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On the Commutators of Singular Integral
Operators with Rough Convolution Kernels

Xiaoli Guo and Guoen Hu

Abstract. Let TΩ be the singular integral operator with kernel (Ω(x))/∣x∣n , where Ω is homoge-
neous of degree zero, has mean value zero, and belongs to Lq

(Sn−1
) for some q ∈ (1,∞]. In this

paper, the authors establish the compactness on weighted Lp spaces and theMorrey spaces, for the
commutator generated by CMO(Rn

) function and TΩ . _e associated maximal operator and the
discretemaximal operator are also considered.

1 Introduction

In the last sixty years, considerable attention has been paid to themapping properties
of singular integral operators with homogeneous kernels. Let Ω be homogeneous
of degree zero in Rn , integrable, and have mean value zero on the unit sphere Sn−1.
Deûne the singular integral operator TΩ by

(1.1) TΩ f (x) = p. v.∫
Rn

Ω(x − y)
∣x − y∣n

f (y)dy.

_emaximal operator associated with TΩ is deûned by

T⋆
Ω f (x) = sup

є>0
∣ ∫

∣x−y∣>є

Ω(x − y)
∣x − y∣n

f (y)dy∣ .

_ese operators were introduced by Calderón and Zygmund [5] and were subse-
quently studied by many authors. Calderón and Zygmund [6] proved that if Ω ∈

L ln L(Sn−1), then TΩ and T∗
Ω are bounded on Lp(Rn) for p ∈ (1,∞). Connett

[13], and Ricci and Weiss [24] improved the result of Calderón and Zygmund and
showed that Ω ∈ H1(Sn−1) guarantees the Lp(Rn) boundedness on Lp(Rn) for p ∈

(1,∞). Seeger [26] showed that Ω ∈ L ln L(Sn−1) is a suõcient condition for TΩ to
be bounded from L1(Rn) to L1,∞(Rn). Duoandikoetxea and Rubio de Francia [16],
Duoandikoetxea [15], andWatson [30] considered theweighted estimates for TΩ and
T⋆

Ω when Ω ∈ Lq(Sn−1) for some q ∈ (1,∞]. For other works on TΩ and T⋆
Ω , see

[14, 18] and the references therein.
Let BMO(Rn) be the space of functions of boundedmean oscillation introduced

by John and Nirenberg, and let b ∈ BMO(Rn). Deûne the commutator of TΩ and b
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by

TΩ ,b f (x) = b(x)TΩ f (x) − TΩ(b f )(x)

initially for f ∈ S(Rn). As usual, themaximal operator associatedwith TΩ ,b is deûned
as

(1.2) T⋆
Ω ,b f (x) = sup

є>0
∣ ∫

∣x−y∣>є
(b(x) − b(y)) Ω(x − y)

∣x − y∣n
f (y)dy∣ .

Coifman, Rochberg, andWeiss [11] proved that if Ω ∈ Lipα(Sn−1) (α ∈ (0, 1)), then
TΩ ,b is bounded on Lp(Rn) (p ∈ (1,∞)) if and only if b ∈ BMO(Rn). For p ∈

[1,∞), let Ap(Rn) be the weight functions class of Muckenhoupt (see [17, Chap. 9]
for deûnitions and properties ofAp(Rn)). Using theweighted estimateswithAp(Rn)
weights of TΩ , and the relation of Ap weights and BMO(Rn) functions, Alvarez et
al. [2] proved that Ω ∈ Lq(Sn−1) for some q ∈ (1,∞] guarantees the boundedness
on Lp(Rn ,w) for TΩ ,b when p ∈ (q′ ,∞) and w ∈ Ap/q′(Rn), which, via duality,
shows that TΩ ,b is bounded on Lp(Rn ,w) if p ∈ (1, q) and w−1/(p−1) ∈ Ap′/q′(Rn),
where and in the following, for p ∈ (1,∞), p′ denotes the dual exponent of p, that is,
p′ = p/(p−1). Hu [19] showed that themaximal commutator T⋆

Ω ,b is also bounded on
Lp(Rn ,w) with bound C∥b∥BMO(Rn), provided that p ∈ (q′ ,∞) and w ∈ Ap/q′(Rn)

or p ∈ (1, q) and w−1/(p−1) ∈ Ap′/q′(Rn). Hu [20] proved that Ω ∈ L(ln L)2(Sn−1) is
a suõcient condition such that TΩ ,b and T⋆

Ω ,b are bounded on Lp(Rn) with bound
C∥b∥BMO(Rn) for all p ∈ (1,∞).

_e compactness of TΩ ,b on function spaces is of interest and has been considered
by many authors. Let CMO(Rn) be the closure of C∞0 (Rn) in the BMO(Rn) topol-
ogy, which coincide with the space of functions of vanishing mean oscillation; see
[4, 12]. For the case of Ω ∈ Lipα(Sn−1) (α ∈ (0, 1)), Uchiyama [29] proved that TΩ ,b
is compact on Lp(Rn) if and only if b ∈ CMO(Rn). Fairly recently, Chen and Hu
[8] considered the compactness on Lp(Rn) for TΩ ,b when Ω satisûes a certain min-
imum size condition. Our ûrst purpose in this paper is to consider the compactness
on weighted Lp spaces for TΩ ,b and its discrete maximal operator (see (1.3)) when
Ω ∈ Lq(Sn−1) for some q ∈ (1,∞]. To formulate our result, we ûrst recall some nota-
tion and deûnitions.
For a weight w, let Lp(Rn ,w) be the weighted Lp(Rn) spaces with weight w, de-

ûned by
Lp

(Rn ,w) = { f ∶ ∥ f ∥Lp(Rn ,w) <∞},
with

∥ f ∥Lp(Rn ,w) = ( ∫
Rn

∣ f (x)∣pw(x)dx)
1/p

.

