i,j, that
is, Yi,j = 1 if an edge is present between two 2D objects and 0 otherwise.Y i,j determines the connectivity
between 2D detections to reconstruct the 3D nuclei. The nucleus connectivity is penalized by a weight

Ci,j , which is computed based on how likelyF oiz
� �

=F ojzþ1

� �
. The link between a source and a node is

denoted by Ys,i and Y i,t with connectivity weights Cs,i and Ci,t respectively. Ci is defined as the
likelihood of a 2D object belonging to any flow path. The second order cost Qi,j,k employed in the
optimization regulates if nuclei from three subsequent stacks belong to the same 3D object. The optimal
solution is obtained by sending themaximum flow from source to sink whileminimizing overall cost. The
2D objects in one flow path from source to sink can be inferred as one 3D object. A detailed description of
the optimization problem solution is given in Section 3.

This optimization problem satisfies three main properties necessary to reconstruct 3D nuclei from 2D
detection.

Property 1. F ojz
� � 6¼F okz

� �
k 6¼j

. This property implies that two disjoint objects in a particular 2D imaged
plane, belong to two different 3D objects. It is satisfied directly during the graph constructionwhere no edge is
present between detection (nodes) in the same plane.

(a) (b)

Figure 5. The schematic for the directed graph connecting the nuclei is shown in (a). Subfigure (b) shows
a schematic for the possible conflicts which need to be handled in the mathematical formulation.
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Property 2. The second property implies that one 2D object in a particular z-slice can be connected to only
one 2D object in the subsequent z-slice, that is, If ojz ∩ omN z 6¼∅ and okz ∩ omN z 6¼∅, where j ∈ 1…nzf g and
m∈ 1…nN zf g, (as shown in Figure 5b), then either one of the following needs to be satisfied:

a. F ojz
� �

=F omN z

� � 6¼F okz
� �

,

b. F ojz
� � 6¼F omN z

� �
=F okz

� �
,

c. F ojz
� � 6¼F omN z

� � 6¼F okz
� �

:

Here N z denotes the neighboring 2D slice. The constraint
P

i,j ∈ εY i,j =
P

j,k ∈ εY j,k in equation (2) is
essential in satisfying this property. The constraint indicates that the number of incoming edges to a node
equals the number of outgoing edges. When the total number of incoming edges equals one it satisfies the
property that a 2D detection can be connected to only one 2D detection in the subsequent stack.

Property 3. The third property takes into consideration how objects from three subsequent slices can be
mapped to the same 3D object. If oji ∩ omN z ∩ oN ðN zÞl 6¼∅ and okz ∩ omN z ∩ olN ðN zÞ 6¼∅ (as in Figure 5b,
where l ∈ 1…nN N zð Þ

� �
, then either of the following needs to be satisfied:

a. F ojz
� �

=F omN z

� �
=F olN N zð Þ

� �
6¼F okz

� �
,

b. F ojz
� �

=F omN z

� � 6¼F olN N zð Þ
� �

6¼F okz
� �

,

c. F ojz
� � 6¼F omN z

� �
=F olN N zð Þ

� �
=F okz

� �
,

d. F ojz
� � 6¼F omN z

� �
=F olN N zð Þ

� �
6¼F okz

� �
,

e. F ojz
� � 6¼F omN z

� � 6¼F olN N zð Þ
� �

6¼F okz
� �

,

f. F okz
� �

=F omN z

� � 6¼F olN N zð Þ
� �

6¼F ojz
� �

:

The second-order cost,Qi,j,k determines when Yi,j= 1 and Yj,k= 1 simultaneously and thus xi, xj, and xk of
stacks z, z þ 1, and z þ 2 belong to the same 3D object. The optimization details to solve for F using
equation (2) are detailed in Section 3.

