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1. Introduction
Circularly and transversely polarised (henceforth called circular and trans-

verse) waves have been shown to occur as solutions of non-linear equations
governing a wide range of physical phenomena, including finite elasticity (1),
magnetohydrodynamics (2), and gyromagnetism (3), but only when the material
properties of the medium are isotropic with respect to the direction of wave
propagation. This paper is an attempt to unify and generalise these results.

In Section 2, we obtain the most general form of governing equation for an
isotropic system. We show in Section 3 that circular discontinuities do not
occur in such systems, and study a less general system in which they do occur.
The analysis is repeated for simple waves in Section 4.

We obtain in Section 6 a sufficient condition for all non-circular discon-
tinuities and simple waves in such a system to be transverse. As far as is known,
this condition is satisfied in all isotropic systems which have so far been studied.

In Section 5, we consider an isotropic system whose governing equations
are of a rather more special form. Circular waves of a correspondingly more
general type can propagate in this system, and the relationship between the
form of the governing equations, and the nature of the circular wave solutions,
is clarified.

2. The governing equations for an isotropic system
We consider plane-wave propagation in a continuous homogeneous medium,

and use a rectangular cartesian system of axes, with coordinates x, y, z. The
direction of wave propagation is chosen to be parallel to the x-axis, so that
quantities are functions of x and the time t alone. The dependent variables
can be divided into two groups, (a) those which are invariant with respect to
rotations about the axis of x, which we denote by ut, i = 1, ...,p (i.e. scalars,
x-components of vectors, and xy- and xz-components of tensors), and (b) pairs
representing {y, z)-components of vectors, and (yxs zx)-, (yy, zy)-, and (yz, zz)-
components of tensors, which we denote by (w2i-u w2i), i = 1, ...,q- The
magnitude (wf,-! + w\$ of each of these pairs is unaltered by rotations about
the x-axis.
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We suppose that the governing equations can be put into the form of a
system of n conservation laws (4)

V,t+F,x = O, F=F(V), (1)
of a reducible type in which.the dependence of Fon the variables x, t is implicit
through the dependence of Fon x, t, where n = p+2q and the column «-vectors
V and F (written here for convenience as transposed row vectors) are given by

V = (uu ..., up, wu w3,..., w2q_u w2, ..., w2q)
T

and

We wish to investigate systems of equations governing phenomena which
are isotropic with respect to the direction of wave propagation, and this requires
that the equations (1) be invariant with respect to rotations of coordinates
through an arbitrary angle a about the x-axis. If u't and wj are the values of
ut and Wj in such a rotated coordinate system, it follows from the definitions
above that

|

cos«,sin« Ywi i - iV (2)
,-sina, cosaAw2i /J

Invariance of the system (1) under this transformation therefore requires that

& ( w , w ' ) = <l>i(u> w) , "J
(fu-iiu, w')\ = f cos a, sin a Vfzt-iiu, w)\ }
\ f2i(u>w') J V-sina, cosa/V f2l(u, w) )')

0)

where u = (MX up), w = (wu ..., w2q) and similarly for w'.
We define vt and 9h i = 1, ..., q, by

w2i = vt sin t
and write v = (vu ..., vq) and 6 = (jSu ..., 9q). If we write (2) and (3) in terms
of u, v, and 6, it becomes clear that apart from a possible dependence on expres-
sions of the form Qj—Ok, j ^ k, the most general form of </>; and ft is given by

1

fu = t f?Xu,v>2,
• = 1

(5)

We define circular waves as waves across which u and the magnitude vt of
one of the pairs {w2i- u w2i) remain unchanged. There is no loss of generality
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in choosing vl as the magnitude which remains constant. In the next two sec-
tions we consider in turn circular discontinuities and circular simple waves.

3. Circular discontinuities in an isotropic system

Lax (4) has developed the concept of a " weak solution " of a system of
conservation laws. He shows that across a plane surface of discontinuity
which is a weak solution of (1), travelling with velocity s and connecting uniform
states on either side of the discontinuity, the generalised Rankine-Hugoniot
relations

s[V] = [F] (6)

must be satisfied, where [X] denotes the jump in a quantity X across the dis-
continuity.

