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(received 3 November 1959)

Recently K. Mahler [1] introduced a set of <f>{2n) matrices of n rows and
columns which form under multiplication the abelian group of the residue
classes prime to 2n modulo In. These remarkable matrices whose elements
0, 1 and — 1, have latent roots and determinants which can be given ex-
plicitly. Thus we have new examples of matrices with given elements whose
powers, roots, inverses and determinants can be written down precisely.
Such matrices are often useful in testing the efficacy of methods for finding
these functions for a general matrix.

The case of n odd turns out to be rather more interesting and straight-
forward than the even case. Although the methods used are applicable to
both cases, we treat here only the odd ordered matrices. The reader will have
no difficulty in modifying the argument to deal with the case of n even.

Let n be an odd integer > 1 and let m be one of the <f>(n) odd integers
relatively prime to n such that

(1) — n < m < n.

Let [a;] and {a;} denote respectively the greatest integer ^ x and the
fractional part of x, so that a; = [a;] + {a;}. We denote by A (m, n) the matrix
whose general element is given, when m > 0, by

(—i)[tfn>-*>/ni if n{(jm — i)jn\ f^ m — 1
0 otherwise

For m < 0 we define aiS{m, n) by

(3) au(m, n) = ai>n+1_,(—m, n).

Thus the matrix A (~m, n) is the result of reversing the order of the
rows (or columns) of A{m,n).
Thus, by way of example
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386 D. H. Lehmer [2]

Both matrices have roots 1, —1, i, —i with 1 a double root. In general,
for m > 0, the first column of A (m, n) consists of m ones followed by n — m
zeros. Each of the other columns is obtained from its predecessor by lowering
the elements m rows. When an element would be placed below the bottom of
the matrix, it is made to reappear cyclically at the top with its sign changed.
For m < 0 the first column consists of n + m zeros followed by \m\ ones
and the elements of the succeeding columns are lifted instead of lowered.
In particular A (1, n) is the unit matrix / , while A(—l,n) has its ones on the
sinister diagonal.

If k is any number prime to n there is exactly one odd representative m,
satisfying (1), such that

k = m (mod n).

For uniformity we define A(k, n) to be A(m, n). With this understanding,
Mahler's result may be stated

(4) A(k,n)A(h,n) = A(hk,n).

For example the matrices ^4(3,5) and A{— 3, 5) are mutually inverse
since 3(—3) ss 1 (mod 5).

The following numerical functions will be used in what follows.

<f>(r) the totient function of Euler
fi(r) the function of Mb'bius, fi(x) = 0 if x is not an integer.
ak{r) the sum of the £-th powers of the divisors of r
v{r) = ao{r); the number of divisors of r

, . ( 1 if x is an integer
six) = i

(0 otherwise
cr(k) the sum of the £-th powers of the primitive r-th roots of unity

sometimes called Ramanujan's sum.
Qr (x) the irreducible polynomial whose roots are the primitive r-th roots

of unity, Qr{x) = x^r) + • • •.
(m/n) Jacobi's symbol
A(r) the greatest common divisor of n and mr — 1.

We denote by e = e(m, n) the exponent of m modulo n, that is the least
positive h for which

mh = 1 (mod«).
In view of (4),

Thus we have at once the theorems

THEOREM 1. The latent roots of A(m, n) are e-th roots of unity.
THEOREM 2. The determinant of A (m, n) is -±, 1 and is a real character

modulo n.
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[3] Mahler's matrices 387

We now prove

T H E O R E M 3 . The trace of A(m,n) is A (I).

P R O O F . Fo r b rev i ty we wri te A for A (I). Suppose first t h a t m > 0.

Let m — 1 = As, n = At.
By (2) with i = j

!)[<•/<] if t{is/t} ^s
0 otherwise

Hence the trace T of A{m,n) is
n

= = ^L ^ii —' ^L \ — *•) •

Now since m and n are both odd, 2 is odd and s is even and prime to 2. Hence

[isIt] = t[isif] = is ~ t{is/t} = t{is/t} (mod 2).