2.3. Active mesh cell segmentation

The 3D nuclei detection provides an approximate location of nuclei. In order to obtain final cell
segmentation, the membrane information is essential. Edge-based deformable models(11,19) are more
appropriate choice for segmentation in this scenario. This is specifically advantageous in our case, since
this formulation allows the mesh to coincide with image edge features and simultaneously forbid
overlapping of meshes(19). The active mesh model implemented in the bioimage analysis software
Icy(20) is used for this purpose. The active contour evolution parameters are estimated in an automated
manner as described in Refs. (11) and (19). We initialize the active mesh at the detected nuclei and
evolve using the 3D membrane image IM . Each 2D slice in IM is multitask neural network membrane
prediction bIm.
3. Mathematical Framework

The solution of global data association problem, without the second-order constraint, can be achieved via
constrained linear programming(21) or network flow algorithm(22,23). The sparse matrix Q imposing the
higher-order connectivity constraint on the graphmakes the optimization problem nontrivial. We propose
a relaxed linearization technique of the quadratic objective function via variable substitution, which can
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then be solved via network flow algorithm embeddedwithin an alternating directionmethod ofmultipliers
framework(24).

The objective function in the proposed optimization problem equation (2) can be written in a matrix
form as

min
Y

CTYþYTQY

s:t:
X

i,j ∈ ε
Y i,j =

X
j,k ∈ ε

Y j,k ;Y i,j ,Y i ∈ 0,1f g:
(3)

Here C,Y∈RN and Q∈RN�N , N denotes the number of edges in the graph.
The relaxed linearization of the objective function in equation (3) via variable substitution is then

written as

min
Y,Z

CTYþZTQY

s:t:
X
i, j ∈ ε

Y i,j =
X
j,k ∈ ε

Y j,k ;Y i,j ∈ 0,1f gY i ∈ 0,1f g

YT =ZT ;Zi,j ≥ 0;Zi,j �1= 0:

(4)

It should be noted here, that Y is a binary integer, but imposing similar constraints on variable Z would
require to solve dual linear integer programming problem. In order to avoid that, we impose the designed
constraints on the relaxation variableZ. In addition to equality constraint with binary variableY,Z should
have a nonnegative structure. The imposed constraints onZ imply that it will be as close to zero as possible
when Y = 0 and Z≃1 when Y = 1.

We employ alternating directionmethod ofmultipliers to solve the augmented Lagrangian formulation
of the problem defined in equation (4). The inequality constrained can be handled by introducing a slack
variable v such that Z–v = 0. The augmented Lagrangian of is then given as

CTYþZTQYþ f νð Þþλ1∣Z�Y∣þλ2∣Z�1∣þλ3∣Z� ν∣þμ

2
∥Z�Y∥2þ∥Z�1∥2þ∥Z� ν∥2
� �

:

(5)
Here f νð Þ=max 0,λ3þμZð Þ. λ1, λ2, and λ3 are the Lagrangianmultiplier and μ is the penalty parameter of
the augmented Lagrangian function.

The variable Z, Y, λ1, λ2 and λ3 are updated in an alternating minimization fashion. The solution to
obtain Z and Y are explained as follows.

3.1. Update Z

The solution forZcan be obtained by first taking the derivative of the augmented Lagrangian with respect
to Z and setting it to zero. The derivative of cost function in equation (5) with respect to Z is given as

min
Z

ZTQYþλ1∣Z�Y∣þλ2∣Z�1∣þλ3∣Z� ν∣þμ
2

∥Z�1∥2þ∥Z�Y∥2þ∥Z� ν∥2
� �

: (6)

By setting the derivative of equation (6) to 0 and setting β= 1
3μ, we obtain a closed-form solution of Z as

Z= β μ�Qð ÞYþμ 1þ νð Þ�λ1�λ2�λ3ð Þ: (7)

3.2. Update Y

The solution for Y is obtained by solving the augmented Lagrangian with the constraints on Y as in
equation (3):

min
Y

CTYþZTQYþλ1∣Z�Y∣þμ
2
∥Z�Y∥2

s:t:
X
i, j ∈ ε

Y i,j =
X
j,k ∈ ε

Y j,k ;Y i,j ∈ 0,1f g;Y i ∈ 0,1f g: (8)
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Since Yi,j is a binary variable, one can assume Y 2
i,j =Y i,j . We can then rewrite ∥Zi,j �Y i,j∥22 =Y i,j �

2Y i,jZ i,j þZ2
i,j. By imposing this approximation(25), ∥Z�Y∥2≃ 1�2Zð ÞTYþ∥Z∥2. The optimization

problem for Y can now be written as

min
Y

CT þZTQ�λ1þμ 1�2Zð ÞT
� �

Y

s:t:
X
i, j ∈ ε

Y i,j =
X
j,k ∈ ε

Y j,k ;Y i,j ∈ 0,1f g;Y i ∈ 0,1f g: (9)

The optimal flowY, is obtained by solving equation (9) as amin-cost network flow optimization using the
push-relabel algorithm(22,23). The pseudo-algorithm of the optimization problem is given in Algorithm 1.