Deûnition 1.1 LetX be anormed linear spaces and letX∗ be itsdual space, {xk} ⊂ X

and x ∈ X. If for all f ∈ X∗,

lim
k→∞

∣ f (xk) − f (x)∣ = 0,

then {xk} is said to converge to x weakly, or xk ⇀ x.
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Deûnition 1.2 LetX, Y be two Banach spaces and let S be a bounded operator from
X to Y.
(i) If for each bounded set G ⊂ X, SG = {Sx ∶ x ∈ G} is a strongly pre-compact set

in Y, then S is called a compact operator from X to Y.
(ii) If for {xk} ⊂ X and x ∈ X,

xk ⇀ x in X⇒ ∥Sxk − Sx∥Y → 0,

then S is said to be a completely continuous operator.

It is well known that if X is a re�exive space and S is completely continuous from
X to Y, then S is also compact fromX to Y. On the other hand, if S is a linear compact
operator from X to Y, then S is also a completely continuous operator. However, if
S is not linear, then S being compact operator does not imply that S is completely
continuous. For example, the operator Sx = ∥x∥l 2 is compact from l 2 to R, but not
completely continuous.

Our ûrst result can be stated as follows.

_eorem 1.3 LetΩ be homogeneous of degree zero,Ω ∈ Lq(Sn−1) for some q ∈ (1,∞]

and havemean value zero on Sn−1. Let p and w satisfy one of the following conditions:
(i) p ∈ (q′ ,∞) and w ∈ Ap/q′(Rn);
(ii) p ∈ (1, q) and w−1/(p−1) ∈ Ap′/q′(Rn).
_en for b ∈ CMO(Rn), TΩ ,b and the discretemaximal operator T⋆⋆

Ω ,b deûned by

(1.3) T⋆⋆
Ω ,b f (x) = sup

k∈Z
∣ ∫

∣x−y∣>2k
(b(x) − b(y)) Ω(x − y)

∣x − y∣n
f (y)dy∣

are completely continuous (and compact) on Lp(Rn ,w).

Remark 1.4 Let β > 1. _e conclusions of_eorem 1.3 are still true for the discrete
maximal operator deûned by

T⋆⋆,β
Ω ,b f (x) = sup

k∈Z
∣ ∫

∣x−y∣>βk
(b(x) − b(y)) Ω(x − y)

∣x − y∣n
f (y)dy∣ .

To prove_eorem 1.3, we will approximate the operators TΩ and themaximal op-
erator

T⋆⋆
Ω f (x) = sup

k∈Z
∣ ∫

∣x−y∣>2k
Ω(x − y)
∣x − y∣n

f (y)dy∣

by convolution operators whose kernels enjoy appropriate regularity. _is idea was
developed by Watson [30] and was used to prove the compactness on Lp(Rn) for
the commutators of rough operators by Chen and Hu [8]. We do not know if T⋆

Ω
can be approximated by convolution operators whose kernels are smooth, or if the
conclusion in _eorem 1.3 holds true for the maximal commutator T⋆

Ω ,b deûned by
(1.2). As a substitution, we can prove the following theorem.
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_eorem 1.5 LetΩ be homogeneous of degree zero and havemean value zero on Sn−1.
Suppose that Ω ∈ Lq(Sn−1) for some q ∈ (1,∞], p and w satisfy one of the conditions
in _eorem 1.3. _en for { fk} ⊂ Lp(Rn ,w) and f ∈ Lp(Rn ,w),

∣ fk − f ∣⇀ 0 in Lp
(Rn ,w)⇒ ∥T⋆

Ω ,b fk − T⋆
Ω ,b f ∥Lp(Rn ,w) → 0.

Remark 1.6 Let b ∈ BMO(Rn). Deûne the operator MΩ ,b by

(1.4) MΩ ,b f (x) = sup
l∈Z

∣ ∫
2 l≤∣x−y∣<2 l+1

Ω(x − y)
∣x − y∣n

∣b(x) − b(y)∣2 f (y)dy∣ .

We can verify that

∥T⋆
Ω ,b fk − T⋆

Ω ,b f ∥ Lp(Rn ,w)
≤ ∥MΩ ,b(∣ fk − f ∣)∥

1
2

Lp(Rn ,w)
∥ fk − f ∥

1
2
Lp(Rn ,w)

+ ∥T⋆⋆
Ω ,b( fk − f )∥ Lp(Rn ,w)

.

Under the hypothesis of_eorem 1.3, for b ∈ C∞0 (Rn), we can prove that

∣ fk − f ∣⇀ 0 in Lp
(Rn ,w)⇒ ∥MΩ ,b(∣ fk − f ∣)∥Lp(Rn) → 0;

see the proof of_eorem 1.5 for details. However,

fk − f ⇀ 0 in Lp
(Rn ,w) /⇒ ∥MΩ ,b(∣ fk − f ∣)∥Lp(Rn) → 0.