Furthermore t{is/t} is a periodic function of i of period 2 which, because s
and 2 are relatively prime, ranges over the numbers r = 0(1)2 — 1 without
repetitions or omissions for i = 1(1)2. Hence we can write

t

T = A 2 (—l)^""'} = A 2 (— l)r = A.

We consider now the case m < 0. Setting

\m\ -f l = /is, « = J2

in (3) and (2) we find

Now

[{iAs — it— l)/n] = 1 + n{iAs - l)/»} + iAs — 1 = n{{iAs — l)/w} (mod 2).

This last function is periodic in i of period 2 and so
n «

J" _ V a _ _̂J V / j\n{(tJ»-l)/n} __ ^|_^

i=l i = l

«{(/Zls — !)/«} ^ Zls — 2.

It remains to show that the sum 5 = 1 . Actually the conditions under the
summation operator does not permit i to become 2, for if i = t

n{{iAs — 1) «} = n—1 2; \m\ + 1 = As.

But if / = 1(1)2 — 1 the numbers u( such that

is ~ ut (mod 2) (0 < », < 2)
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range over the same set in some order. Now

n{iAs — I) In} = Aut — 1
and so

Ju-HAs-2

If A > 1

s=-2(-i)» = i.
u = l

If Zl = 1

s = 2 (-i)" = i.
l>=0

This completes the proof of Theorem 3.
By Theorem 1 the roots A (m, n) are among the primitive rf-th roots of

unity where d ranges over the divisors of e. Hence we can write the charac-
teristic polynomial of A (m, n) as a product or irreducible polynomials as
follows:

(5) \A{m,n)-XI\ = -UlQ*Wyw

where M (d) ^ 0 denotes the multiplicity of the primitive d-th roots of
unity. Hence to give a complete account of the roots of A (m, n) we have only
to find M(d) as a function of d, m, and n. To begin with, we have

THEOREM 4. The v(e) multiplicities M(d) satisfy the v(e) linear equations

(6) 2M(d)Cl(d)=A(d), (d\e).

PROOF. Let d be a fixed divisor of e. Consider the trace Ta of the matrix
[A(m, n)]d. Since, by (4),

[A(m, n)]d = A(md, n),

Theorem 3 with md replacing m, tells us that

On the other hand, Ta is simply the sum of the ^-th powers of all the roots of
A (m, n). That is,

Hence Theorem 4 is proved.
We proceed now to solve the system (6) for the unknown values M{d).

For this purpose we prepare a lemma giving an important orthogonal
property of Ramanujan's sum cT(k).

https://doi.org/10.1017/S1446788700026215 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026215


[5] Mahler's matrices 389

LEMMA 1. Let k and t be any divisors of a positive integer e.

Then

PROOF. We may use the known facts [2]

(7) f c t ( f ) r - = C(s.

(8) 2cr(k)r- = ai_.
r=l

It is evident that Se(k, t) is the coefficient of e~' in the product of (7) and
(8). That is

e = l S 11

= {2rp(t/r)r-)(fre(k;r)r-).
r=l r=l

Identifying the coefficients of e~s on both sides we obtain

St(k,t)=Jidp{tld)(e/d)e(kd!e)

Here we have replaced the condition d\e by 8\t since otherwise fi{tl8) is zero.
Setting kt/e — x and replacing S by t/8 we have

s \ t

If x is not an integer then e{xjd) vanishes and so S,(k, t) = 0. If x is an in-
teger the non-zero terms correspond to 8\x. But x\t since t = exjk and k\e.
Hence

But a; = 1 is equivalent to kt — e. This completes the proof of the lemma.