Algorithm 1 Ca3D

Input: Ci,j , Qi,j,k∀i, j ∈ 1…N
Output: Y i,j∀i, j ∈ 1…N
Method: The ADMM update for the Augmented Lagrangian is as follows:
Initialize Yτ by solving equation (2) without the second-order cost
For τ≥0; For t≥0,

Ztþ1 = β μ�Qð ÞYτ þμ 1þ νð Þ�λt1�λt2�λt3
� �

, (10)
λtþ1
1 = λt1þμ Ztþ1�Yk

� �
, (11)

λtþ1
2 = λt2þμ Ztþ1�1

� �
, (12)

λtþ1
3 = λt3þμ Ztþ1� νt

� �
, (13)

νtþ1 = max 0,λ3þμZtþ1
� �

: (14)

Update Yτþ1 using equation (9) with Ztþ1,λtþ1
1 .

3.3. Graph weight selection

In addition to formulating the optimization method, a robust design of the link costs is an important aspect
of the data association problem. For our problem, the link cost connecting the 2D nuclei detections oiz and

ojzþ1 is designed taking into account three different criteria: spatial distance between 2D objects, the
change in nuclei size, and a biologically inspired membrane-overlap condition. The spatial distance is

simply obtained as the Euclidean distance between two nuclei given as ccij =
∥c oizð Þ�c oj

zþ1ð Þ∥22
2σ2c

, where c oiz
� �

is the centroid of nuclei oiz and σc constrains the spatial distance (axially) between two nuclei centers. The

size constraint is imposed by the change in area of two nuclei given by caij =
∥a oizð Þ�a oj

zþ1ð Þ∥22
2σ2a

, a oiz
� �

is the

area of nuclei detection oiz and σ2a controls the allowed change in the area. This criterion imposes that a
significant increase (or decrease) in 2D nuclei detection size denote they are part of different 3D objects,

that is, F oiz
� � 6¼F ojzþ1

� �
(or false positives in 2D detection).

The biologically inspired membrane-overlap criterion states that even if oiz and o
j
zþ1 are spatially close,

F oiz
� � 6¼F ojzþ1

� �
, if cell membrane is present between them. We ensure this criterion by designing a

membrane cross-over cost defined by,

cmij =
1
N

Xp i, jð ÞþN
2

k = p i, jð Þ�N
2

e
� k�p i,jð Þð Þ2

2σ2m f Mk,z ,Mk,zþ1ð ÞÞ: (15)

Here f M :,z ,M :,zþ1ð Þ is the interpolation of membrane stack between z and zþ 1.N is the number of pixels
within the window centered at p :ð Þ. p i, jð Þ is the mid-point of the line joining centroids of nuclei oiz and

ojzþ1. The cost of linking two nuclei, Ci,j is given as the sum of ccij, c
a
ij, and c

m
ij . The pairwise cost, Qi,j,k is

formulated as the sum of Ci,j and Cj,k to ensure the co-occurrence of three nodes in a single flow. This
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implies that when the link costs concur with the above criteria for three subsequent nuclei oiz , o
j
zþ1, and

okzþ1, then F oiz
� �

=F ojzþ1

� �
=F okzþ2

� �
. This also ensures a local smoothness in the linked path.

Sample data association results for 3D nuclei reconstruction are shown in Figure 6. It can be observed
from the figure, the nuclei association (overlaid on neural network detection results, in magenta) can
delineate nuclei axially even in scenarios where visually identifying the separation is challenging.