To see this, let g(x) = χ[0,1]n(x) and gm(x) = exp(2πimx)g(x) for m ∈ Zn . It is easy
to verify that {gm}m∈Zn is an orthogonal system of L2(Rn). _us, in L2(Rn), gm ⇀ 0
(∣m∣→∞), but ∥MΩ ,b(∣gm ∣)∥ L2(Rn)

= ∥MΩ ,b g∥L2(Rn) . So, our argument in the proof
of_eorem 1.5 does not lead to T⋆

Ω ,b being completely continuous.

It should be pointed out that the estimates used in the proof of _eorem 1.3 also
lead to the compactness on weightedMorrey spaces for TΩ ,b and T⋆⋆

Ω ,b .

Deûnition 1.7 Let p ∈ (0,∞) and λ ∈ (0, n). _eMorrey space Lp,λ(Rn) is deûned
as

Lp,λ
(Rn

) = { f ∈ Lp
loc(R

n
) ∶ ∥ f ∥Lp,λ(Rn) <∞} ,

with

∥ f ∥Lp,λ(Rn) = sup
y∈Rn ,r>0

(
1
rλ ∫B(y ,r)

∣ f (x)∣p dx)
1/p
,

where B(y, r) denotes the ball in Rn centered at y and having radius r.

_e space Lp,λ(Rn) was introduced by Morrey [22]. It is well known that this
space is closely related to some problems in PDE (see [25, 27]), and has interest in
harmonic analysis (see [1] and the references therein). Chen et al. [9] considered the
compactness of TΩ ,b on Morrey spaces. _ey proved that if λ ∈ (0, n), Ω ∈ Lq(Sn−1)

for q ∈ (n/(n − λ),∞] and satisûes the regularity condition that

(1.5) ∫

1

0
ωq(δ)(1 + ∣ ln δ∣) dδ

δ
<∞,
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then for b ∈ CMO(Rn), TΩ ,b is bounded on Lp,λ(Rn). Here ωq denotes the
Lq-integral modulus of continuity of Ω deûned by

ωq(δ) = ( sup
∥ρ∥<δ

∫
Sn−1

∣Ω(ρx′) −Ω(x′)∣qdx′)
1/q

and sup is taken over all rotations on Sn−1, ∥ρ∥ = supx′∈Sn−1 ∣ρx′ − x′∣. Applying the
estimates used in the proof of _eorem 1.2, we will show that to guarantee the com-
pactness of TΩ ,b onMorrey space, assumption (1.5) is super�uous. More precisely,we
will prove the following theorem.

_eorem 1.8 Let Ω be homogeneous of degree zero and have mean value zero on
Sn−1. Suppose that Ω ∈ Lq(Sn−1) for some q ∈ (1,∞], p ∈ (q′ ,∞) and λ ∈ (0, n), or
p ∈ (1, q′] and λ ∈ (0, n/q′). _en for b ∈ CMO(Rn),
(i) the operators TΩ ,b and T⋆⋆

Ω ,b are completely continuous and compact on Lp,λ(Rn);
(ii) for { fk} ⊂ Lp,λ(Rn) and f ∈ Lp,λ(Rn),

∣ fk − f ∣⇀ 0 in Lp,λ
(Rn

)⇒ ∥T⋆
Ω ,b fk − T⋆

Ω ,b f ∥Lp,λ(Rn) → 0.

Remark 1.9 We do not know if the conclusion in _eorem 1.8 holds true for the
weighted case.

In what follows, C always denotes a positive constant that is independent of the
main parameters involved but whose value may diòer from line to line. We use the
symbol A ≲ B to denote that there exists a positive constant C such that A ≤ CB. For
a set E ⊂ Rn , χE denotes its characteristic function. Let M be the Hardy–Littlewood
maximal operator. For r ∈ (0,∞), we use Mr to denote the operator Mr f (x) =

(M(∣ f ∣r)(x))1/r .

2 Approximations

Let Ω be the same as in _eorem 1.3. Set K(y) = (Ω(y))/∣y∣n . For each l ∈ Z, let

K l
Ω(y) = Ω(y)

∣y∣n
χ{2 l<∣y∣≤2 l+1}(y).

By the vanishing moment of Ω, it is easy to verify that if Ω ∈ Lq(Sn−1), then there
exists a constant α ∈ (0, 1) such that for ξ ∈ Rn/{0},

(2.1) ∣K̂ l
Ω(ξ)∣ ≲ min{ ∣2l ξ∣, ∣2l ξ∣−α} .

Let ϕ ∈ C∞0 (Rn) be a nonnegative function such that

∫
Rn

ϕ(x)dx = 1, supp ϕ ⊂ {x ∶ ∣x∣ ≤ 1/4}.

For l ∈ Z, let ϕ l(y) = 2−nlϕ(2−l y). We then have that for all γ ∈ (0, 1) and ξ ∈ Rn ,

(2.2) ∣ϕ̂ l(ξ) − 1∣ = ∣ϕ̂(2l ξ) − 1∣ ≲ min{1, ∣2l ξ∣γ}.
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As in [30], for a positive integer j, let

(2.3) K j
(y) =

∞

∑
l=−∞

K l
Ω ∗ ϕ l− j(y),

and T j
Ω be the convolution operator to be given by

(2.4) T j
Ω f (x) = p. v.∫

Rn
K j

(x − y) f (y)dy.

As usual, themaximal operator corresponding to T j
Ω is given by

T j,⋆
Ω f (x) = sup

є>0
∣ ∫

∣x−y∣>є
K j

(x − y) f (y)dy∣ .