THEOREM 5. For each divisor dx of e

(9)

PROOF. If we multiply both members of (6) by ce/d(e/d1) and the sum over
all divisors d of e we obtain

(10) 2 lM(d)cs(d)celd(e/d1)=2ceU(eld1)A(d).
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390 D. H. Lehmer [6]

The left member may be written, replacing d by e/d

8\e d\e

Applying the lemma with k = e/d1 and t — d the inner sum vanishes ex-
cept when Se/d1 = e, that is when d = dv Hence the left member of (10)
reduces simply to eM(d1), which is the theorem. We have thus given an ex-
plicit determination of the function M(d). With this we may substitute into
(5) to obtain the characteristic polynomial of A (m, n) decomposed into its
irreducible factors. However, a simpler description of this polynomial free
from the rather complicated function [3]

cr(k) =

9\{k,r)J

is afforded by our next theorem. In preparation we need the following simple
lemma.

LEMMA 2. Let k, r be any positive integers and define

\
Then

Sk(r) =
PROOF. Recalling the fact that

we see from (7) that

X Sk(r) r-* = ZZ ck{6)n(r!d) (r/6)-6
r = l r=l S | r

« = i <s=:

r=l

Comparing coefficients of r~' on both sides gives the lemma.

THEOREM 6. The characteristic •polynomial of A (m, n) is given by

\A(m, n) - A/| = - n (** ~ 1)E{S>
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where

(11) dE{d) =
S\d

PROOF. It is well-known that

(I2) QaW = n {*•* -
t\d

Hence by (5)

\A (m, n) —XI\ = —Yl (Xd

d\e

where, in view of (12) and (9)

eE(d) = 2 eM{dd)/i[d)
S\e/d

e/d i1\e

t^e t\»ld

By Lemma 2, the inner sum is

e

Substitution gives

But fiid/dj) vanishes unless ^ 1 ^ . This gives us (11).

THEOREM 7.

2 X ) ( ) =n.

PROOF. The degree of the characteristic polynomial of A(m, n) is n. More
generally we have

THEOREM 8. / / d\e,^6E{d) = A(d).
s\a

This follows from Mobius inversions of (11). Of course

A (e) = n

to agree with Theorem 7. Incidentally, by Theorem 7, M(\) and M{~) are of
opposite parity.

THEOREM 9.

(13) ZE(d)e(d!d)=M(d).
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PROOF. The factor (xl — 1)£(*> contains E(d) roots exp 2ni/d or no such
root according as d\d or not. Hence this factor's contribution to the total
multiplicity of the primitive d-th roots of unity is precisely the left member
of (13).

Theorem 9 affords an easy way of determining the function M(d) and is
generally to be preferred to (9).

THEOREM 10. The determinant \A(m,n)\ = — (—1)M(1).

PROOF. Put A = 0 in Theorem 6. Then \A(m, n)\ = — (—\)z where

By Theorem 9 with d = 1, Z = M{1).
For our final theorem we need

LEMMA 3. Let n = ft"1 fit* • • • ft*' ^e Me canonical factorization of n into
powers of distinct ftrimes. Let gt be chosen so that

a primitive root of ft*1 (mod ft*')
1 (mod n/ftp).

Then every totative m of n has an unique representation

PROOF. The <j>(n) numbers
pPipPi • • . pPt
61 62 &t

are clearly prime to n. We have to show that no two are congruent (mod «).
If two were congruent their ratio would produce a representation of unity in
the form

# £ • • • • # • = ! (modrc) (\yi\ < <]>(£"'))

with some yv ?= 0. This would imply

gl* = 1 (mod^- ) .

But gy is a primitive root of pv. Hence yv = 0, a contradiction.

THEOREM 11. The determinant of A(m, n) is Jacobi's symbol (m/n).

PROOF. Let p be any prime factor of n so that

n = p«n0 (Pin0)

and let g be a primitive root of pa. Consider first the case in which

m _ j g (mod p«)
\ 1 (mod n0)'

The exponent e of m (mod n) is clearly

e = ftp') = p'-Hp - 1).
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Let d be any divisor of e. We proceed to calculate A (d) in the three possible
cases:

Case I: (p — 1) \ 8. In this case ml — 1 is not divisible by p but is divis-
ible by n0.
Hence

A (6) = n0.

Case II: d = p^~Y{p — 1), (1 ^ /9 < a). In this case m* — 1 is divisible
by £" but not by pf+1.
Hence

A(d)=p"n0.