4. Experimental Results

Ca3d is applied to segment individual cells from 3D images of murine heart from light-sheet microscopy
images. The experimental details and the results are discussed in the following subsections.

4.1. Data description

Themouse hearts were dissected from embryos at 10.5 days after fertilization (E10.5). They were fixed in
4% paraformaldehyde and labeled as a whole mount by immuno-staining with anti-Scrib and anti-Cadh2
antibodies to detect cardiomyocytemembranes. Nuclei were counter-stainedwithHoechst.Whole-mount
hearts were cleared with CUBIC approach(26) and mounted on 0.4% agarose in Reagent-2 in a capillary.
Multichannel 8-bit imageswere acquired on a Z.1 (Zeiss) light-sheet microscopewith a 20�/1.0 objective
with voxel resolution is 0.63 � 0.63 � 1.26 μm.

4.2. Neural network training

We obtain 56—2D cropped images (dimension 255 � 255) from the 3D scan of an embryo ventricular
region. They are manually annotated to create nuclei and membrane ground truth. The 2D ground truth
was generated in a semi-automated manner using Icy, a bio-image analysis software(20). Ground truth for
nuclei was generated by drawing manual contours. The membrane images are first enhanced using a
hessian enhancement scheme and manual thresholding to obtain binary detection. An in-painting tool(20)

is used to connect (disconnect) membrane regions to preserve continuity (remove noisy structures) of the
structures. Finally, we compute the inverse of membrane ground truth and apply area-threshold to discard
nonmyocardial regions. This forms the ground truth for the intermembrane prediction branch.We perform
a qualitative and quantitative comparisonwith four state-of-the-art methods to demonstrate the efficacy of
our method. A dataset consisting of 500 images is created by employing various augmentations, such as
horizontal and vertical flips, rotation, variation in brightness.

The neural network is trained for 100 epochs with a learning rate of 10�3 and a learning rate decay of
0.9 at every 50 epochs. Adam Optimizer(27) is used to train the network. Details of the network
architecture are shown in Figure 4. The filter dimensions (height and width) and the number of channels
(Channel Size) at each convolution layer are shown in the aforementioned figure (above each convolution
step). The channel size at each step is also marked above each block in the schematic. The dotted blocks
denote the concatenation of channels. Each convolution layer consists of ReLU activation followed by

Figure 6.Nuclei association results. First and third column shows the original images. Second and fourth
column shows nuclei association results (magenta) overlaid on neural network detection of themembrane

(green) and nuclei (blue).
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Maxpool (size 2 � 2) for the encoder section and an upsampling (scale factor 2) in the decoder section.
Sigmoid activation layer is used in the final convolutional layer to obtain a smooth and scaled output.

4.3. 3D segmentation and validation

3D segmentation using Ca3d pipeline is performed on six crops of size 255� 255 � 70, extracted from
the ventricular region of the volumetric image of two different embryos. From each crop, the 2D slices of
nuclei and membrane channel are first used to obtain 2D nuclei, membrane and intermembranous
segmentation using the multitask neural network. As discussed earlier, the final refined 2D nuclei
prediction is obtained as an overlap of nuclei and intermembranous region predictions. The 3D nuclei
detections are obtained via the proposed association approach. Before applying active contour, the 3D
nuclei of relatively small size are identified and discarded. This ensures errors due to nuclei over-
segmentation are reduced in the final step. Due to the size and shape variations (resulting from intensity
inhomogeneity), the terminal regions of 3D nuclei (axially) may lead to multiple associated fragments
causing nuclei over-segmentation. As we seek to employ a single nuclei detection during active contour
initialization for individual cell segmentation, we employ, a simple morphology-based threshold
approach to discard relatively smaller 3D nuclei. Only the associated 3D nuclei which consist of 2D
detections comprising of seven or more Z-slices are used for active contour segmentation. This is
determined from expert annotation of nuclei. 2D nuclei regions (from neural network) of the cardiomyo-
cytes are merged along the axial direction manually by a developmental biologist to obtain 3D nuclei
structures (this is also used to compute semi-manual 3D cell segmentation for validation as discussed later
in Section 4.4). From these annotations, minimum size (elongation) of the nuclei was determined as
12 μm.With Z-resolution 1.26 μm and keeping into account possible errors ensuing from neural network
and the 3D association, 9 μm(1.26� 7 μm) is selected as threshold of nuclei size. 3D nuclei objects below
this size are discarded before employing active contour segmentation. This confirms smaller fragments,
specifically resulting from over-segmentation of nuclei, are discarded before active contour initialization.