Lemma 2.1 Let s ∈ (1,∞], let Ω be homogeneous of degree zero and integrable on
Sn−1, and let K j be the function deûned as in (2.3). _en for any y ∈ Rn and R > 0 with
R > 4∣y∣,

(2.5) ∑
l∈Z

∞

∑
m=1

(2mR)
n
q′ ( ∫

2m−1R<∣x ∣≤2mR
∣K l

Ω ∗ ϕ l− j(x + y) − K l
Ω ∗ ϕ l− j(x)∣

qdx)
1
q

≲ j∥Ω∥Lq(Sn−1) ,

(2.6) ∑
l∈Z

∞

∑
m=1

(2mR)
n
s ( ∫

2mR<∣x ∣≤2m+1R
∣K l

Ω ∗ ϕ l− j(x + y) − K l
Ω ∗ ϕ l− j(x)∣

s′dx)
1
s′

≲ 2 j(n+1)
∥Ω∥L1(Sn−1)

∣y∣
R

.

Proof Estimate (2.5) was proved in [30]. To prove (2.6), observing that

∥ϕ l− j( ⋅ + y) − ϕ l− j( ⋅ )∥Ls′(Rn) ≲ 2( j−l)n/s min{1, 2 j−l
∣y∣},

we know that for all k ∈ N,

(2kR)n/s
∑
l∈Z

( ∫
2kR<∣x ∣≤2k+1R

∣K l
Ω ∗ ϕ l− j(x + y) − K l

Ω ∗ ϕ l− j(x)∣s
′
dx)

1/s′

≲ (2kR)n/s
∑

l∈Z∶2 l≈2kR
∥K l

Ω∥L1(Rn)∥ϕ l− j( ⋅ + y) − ϕ l− j( ⋅ )∥Ls′(Rn)

≲ 2 jn/s min{1, 2 j ∣y∣
2kR

}.

_is in turn leads to

∑
l∈Z

∞

∑
k=1

(2kR)n/s
( ∫

2kR<∣x ∣≤2k+1R
∣K l

Ω ∗ ϕ l− j(x + y) − K l
Ω ∗ ϕ l− j(x)∣

s′dx)
1/s′

≲ 2 jn/s2 j
∣y∣

∞

∑
k=1

(2kR)−1
≲ 2 jn/s2 j ∣y∣

R
,

which completes the proof of Lemma 2.1.
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Lemma 2.2 Let Ω be homogeneous of degree zero, have mean value zero, let Ω ∈

Lq(Sn−1) for some q ∈ (1,∞], and let p and w be the same as in _eorem 1.3. _en the
operators T j

Ω and T j,⋆
Ω are bounded on Lp(Rn ,w) with bound C j.

Proof Applying the estimate (2.1) and the fact that ∣ϕ̂ l(ξ)∣ ≲ 1, we can verify that for
j ∈ N and ξ ∈ Rn/{0},

∑
l∈Z

∣K̂ l
Ω(ξ)∣∣ϕ̂ l− j(ξ)∣ ≲ 1.

It then follows from the Plancherel theorem that T j
Ω is bounded on L2(Rn) with

bounded C. _is, alongwith (2.4) in Lemma 2.1 and the result ofKurtz andWheeden
in [21], yields the desired conclusion for T j

Ω .
To consider the operator T j,⋆

Ω , we will use the ideas from [7]. As in [7, Lemma 3],
by Lemma 2.1, we can verify that for bounded function f with compact support,

T j,⋆
Ω f (x) ≲ M(T j

Ω f )(x) + jMq′ f (x),

which, together with the weighted Lp estimates for T j
Ω and M, shows that T j,⋆

Ω is
bounded on Lp(Rn ,w) with bound C j provided that p > q′ and w ∈ Ap/q′(Rn). Let
MΩ be themaximal operator deûned by

MΩ f (x) = sup
r>0
∫
∣y−x ∣<r

∣Ω(x − y)∣∣ f (y)∣dy.

It was proved by Duoandikoetxea in [15] that, if Ω ∈ Lq(Sn−1) for q ∈ (1,∞], then
MΩ is bounded on Lp(Rn ,w) with p and w as in _eorem 1.3(ii). Observe that for
each ûxed R > 0,

∫
R<∣x−y∣≤2R

∣K j
(x − y) f (y)∣dy ≲ MΩM f (x).

As in the proof of [7, Lemma 4], we can verify that if p ∈ (1, q) and w−1/(p−1) ∈

Ap′/q′(Rn), then T j,⋆
Ω is bounded from Lp(Rn ,w) to Lp,∞(Rn ,w) with bound C j.

_is, together with the inverse Hölder inequality of Ap′/q′(Rn), leads to that T j,⋆
Ω is

bounded on Lp(Rn ,w) with bound C j.

We now formulate themain theorem in this section.

_eorem 2.3 Let Ω be homogeneous of degree zero and have mean value zero, let
TΩ and T j

Ω be the operators deûned by (1.1) and (2.4), respectively. Suppose that Ω ∈

Lq(Sn−1) for some q ∈ (1,∞], and let p and w be the same as in _eorem 1.3. _en
there exists a constant β ∈ (0, 1) such that

∥TΩ f − T j
Ω f ∥Lp(Rn ,w) ≲ 2−β j

∥ f ∥Lp(Rn ,w) ,(2.7)

∥ sup
k∈Z

∣
∞

∑
l=k

S j
l ∗ f ∣ ∥ Lp(Rn ,w)

≲ 2−β j
∥ f ∥Lp(Rn ,w) ,(2.8)

∥ sup
l∈Z

∣ S̃ j
l ∗ f ∣ ∥ Lp(Rn ,w)

≲ 2−β j
∥ f ∥Lp(Rn ,w) .(2.9)
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Here and in the following, for l ∈ Z and j ∈ N, we set

S j
l (y) = K l

Ω(y) − K l
Ω ∗ ϕ l− j(y), S̃ j

l (y) = ∣K l
Ω(y)∣ − ∣K l

Ω ∣ ∗ ϕ l− j(y).