We wish to test whether relations (6) have a circular discontinuity as a pos-
sible solution, so we substitute

[Ul] = ... = [up] = K ] = 0 (7)

into (6). The first p equations give

[4>i] = ... = [<t>p] = 0 (8)

and the remaining 2q equations
q

S|>2.-l]= £ Ui'Xu, V)w2r_{\,
' = ' \ • (9)

S[W2i] - £ Ui'Xu, V)*>2r]-
r = 1

It follows from (8) that in general

4>i = <l>i(u,Vx). (10)

Equations (9) then represent 2q equations in the 2q unknowns [G^, s, [w3], ...,
[w2q], which are to be obtained in terms of the conditions ahead of the dis-
continuity. There exists in general, therefore, a finite number of discrete sets of
solutions to (9) satisfying (7), These are of little interest, however, since the
probability of conditions being exactly right for the occurrence of one of these
sets of solutions in a physical situation is zero.

For a solution of (6) to be physically significant, we require it to exist for a
continuous finite range (however small) of conditions behind the discontinuity;
that is to say, we require a degree of freedom, which could perhaps be the jump
in 0t. If this is chosen arbitrarily, equations (9) will in general be incompatible.
But we shall see that when each / / r ) depends on u and »t only, solutions exist.
We therefore restrict our attention to such systems, for which

fir)=flr\u,tl). (11)

The isotropic systems considered in (1), (2) and (3) are all of this form.
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Using (7), equations (9) give

(12)

with summation over r.
These may be written in the form

(&j,—s<5y)r2y-i = {blJ-sdij)r2J = 0,

where &y=/i0 ) , (13)

and rt = [wj .

Thus solutions of (12) exist whenever the velocity s is an eigenvalue of the matrix
B = (btJ)q§r We shall see that every eigenvalue of the matrix B is an eigenvalue
of the matrix A, defined in (14). In hyperbolic systems the eigenvalues of A are
real and distinct, so we have that q distinct types of circular discontinuity can
propagate.

4. Circular simple waves in an isotropic system

The system of conservation laws (1) may be written in the form

V,t+A(V)V,x = 0,

, A f \ d F

where A = (O».« = —.
ov )

From the definitions of F and V, and equations (10) and (11), we can show
that A may be represented in the form of a partitioned matrix

cos 0t Ct sin
A2 (15)

_A3 C3 cos 0j B+C3 sin

where B is defined by (13) and

Ax = (<t>u Uj)Ptp, A2 = Uii-u "A , P , A3 = (fa, UJX,P,l
\ (16)

In this notation, (gij)r,s represents the r X J matrix whose y-th element is gti.
If the system (14) is hyperbolic, then it has exactly n simple wave solutions

corresponding to the n eigenvalues of A. The theory of these simple waves is
described in detail by Courant and Hilbert (5) and Jeffrey and Taniuti (6). We
shall show that exactly q simple waves are circular.

If A w is the fc-th eigenvalue of B, and vf^ the corresponding right eigenvector,
we have that

<%vf = 0.
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A straightforward calculation shows that

where

!

smQlVf\ m = p+j,j = l,...,q, (17)

cos WjV)', m =

Thus, every eigenvalue of B is an eigenvalue of A, and so the velocity of pro-
pagation of the discontinuity is equal to an eigenvalue of A on each side of the
discontinuity. Jeffrey and Taniuti (6) have called such discontinuities " excep-
tional ", in contrast to " intermediate discontinuities ", for which the velocity
of propagation is equal to an eigenvalue on one side, and " genuine shocks ",
for which the velocity of propagation is not equal to an eigenvalue on either
side of the discontinuity.

Across each simple wave, n - 1 functions of the dependent variables, called
the generalised Riemann invariants, are constant. In the simple wave corres-
ponding to the eigenvalue k(k), these invariants are obtained by solving the
system of differential equations

duj _ _ dup _ dwt _ _ dw2 _ _ dw2q

(*) ' " (*) (*) ' (*) ' ' ( * ) '
Ml Up Hp+l H'p + q+l /*n

Thus from (17) the first/? invariants are

ut = constant, i = 1, ..., p,

while another invariant is obtained from

dw2

as Vi = constant.
Thus the simple wave corresponding to each eigenvalue Xw, k = 1 q,

is circular. Since the system (14) is hyperbolic, the eigenvalues of A, and hence
of B, are real and distinct. It is easily verified that no other simple waves possess
these invariants, so it follows that q distinct types of circular simple wave can
propagate.

5. A further result on circular waves
By using techniques identical in principle to the above, we may prove the

following result.
We suppose that wave propagation in a certain medium is governed by the

system of n = p+2mq hyperbolic conservation laws

V,t+F,x = O, F=F(V),
E.M.S.—I
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in which V and F are given by

V =

UP

w'2mg

and F =

(h

f}

. Jlmq s

and the functions $ ; and/( are of the form

flmi =

where

Then exactly q distinct circularly polarised discontinuities and simple waves
can propagate, across each of which the quantities uu ...,up, vlt ...,vm are
unaltered. The velocities of these waves are given as before, by the eigenvalues
of the matrix

B = ( f0)")

6. Transverse waves

In the isotropic systems which have so far been studied in detail, all discon-
tinuities and simple waves which are not circular are transverse, in the sense that
the direction of the pair {wu w2) remains unaltered across them. In this section
we show that this result is not true in general, but obtain a sufficient condition
for it to hold for a given system.