Due to the lack of ground truth in 3D, we first perform manual validation on a part of the segmented
data. The segmentation result on the rest of the data is statistically compared with the validation for
different cell morphological parameters. We also compare our method with state-of-the-art methods both
qualitatively and quantitatively. The details of the validation and comparison methods are given in the
following subsections.

4.4. Comparison with competing methods

4.4.1. Comparison methods
We compareCa3dwith four competing state-of- the-art methods for cell segmentation from 3D images of
tissue. The comparison methods were developed to segment cells from 3D images of confocal or light-
sheet microscopy images for different organisms (such as mouse, C. elegans) and different developing
organs (embryo, heart, and kidney).

i. Pop et al.(11): The method was developed for cell segmentation from 3D images of mouse heart
from confocal microscopy. This method employs a hierarchical K-means clustering(18,28) for 3D
nuclei detection. The active surface model(19) is then initialized at the detected nuclei and evolved
using the enhanced membrane image.

ii. RACE(9): An automated method was designed for cell segmentation of developing embryos from
light-sheet and confocal microscopy images. The method employs membrane enhancement
techniques to detect intermembranous regions indicating the cellular cytoplasmic region. Mor-
phological operations are employed to enhance and discard detected regions of irrelevant size. 2D
watershed segmentation is employed to segment cellular regions in each Z-stack, which are then
merged using heuristics to obtain the 3D cell reconstruction.
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iii. 3DMMS(4): The method employs 3D hessian-based membrane enhancement and intermembrane
information for cell region detection. 3D watershed segmentation is performed using these
detected regions and a distance computed using the inverted membrane. In this method, pre-
computed nuclei lineage details from 3D image sequences are used to improve the final segmen-
tation. Due to the absence of nuclei lineage information for our experimentation protocol, we
employ the nuclei predicted using the neural network for postprocessing.

iv. ShapeMetrics(8) This method performs cell membrane detection using Ilastik(29), an interactive
machine learning approach for object prediction. Different threshold values are then applied for
binary segmentation of themembrane and the threshold value producing visually best prediction is
selected. 3D watershed segmentation on the enhanced membrane detection is performed to obtain
cell segmentation.

4.4.2. 3D segmentation validation
As we have mentioned earlier, obtaining ground truth for individual cells from the tissue is a time
consuming and laborious task even for experts in the field. Consequently, we compare the cell morpho-
logical values with two types of validation methods—manual and semi-manual cell segmentation.

i. Manual evaluation: The manual evaluation was performed by looking at individually segmented
cells and original images by experts to determine the segmentation quality. The segmentation
accuracy was measured based on two different criteria: (a) cell-overlap: axially and spatially
nonoverlapping cells and (b) approximate cell size. The nonoverlapping criterion considers if the
segmentation contour overlaps multiple cells either axially or spatially. The cell size criterion looks
at the number of Z-slices comprising a cell and cell elongation. Each of the segmented cells is given
a high-confidence or low confidence score based on the above two criteria. Manual evaluation is
performed on randomly selected 300 cells for three different volumetric crops. The frequency
distribution of the evaluated cells based on high-confidence value using cell size and cell overlap
criterion are individually provided in Figure 7. The distribution of the cell morphological param-
eters, when both criteria have high confidence value simultaneously, is also shown in Figure 7
(in green). Although the distributions are almost similar to individual criteria, high confidence in
both provides a more precise range for cell parameters. We employ this combined high-confidence
range to evaluate the efficiency of Ca3D and compare it with state-of-the-art methods.

ii. Semi-manual 3D cell segmentation: A semi-manual method is used to generate cell segmentation
for comparison and evaluation. In this process, the 2D nuclei detection (from neural network) of the
cardiomyocytes are merged along the axial direction manually by a developmental biologist. The
shape and size change of detected nuclei, spatial displacement, presence of cell membrane are
evaluated manually during the merging procedure. The merged nuclei act as the initialization of
active meshes which is evolved using the detected membrane image are to reconstruct individual
cells in 3D. This also provides a confidence measure for the 3D nuclei reconstruction problem(30).