Proof Estimate (2.7) was established by Watson [30]. To prove (2.8), we will use an
idea from [16], with appropriatemodiûcations. Let ψ ∈ C∞0 (Rn) such that

suppψ ⊂ {x ∈ Rn
∶ ∣x∣ ≤ 2}, ψ(x) ≡ 1, if ∣x∣ ≤ 1.

For each integer k, let Ψk ∈ S(Rn) such that Ψ̂k(ξ) = ψ(2k ξ). For each ûxed k ∈ Z,
write

∞

∑
l=k

S j
l ∗ f (x) = Ψk ∗ (TΩ f − T j

Ω f )(x) −Ψk ∗ (
k−1

∑
l=−∞

S j
l ∗ f )(x)

+
∞

∑
l=k

(δ −Ψk) ∗ S j
l ∗ f (x)

= I jk f (x) + II jk f (x) + III jk f (x),

with δ the Dirac distribution. It is obvious that

∣ I jk f (x)∣ ≲ M(TΩ f − T j
Ω f )(x),

and so for β1 ∈ (0, 1),

∥ sup
k∈Z

∣I jk f ∣∥ L2(Rn)
≲ ∥TΩ f − T j

Ω f ∥L2(Rn) ≲ 2−β1 j∥ f ∥L2(Rn) .

To give the desired estimate for supk∈Z ∣ II jk f ∣ , write

sup
k∈Z

∣ II jk f (x)∣ ≲ (
∞

∑
u=−∞

∣Ψu ∗
u−1

∑
l=−∞

S j
l ∗ f (x)∣

2
)

1/2
.

Noticing that for any ξ ∈ Rn ,

∣ψ(2u ξ)
u−1

∑
l=−∞

K̂ l
Ω(ξ)( ϕ̂(2l− jξ) − 1) ∣ ≲ ∣ψ(2u ξ)∣

u−1

∑
l=−∞

∣2l− jξ∣

≲ 2− j ∣ψ(2u ξ)∣ ∣2u ξ∣,

we have, by the Plancherel theorem, that

∥ sup
k∈Z

∣ II jk f ∣ ∥
2
L2(Rn)

≤
∞

∑
u=−∞

∥Ψu ∗
u−1

∑
l=−∞

S j
l ∗ f ∥

2

L2(Rn)

=
∞

∑
u=−∞

∫
Rn

∣
u−1

∑
l=−∞

K̂ l
Ω(ξ)( ϕ̂(2l− jξ) − 1) ∣

2
∣ψ(2u ξ) f̂ (ξ)∣ 2dξ

≲ 2−2 j
∫
Rn

∞

∑
u=−∞

∣ψ(2u ξ)∣ 2∣2u ξ∣2∣ f̂ (ξ)∣ 2 dξ.

_is, together with the fact that suppψ ⊂ {x ∶ ∣x∣ ≤ 2}, implies

∥ sup
k∈Z

∣ II jk f ∣ ∥ L2(Rn)
≲ 2− j

∥ f ∥L2(Rn) .
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As for the term supk∈Z ∣ III jk f ∣ , write

sup
k∈Z

∣III jk f (x)∣ ≤
∞

∑
l=0

sup
k∈Z

∣ (δ −Ψk) ∗ S j
l+k ∗ f (x)∣

≲
∞

∑
l=0

(
∞

∑
u=−∞

∣ (δ − Ψu−l) ∗ S j
u ∗ f (x)∣

2
)

1/2
.

An application of (2.1) and (2.2) tells us that

∥(
∞

∑
u=−∞

∣ (δ −Ψu−l) ∗ S j
u ∗ f (x)∣

2
)

1/2
∥

2

L2(Rn)

=
∞

∑
u=−∞

∫
Rn

∣ 1 − ψ(2u−l ξ)∣ 2∣ K̂u
Ω(ξ)( ϕ̂(2u− jξ) − 1) ∣

2
∣ f̂ (ξ)∣2dξ

≲ ∫
Rn

∞

∑
u=−∞

∣1 − ψ(2u−l ξ)∣2∣2u ξ∣−2α
∣2u− jξ∣α ∣ f̂ (ξ)∣ 2 dξ

≲ 2−α l2− jα
∥ f ∥2

L2(Rn) ,

where we have invoked the Fourier transform (2.2) with γ = α/2. Combining the
estimates for supk∈Z ∣I jk f ∣, supk∈Z ∣II jk f ∣ and supk∈Z ∣III jk f ∣ leads to

(2.10) ∥ sup
k∈Z

∣
∞

∑
l=k

S j
l ∗ f ∣ ∥ L2(Rn)

≲ 2−β2 j∥ f ∥L2(Rn)

with β2 a positive constant. On the other hand, applying Lemma 2.2, we then obtain
that for the same p and w as in _eorem 1.3,

∥ sup
k∈Z

∣
∞

∑
l=k

S j
l ∗ f ∣ ∥ Lp(Rn ,w)

≲ ∥T j,⋆
Ω f ∥Lp(Rn ,w) + ∥T⋆

Ω f ∥Lp(Rn ,w)

≲ j∥ f ∥Lp(Rn ,w) .