We consider the transformation

where (18)

and X is an arbitrary parameter which is not an eigenvalue of Ax or B. Since
the jacobian / = \At — XI\ of the transformation is non-zero, the transform-
ation is non-singular.

For any function G of u, vu and A, we define

(19)

(20)

/, vu A) = G(u(ij/, vu X), vu A).

We define the q x q matrix Nw = (n\j\tq as
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In this section we prove that for both discontinuities and simple waves, all
non-circular waves are transverse if

that is. if the ratios n\fln^l may be written as functions of <£—ku and A alone,
with no explicit dependence on vt.

6.1. We now prove this result for discontinuities. We first use the definition
(20) to obtain certain identical relations involving some of the elements of #(s),
where s is an arbitrary parameter which is not an eigenvalue of Av or B. It
follows from (20) that

If we divide by rffl, assuming this to be non-zero, put / = 1, take the jump
of each side of this equation across any discontinuity, and multiply by n^\, we
obtain ,

«l-) + [ / i r ) ] = ^(s)+0(s)<5,>, (22)

where Fr<
5>= -»ff+(//r )"-s«jr)Wj)/»fi], (23)

and superscripts + and — denote quantities evaluated behind and ahead of
the discontinuity.

We now return to the original system (6), and obtain conditions under
which all non-circular discontinuities are transverse. We therefore require s
to be the velocity of a non-circular discontinuity. The jump relations take the
form

( 2 4 )

The second set may be written
r -i /*(r) + r

i = 1, ..., q.

After some rearrangement, we can use (20) to show that

We now use the identity (22) to obtain

(25)
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The condition for a discontinuity to be transverse is that [w1]/[w2] = wj" /w J .
From (25), this is so if

iV(s)=0, r = 2,...,q.

Since [n|jY«ii] = 0 when j = 1, we have from (23) that this is so if and only if

K7»i s n=0 , j = 2,...,q. (26)
If we write these in terms of \j/ and vu and note that from the first of (24),

[\j/] = 0, we see that (26) can hold if and only if i^ does not appear explicitly
in nff/rifl. Equation (26) is therefore equivalent to (21) with X replaced by s.

6.2. We now prove the result (21) for simple waves. From the definition
(20), we have the identity

If we divide this by n$, assuming this to be non-zero, put i = 1, apply the
transformation (18), differentiate with respect to vu and multiply by nffl, we
obtain an identity analogous to (22), valid for all X except those which are eigen-
values of B and Au this being

(27)
where

FW=-ftiW>-A5yr)fi«,, (28)

and
£W = /$>/«<» (29)

We now return to the original system (14) and define X to be an eigenvalue
of A which is not an eigenvalue of B. We note that if we assume that not all
a,-, i = 1, ..../», are zero, then X is also not an eigenvalue of Ar. If r is the corres-
ponding right eigenvector, we have that

(A-XI)r = 0.

From (15), this may be split up into three vectorial equations

(&>UJ-A<5lV)r,-+&!<*( = 0. i = U •••. P,

tt J, = 0, i = 1, ..., q, • (30)

Xj M = P, i = 1, .... q,

where

From (30)t, we have

where we define Mm = (jn\f\ q by

Mw = 0 4 , - XI)'1. (32)
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If we substitute into (30)2) 3, we can use (20) to show that

But from (18), for any function G of u and vu we have

dG 8G\ = (dG_ d&^lAi-kl, a\
duT'dvJ \dxbT'dvJ\

\ 0 . 1 /

where the superscript T denotes transposition, and a is given by (16).
Hence we obtain

(33)

_ dG
f/T' dvtj \duT' dvt

' 0 , 1

where Mw is given by (32).
Thus, for G =f)"\ we see that

Hr) _ r (r) _ Wr)

Using (34) and (27), we find from (33) that

(35)

The condition for a simple wave to be transverse is that one of the generalised
Riemann invariants be 0t. This requires that rp+l/rp+q+1 = wjw2, and from
(35) this is so if

From (28), since h[xXt = 0, this is so if and only if

fiJ«,=0, j = 2,...,q,

which, in view of (29). is identical to (21).
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