Figure 7. The distribution of cells within a valid range for each cell morphological parameter using
different validation criteria.
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4.4.3. Quantitative comparison with cell morphology distribution profile
Themethods are compared with the above manual and semi-manual validation techniques with respect to
various cell morphological parameters: the cell elongation, cell-width, cell elongation ratio, surface area
of cells. Any one of these cell parameters is not sufficient to assess the efficacy of a method, but if the
performance is uniform over the different parameters, the efficacy is then definitely convincing. Themean
and standard deviation of the parameters of segmented cells using Ca3D, RACE(9), 3DMMS(4), Shape-
Metrics(8), and Pop et al.(11) are presented in Table 1. In addition to that, the percentage of over- and
undersegmented cells are also presented in Table 1.

It is observed that for different cell parameters, Ca3D performs evenly in comparison to the other
methods. For cell elongation, although the mean value of 3DMMS and ShapeMetrics is closer to the
manually validated value, a significantly high standard deviation is observed. Themean values for RACE
are significantly higher and that of Pop et al. are lower compared to the validation data. This observation is
also apparent from the distribution of cells in Figure 8a. The distribution of cell population pertaining to
cell elongation parameter for Ca3D is comparable to the validation data in comparison to the other
methods. A similar observation is made for cell width. While Ca3D and 3DMMS have similar mean
values of cell width, 3DMMS demonstrates a higher standard deviation. Pop et al. and RACE on the other
hand have significantly smaller population mean demonstrating a shift in the cell population density from
that of the validation data (Figure 8b). The combined effect of the cell elongation and cell width is
reflected in the cell elongation ratio (=cell elongation/cell width). The high cell elongation and low cell
width lead to a high value of cell elongation ratio for RACE leading to a more flat distribution (Figure 8c).
In comparison, Ca3D demonstrates a distribution, which is concurrent with the validation data and closely
followed by Pop et al. But, Pop et al. demonstrate a lower cell population mean for surface area.
Contrarily, 3DMMS has a similar population mean as the validation data but a high standard deviation
leading to higher over-sized and under-sized segmented cells.

To quantify the distribution presented in Figure 8b, we compute the KL divergence measure and
Bhattacharya distance between the parameter distribution of each comparison method and that of the
validation methods. A lower value of the distance measure implies that the distribution is similar. It is
noted from Table 1, that Ca3D, for all the cell parameters concur with that of manual validation (7th and
8th column) as well as semi-automatic validation (9th and 10th column).

The percentage of oversegmented, undersegmented, and within-range cells are also presented in
Table 1. The range for accurate cell size based on the aforementioned parameters is given as μv� kv� σv.
Here, μv and σv are the mean and standard deviation of the validated cells. kv is decided such that 90% of
the validated cells are within this range. It is observed, with Ca3D we obtain highest percentages of cells,
which lie within the valid range for three of the cell parameters. The number of cells within the correct
range for surface area is highest for RACE(9), but percentage of under-sized cells with respect to cell width
is comparatively higher, which implies that detected cells are thinner and longer in structure. This is also
evident from the elongation ratio values, where RACE(9) demonstrates the highest percentage of over-
sized cells. Lowest percentage of over-sized cells is obtained with Pop et al.(11), but percentage of
undersized cells is significantly high. This is pertaining to the fact that intensity-based clustering possibly
detects fragments of nuclei leading to the detection of smaller-sized cells. 3DMMS(4) and ShapeMetrics(8)

both demonstrate significantly high percentages of both over-sized and under-sized cells in comparison to
Ca3D.