Case III: (5 = e. In this case

zl (<5) = Zl (c) = n = pxn0.

We can now determine E(d) for every divisor d of e by (11).
If rf = 1, (11) gives

If d > 1 but not divisible by /> — 1 we have, from (11) and Case I,

dE{d) = ^A{d)p{dl&) = no2t*(d/d) = 0.

Hence
E(d) = 0 if (^ - 1) f <*.

Now we take the case of d = p — 1. Then (11) gives

2
S\v-\

b y Case I a n d C a s e I I .
H e n c e

E(p — 1) = ng.

If a > 1 we proceed to consider the cases (if any) of

Then
dE(d) = 2 2 Aihpx-^nipO-HP - 1)7,)

A | H—1

= 2

B y Case I t h i s d i f f e r ence of A ' s v a n i s h e s u n l e s s /« = / > — 1.
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Hence by Case II

dE(d) = A((p~ l)^-i)

'1 = nod.
Therefore

E(d) = n0.

Finally let d = e = (j> — l)^""1. Here we have as before

eE(e) = ?,A{d)p{fild) = A(e) - A (eft) = nofi* - n^~\

Hence
E(e) = n0.

Thus all the non-zero values of E(d) are n0. They correspond to d — 1 and
d= (p — \)pf (0 ^ /3 ̂  a — 1). We now compute

«o(l + °2 1) = (a + l)»0-

By Theorem 10, the determinant of A (tn, n) in this case is (— l)a.
We now apply Lemma 3 to complete the proof of the theorem for a general

m. Given any m prime to n = p\*p\*' ' ' fit' w e m a y replace m by the con-
gruent number modulo n

pPiph . . . pA
Sl 62 6«

referred to in Lemma 3. By (4)

A K n)=Y[A (gfs n)=U{A (gi, n))>*.

Applying the above reasoning to each A (git n) we find for the determinant
of A (m, n)

This proves Theorem 11.
We note that, by (4) above we can infer that the set of <f>(n) determinants

\A (m, n)\ constitute a real "character" modulo n. Which of the 2' different
real characters modulo n is \A (n, m) \ is the question answered by Theorem
11.

It follows from Theorem 11 that there is reciprocity between the deter-
minants of A (m, n) and A (m, n) namely

\A(m,n)\ = |i4(«, mJK-l)'"-1""1-1'/*.

In conclusion we illustrate Theorems 6—9 by the example of n = 385 =
5 • 7 • 11 and m = 3. Here we find e = 60 and tabulate the pertinent func-
tions as follows:
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d

1
2

3
4
5
6
10
12

15
20
30
60

3* (mod 385)

3
9
27
81
243
344
144
141
342

331
309
1

A (6)

1
1
1
5
11
7
11
35
11

55
77
385

Mahler's matrices

6E(d)

1

0
0
4
10
6
0
24
0
40
60
240

E(6)

1

0
0
1

2
1

0
2

0
2
2
4

M{6)

15
12
9
9
10
9
8
6
6
6
6
4

4>(6)M

15
12
18
18
40
18
32
24
48
48
48
64

395

385 385

Hence the characteristic polynomial of A (3, 385) is

\A(3, 385) — U\

= - ( A - 1 ) ( A 4 - 1 ) ( A 5 - 1 ) 2 ( A 6 — l ) ( x 1 3 — I ) 2 ( A 2 0 - 1 ) 2 ( A 3 0 - 1 ) 2 ( A 6 0 - 1 ) 4

= -Ql5 Qf Ql Ql Qt Ql Q\* Q% Ql Ql Qlo Qto-

To illustrate Theorem 10 and 11 we note that M(l) is odd and

(zh) = (!)(f)(A) = (-i)(-
By Theorem 5,

eM{\) =Ics(e)A(e/d) = 2
S\e /t\e

Hence we have the rather curious fact that (tn/n) is + 1 or — 1 according
as the integer

e-^4>(d)A{eld)
S \ e

is odd or even.
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