(2.11)

Recall that if p ∈ (q′ ,∞) and w ∈ Ap/q′(Rn) (or p ∈ (1, q) and w−1/(p−1) ∈

Ap′/q′(Rn)), then there exists a constant θ > 1, such thatwθ ∈ Ap/q′(Rn) (or p ∈ (1, q)
and w−θ/(p−1) ∈ Ap′/q′(Rn) ). _e inequalities (2.10) and (2.11), via the interpolation
with change ofmeasures (see [28]), yield (2.8).

It remains to prove (2.9). Note that

∣ S̃ j
l ∗ f (x)∣ ≲ MΩ f (x) +MΩM f (x).

_us, it suõces to prove that for some α ∈ (0, 1) in (2.1),

(2.12) ∥S̃ j
l ∗ f ∥L2(Rn) ≲ 2−α j

∥ f ∥L2(Rn) .

On the other hand, by the Plancherel theorem,

∥ sup
l∈Z

∣ S̃ j
l ∗ f ∣ ∥

2

L2(Rn)
=∑

l∈Z
∫
Rn

∣
̂̃S j

l (ξ)∣
2
∣ f̂ (ξ)∣2 dξ.
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Since K̃ l
Ω(x) = ∣K l

Ω(x)∣ also satisûes ∣ ̂̃K l
Ω(ξ)∣ ≲ ∣2l ξ∣−α , we then get that

∑
l∈Z

∣
̂̃S j

l (ξ)∣
2
≲∑

l∈Z
∣1 − ϕ(2l− jξ)∣2∣2l ξ∣−2α

= ∑
l∈Z∶∣2 l ξ∣>2 j

∣2l ξ∣−2α
+ ∑

l∈Z∶∣2 l ξ∣≤2 j
∣2l− jξ∣2∣2l ξ∣−2α

≲ 2−2α j .

_is implies (2.12), which completes the proof of_eorem 2.3.

3 Proofs of Theorems 1.3 and 1.5

Let p ∈ [1,∞), let w be a weight, and let Lp(l∞; Rn ,w) be the space of sequences of
functions deûned by

Lp
(l∞;Rn ,w) = {{ fk}k∈Z ∶ ∥{ fk}∥Lp(l∞ ;Rn ,w) <∞} ,

with
∥{ fk}∥Lp(l∞ ;Rn ,w) = ∥ sup

k∈Z
∣ fk ∣∥ Lp(Rn ,w)

.

With usual addition and scalar multiplication, Lp(l∞;Rn ,w) is a Banach space.

Lemma 3.1 Let p ∈ (1,∞) and w ∈ Ap(Rn), G ⊂ Lp(l∞; Rn ,w). Suppose that G
satisûes the following four conditions:
(i) G is bounded, that is, there exists a constant C such that for all f⃗ = { fk}k∈Z ∈ G,

∥ f⃗ ∥Lp(l∞ ;Rn ,w) ≤ C;
(ii) for each ûxed є > 0, there exists a constant A > 0 such that for all { fk}k∈Z ∈ G,

∥ sup
k∈Z

∣ fk ∣χ{∣ ⋅ ∣>A}( ⋅ )∥ Lp(Rn ,w)
< є;

(iii) for each ûxed є > 0, there exists a constant ρ > 0 such that for all t ∈ Rn with
∣t∣ < ρ and f⃗ = { fk}k∈Z ∈ G,

∥ f⃗ ( ⋅ + t) − f⃗ ( ⋅ )∥Lp(l∞ ;Rn ,w) < є;

(iv) for each ûxed D > 0 and є > 0, there exists N ∈ N such that for all { fk}k∈Z ∈ G,

∥ sup
k>N

∣ fk ∣χB(0,D)∥ Lp(Rn ,w)
< є and ∥ sup

k<−N
∣ fk − f−N ∣∥ Lp(Rn ,w)

< є.

_en G is a strongly pre-compact set in Lp(l∞; Rn ,w).

Proof We employ the argument used in the proof of [10, _eorem 5] with some
suitable modiûcations. We claim that for each ûxed є > 0, there exists a δ = δє > 0
and amapping Φє on Lp(l∞; Rn ,w) such that Φє(G) = {Φє( f⃗ ) ∶ f⃗ ∈ G} is a strong
pre-compact set in Lp(l∞; Rn ,w), and for all f⃗ , g⃗ ∈ G,

∥Φє( f⃗ ) −Φє(g⃗)∥Lp(l∞ ;Rn ,w) < δ⇒ ∥ f⃗ − g⃗∥Lp(l∞ ;Rn ,w) < 9є.
If we can prove this, then by [10, Lemma 6], we see that G is a strongly pre-compact
set in Lp(l∞; Rn ,w).

Now let є > 0. We choose A > 1 large enough as in assumption (ii), and ρ < 1 small
enough as in assumption (iii). LetQ be the largest cube centered at the origin such that
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2Q ⊂ B(0, ρ), and let Q1 , . . . ,QJ be J copies of Q such that they are non-overlapping
and B(0,A) ⊂ ∪J

j=1Q j ⊂ B(0, 2A). Let N ∈ N such that for all { fk}k∈Z ∈ G,

∥ sup
k>N

∣ fk ∣χB(0,2A)∥ Lp(Rn ,w)
< є/2, ∥ sup

k<−N
∣ fk − f−N ∣∥ Lp(Rn ,w)

< є/2.