The qualitative evaluation by visual inspection is shown in Figures 9 and 10. The 3D segmented image
viewed from three viewing planes is presented in Figure 9. As observed from the images, RACE(9), Pop
et al.(11), and ShapeMetrics(8) demonstrate significant erroneous cell segmentation involving partial
detection, significantly low number of detected cells, ambiguous cell boundary. Cell segmentation
obtained using 3DMMS(4) identifies cell which aligns with the cell-membrane but generates over-
segmented cells spatially as well as axially. 3D visualization of cell segmentation on a sample volumetric
image and 3D images of some individual cells obtained for each of these methods are shown in Figure 10.
Significantly, nonconvex and noisy cell-boundary is observed for ShapeMetrics(8), 3DMMS(4), and
RACE(9). Pop et al.(11) exhibit a smoother cell boundary owing to the application of active mesh model.
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Table 1. Percentage of over and under segmentation of cells based on cell morphological parameters based on high-confidence validated cells.

Cell parameters
Mean � SD

Method Mean � SD (Methods)
Over-sized
cells (%)

Under-sized
cells (%)

Accurate sized
cells (%)

Dist
(Manual Valid.)

Dist
(Semi-Auto Valid.)

(Manual Validated)
(Semi-Auto
Validation) KL Div. Bhatt. Dist. KL Div. Bhatt. Dist.

Cell elongation
(μm)
27.9 � 5.6
24.4 � 5.1

Ca3D 25.2 � 6.5 3.5 11.7 84.7 0.19 0.04 0.08 0.01
Pop et al.(11) 21.1 � 8.0 2.5 34.4 63.0 1.21 0.19 0.38 0.08
RACE(9) 32.9 � 13.1 5.7 27.3 66.9 0.58 0.10 1.17 0.15
DMMS(4) 26.9 � 13.7 15.6 24.9 59.4 1.03 0.17 0.72 0.11
ShapeMetric(8) 26.9 � 14.9 17.2 25.0 57.7 2.91 0.41 1.45 0.31

Cell width (μm)
22.3 � 4.1
17.9 � 4.5

Ca3D 19.7 � 4.8 2.9 16.9 80.1 0.43 0.06 0.05 0.01
Pop et al.(11) 16.6 � 6.8 1.3 40.1 58.5 1.66 0.24 0.30 0.05
RACE(9) 17.9 � 7.9 4.1 39.7 56.1 1.48 0.21 0.17 0.03
DMMS(4) 19.1 � 8.2 9.9 33.7 56.3 1.54 0.20 0.46 0.07
ShapeMetric(8) 26.5 � 14,2 8.7 37.4 53.8 3.10 0.45 2.41 0.29

Elongation ratio
1.25 � 0.15
1.39 � 0.2

Ca3D 1.28 � 0.18 8.8 0.0 91.1 0.04 0.01 0.14 0.03
Pop et al.(11) 1.29 � 0.29 11.4 0.0 88.5 0.48 0.08 0.43 0.07
RACE(9) 2.01 � 0.97 69.1 0.0 30.9 0.11 0.01 0.23 0.05
DMMS(4) 1.45 � 0.63 26.8 0.0 73.1 2.33 0.43 1.62 0.25
ShapeMetric(8) 1.63 � 1.17 35.6 0.0 64.3 0.69 0.11 0.53 0.09

Surface area (μm2)
1,365.9 � 549.3
1,262.7 � 560.6

Ca3D 1,157.9 � 532.3 3.1 2.9 93.8 0.13 0.03 0.06 0.02
Pop et al.(11) 935.2 � 574.1 1.5 17.4 80.7 0.36 0.09 0.23 0.06
RACE(9) 990.2 � 335.2 0.0 0.0 99.1 0.37 0.09 0.26 0.06
DMMS(4) 1,402.6 � 1,338.1 15.9 16.8 67.23 0.70 0.12 0.39 0.08
ShapeMetric(8) 1,733.6 � 276.1 17.7 22.0 66.2 0.27 0.06 0.17 0.04
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The superiority in segmentation quality of Ca3D is observed from both Figures 9 and 10where segmented
cells are compact-sized, with smoother boundary complying with the cell membrane while maintaining
approximately convex shape.

4.5. Ablation study

We also present a comparison for ablation study for the convolutional neural network. The multitask
neural network has three different task (nuclei, membrane, and intermembranous region) detection
objectives. The ablation study is performed by using different task combinations to train the neural
network. We employ three different tasks combinations: (a) nuclei, (b) nuclei and membrane, and

dcba

Figure 8. The distribution of the cells within a valid range for different cell morphological parameter-(a.)
cell elongation, (b.) cell width, (c.) elongation ratio and (d.) surface area are shown in this figure.

a. Original b. Ca3D c. Pop et al. [21] d. RACE [26] e. 3DMMS [3] f. Shapemetrics [27]

Figure 9. 3D visualization of segmented cells in planar view for two sample crops extracted from
ventricular and interventricular regions. The original raw images are shown in (a.) The segmentation
method for Ca3D (in b.) and state-of-the-art methods (c.) PoP et al.(18), (d.) RACE(9), (e.) 3DMMS(4), and

(f.) ShapeMetrics(8) are shown for visual comparison.

a. Ca3D b. Pop et al. [21] c. RACE [26] d. 3DMMS [3] e. Shapemetrics [27]

Figure 10. 3D visualization of segmented cells sample crops extracted from ventricular. Sample
segmented cells are shown on the left side of each crop. The segmentation method for Ca3D (in b.) and
state-of-the-art methods (b.) PoP et al.(18), (c.) RACE(9), (d.) 3DMMS(4), and (e.) ShapeMetrics(8) are

shown for visual comparison.
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(c) nuclei and inverted membrane. For the first and third task combination, we use 3D enhanced
membrane (as in Pop et al.) for the active contour evolution. Table 2 provides the mean and standard
deviation values along with percentage of over- and under-sized cells obtained for each of the neural
network task combinations with respect to the validation data. For cell elongation and cell width, a lower
percentage of over-sized cells is obtained using nuclei and membrane tasks but demonstrates a higher
percentage of under-sized cells. The same setting also demonstrates a high percentage of over-sized cells
pertaining to ell-elongation ratio. The error possibly occurs due to the consideration of nonmyocardial
cells which are discarded by Ca3D using the combination of nuclei and inverted-membrane function. It is
observed from the table, that under different cell parameters, Ca3D demonstrates a higher percentage of
correctly sized cells in comparison to the three other task settings of the neural network.

5. Conclusion

In this article, we propose an approach for 3D cell segmentation multifluorescence volumetric images of
mouse embryo heart imaged via light-sheet microscopy.We developed a hybrid approach, which exploits
the robustness of convolutional neural network, a graph-based association method, and active mesh to
delineate individual cells in myocardial tissue. The data association problem, which forms the main
backbone of themethod is obtained using a novel optimization technique that solves themin-cost network
flow problem embedded in an alternating direction method of multipliers framework.We demonstrate the
efficacy and superiority of our method via various qualitative and quantitative analyses and comparison
with state-of-the-art methods. The experimental validation of our 3D cell segmentation approach provides
confidence for the applicability of this method in future analysis of coordinated cell division and cardiac
muscle orientation.
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Table 2. Ablation study: % of over and under segmentation of cells based on cell morphological
parameters and 90% of high-confidence validated cells for different training of the neural network.

Cell parameter (Mean � SD
[Validated cells]) Method

Mean � SD
(Methods)

Under-size
(%)

Over-size
(%)

Cell elongation(μm)
(27.9 � 5.6)

Ca3D 25.2 � 6.5 3.5 11.7
Nuclei 23.1 � 8.5 4.5 28.9
Nuc þ Mem 20.6 � 5.2 0.0 31.1
Nuc þ Inv
mem

23.0 � 11.8 3.3 24

Cell width (μm)
(22.3 � 4.1)

Ca3D 19.7 � 4.8 2.9 16.9
Nuclei 17.1 � 6.4 3.8 38.4
Nuc þ Mem 15.1 � 4.3 0.7 52.5
Nuc þ Inv
mem

18.1 � 4.69 2.1 48.2

Elongation ratio
(1.25 � 0.15)

Ca3D 1.28 � 0.18 8.8 0.0
Nuclei 1.36 � 0.2 24.5 0.0
Nuc þ Mem 1.38 � 0.18 23.06 0.0
Nuc þ Inv
mem

1.27 � 0.45 9.2 0.0
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