Deûne themapping Φє ∶ Lp(l∞;Rn ,w)→ Lp(l∞;Rn ,w) by

(3.1) Φє( f⃗ )(x) = { . . . ,
J
∑
i=1

mQ i ( f−N)χQ i (x), . . . ,
J
∑
i=1

mQ i ( f−N)χQ i (x),

J
∑
i=1

mQ i ( f−N+1)χQ i (x), . . . ,
J
∑
i=1

mQ i ( fN)χQ i (x), 0, 0, . . . } ,

where, and in the following, mQ i ( f ) denotes themean value of f on Q i . Note that

∣mQ i ( fk)∣ ≤ (
1

∣Q i ∣
∫

Q i
∣ fk(x)∣p w(x)dx)

1/p
(

1
∣Q i ∣
∫

Q i
w−1/(p−1)

(x)dx)
1/p′

.

For f⃗ = { fk}k∈Z, we see that

∥Φє( f⃗ )∥p
Lp(l∞ ;Rn ,w)

=
J
∑
i=1
∫

Q i
sup
k∈Z

∣mQ i ( fk)∣
p w(x)dx ≤ ∥ f⃗ ∥p

Lp(l∞ ;Rn ,w)
.

_us, Φє is bounded on Lp(l∞; Rn ,w), and Φє(G) = {Φє( f⃗ ) ∶ f⃗ ∈ G} is a strongly
pre-compact set in Lp(l∞; Rn ,w). DenoteD = ∪

J
i=1Q i . Write

∥ f⃗ χD −Φє( f⃗ )∥Lp(l∞ ;Rn ,w)

≤ ∥ sup
∣k∣≤N

∣ fk χD −
J
∑
i=1

mQ i ( fk)χQ i ∣ ∥ Lp(Rn ,w)

+ ∥ sup
k<−N

∣ fk χD −
J
∑
i=1

mQ i ( f−N)χQ i ∣ ∥ Lp(Rn ,w)
+ ∥ sup

k>N
∣ fk ∣ χB(0,2A)∥ Lp(Rn ,w)

= I + II + III.

A straightforward computation leads to

Ip ≤
J
∑
i=1
∫

Q i
{ sup

∣k∣≤N
∣ fk(x) −

J
∑
l=1

mQ l ( fk)χQ l (x)∣}
p
w(x)dx

≲
J
∑
i=1

1
∣Q i ∣
∫

Q i
sup
∣k∣≤N
∫

Q i
∣ fk(x) − fk(y)∣p dy w(x)dx

≲
J
∑
i=1

1
∣Q i ∣
∫

Q i
∫

2Q
sup
∣k∣≤N

∣ fk(x) − fk(x + h)∣p dhw(x)dx

≲ sup
∣h∣≤ρ

∥ f⃗ ( ⋅ ) − f⃗ ( ⋅ + h)∥p
Lp(l∞ ;Rn ,w)

.
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On the other hand, it follows from theHölder inequality that

∣mQ i ( fk) −mQ i ( f−N)∣
p
≤

1
∣Q i ∣p

∫
Q i

∣ fk(x) − f−N(x)∣pw(x)dx( ∫
Q i
w− 1

p−1 (x)dx)
p−1
,

which, via the fact that w ∈ Ap(Rn), implies that

IIp ≤
J
∑
i=1
∫

Q i
{ sup

k<−N
∣ fk(x) −

J
∑
l=1

mQ l ( fk)χQ l (x)∣}
p
w(x)dx

+
J
∑
i=1
∫

Q i
{ sup

k<−N
∣mQ i ( fk) −mQ i ( f−N)∣}

p
w(x)dx

≲ sup
∣h∣≤ρ

∥ f⃗ ( ⋅ ) − f⃗ ( ⋅ + h)∥Lp(l∞ ;Rn ,w) + ∥ sup
k<−N

∣ fk − f−N ∣∥
p
Lp(Rn ,w)

.

_e estimates for I, II, together with assumption (iv), prove that

∥ f⃗ χD −Φє( f⃗ )∥Lp(l∞ ;Rn ,w) < 3є,

which via assumption (ii) tells us that for all f⃗ ∈ G,

∥ f⃗ −Φє( f⃗ )∥Lp(l∞ ;Rn ,w) < 4є.
Note that

∥ f⃗ − g⃗∥Lp(l∞ ;Rn ,w) ≤ ∥ f⃗ −Φє( f⃗ )∥Lp(l∞ ;Rn ,w) + ∥Φє( f⃗ ) −Φє(g⃗)∥Lp(l∞ ;Rn ,w)

+ ∥g⃗ −Φє(g⃗)∥Lp(l∞ ;Rn ,w) .

Our claim then follows directly. _is completes the proof of Lemma 3.1.

For b ∈ BMO(Rn), let T j
Ω ,b be the commutator of T j

Ω , and let

T j,⋆⋆
Ω ,b f = sup

k∈Z
∣T j,k

Ω ,b f (x)∣

with
T j,k

Ω ,b f (x) =
∞

∑
l=k
∫
Rn

(b(x) − b(y))K l
Ω ∗ ϕ l− j(x − y) f (y)dy.

As in [3], let φ be a non-negative function in C∞(Rn) such that

suppφ ⊂ {x ∈ Rn
∶ ∣x∣ ≥ 1} and φ(x) ≡ 1

when ∣x∣ ≥ 2. For δ > 0, let K j,δ(x) = K j(x)φ(δ−1x), T j,δ
Ω be the convolution op-

erator with kernel K j,δ . For b ∈ BMO(Rn), let T j,δ
Ω ,b be the commutator of T j,δ

Ω and
T j,δ ,⋆⋆

Ω ,b themaximal operator deûned by

T j,δ ,⋆⋆
Ω ,b f (x) = sup

v∈Z
∣T j,δ ,v

Ω ,b f (x)∣,

with

T j,δ ,v
Ω ,b f (x) =

∞

∑
l=v
∫
Rn

(b(x) − b(y))K l
Ω ∗ ϕ l− j(x − y)φ(δ−1

(x − y)) f (y)dy.
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Lemma 3.2 Let b ∈ C∞0 (Rn), Ω ∈ Lq(Sn−1) for some q ∈ (1,∞], and let p and w be
the same as in _eorem 1.3. _en for j ∈ N,

∥T j,δ
Ω ,b f − T j

Ω ,b f ∥ Lp(Rn ,w)
+ ∥ sup

v∈Z
∣T j,δ ,v

Ω ,b f − T j,v
Ω ,b f ∣ ∥ Lp(Rn ,w)

≲ δ∥ f ∥Lp(Rn ,w) .

Proof Let b ∈ C∞0 (Rn). For each ûxed δ > 0, it is easy to verify that

∣T j,δ
Ω ,b f (x) − T j

Ω ,b f (x)∣ + sup
v∈Z

∣T j,δ ,v
Ω ,b f (x) − T j,v

Ω ,b f (x)∣

≲ δ∥∇b∥L∞(Rn)

0

∑
k=−∞

2k
∑
l∈Z
∫

2k δ<∣x−y∣≤2k+1δ
∣K l

Ω ∗ ϕ l− j(x − y)∣ ∣ f (y)∣dy

≲ δ∥∇b∥L∞(Rn)MΩM f (x).

Our desired conclusion now follows from the weighted estimates for MΩ and M im-
mediately.

Lemma 3.3 Let Ω be homogeneous of degree zero and havemean value zero, and let
p andw be the same as in_eorem 1.3. Suppose that Ω ∈ Lq(Sn−1) for some q ∈ (1,∞].
_en for b ∈ C∞0 (Rn) and δ ∈ (0, 1/2),
(i) the operator T j,δ

Ω ,b is compact on Lp(Rn ,w);
(ii) the operator Γj,δ deûned by

(3.2) Γj,δ f (x) = {T j,δ ,v
Ω ,b f (x)}v∈Z

is compact from Lp(Rn ,w) to Lp(l∞; Rn ,w).

Proof We only prove (ii). By Lemmas 3.2 and 2.2, it is obvious that Γj,δ is bounded
from Lp(Rn ,w) to Lp(l∞; Rn ,w). Let p and w be as in _eorem 1.3. We choose
s ∈ (1, p) such that p/s and w satisûes the condition as p and w. For each ûxed δ ∈
(0, 1/2), we claim that if b ∈ C∞0 (Rn) with supp b ⊂ B(0, R), then
(i) for all x ∈ Rn with ∣x∣ > 4R,

(3.3) T j,δ ,⋆⋆
Ω ,b f (x) ≲ (MΩM(∣ f ∣s)(x))

1/s
R

n
s′q′ ∣x∣−

n
s′q′ ;

(ii) for each t ∈ Rn with ∣t∣ < min{1, δ/4},

(3.4) ∥ sup
v∈Z

∣T j,δ ,v
Ω ,b f (x) − T j,δ ,v

Ω ,b f (x + t)∣∥
Lp(Rn ,w)

≲
∣t∣
δ

2 j(n+1)
∥ f ∥Lp(Rn ,w) .

(iii) for each ûxed D > 0 and є > 0, there exists N ∈ N such that

∥ sup
v>N

∣T j,δ ,v
Ω ,b f ∣χB(0,D)∥ Lp(Rn ,w)

< є∥ f ∥Lp(Rn ,w) ,(3.5)

∥ sup
v<−N

∣T j,δ ,v
Ω ,b f − T j,δ ,−N

Ω ,b f ∣ ∥
Lp(Rn ,w)

< є∥ f ∥Lp(Rn ,w) .(3.6)

If we can prove this, we then know from Lemma 3.1 that Γj,δ is compact from
Lp(Rn ,w) to Lp(l∞; Rn ,w).
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We ûrst prove (3.3). For x ∈ Rn with ∣x∣ > 4R, by applying the Hölder inequality, we
deduce that

∫
∣z∣<R

∣K l
Ω ∗ ϕ l− j(x − z)∣dz ≲ ( ∫

∣z∣<R
∣K l

Ω ∗ ϕ l− j(x − z)∣ qdz)
1/q

R
n
q′

≲ ( ∫ ∣x∣
2 ≤∣z∣<2∣x ∣

∣K l
Ω ∗ ϕ l− j(z)∣

qdz)
1
q R

n
q′

≲ ∣x∣−
n
q′ R

n
q′ .

Another application of theHölder inequality then gives

∣T j,δ ,⋆⋆
Ω ,b f (x)∣ ≲ ∥b∥L∞(Rn)∑

l∈Z
∫
∣z∣<R

∣K l
Ω ∗ ϕ l− j(x − z)∣ ∣ f (z)∣dz

≲ ∥b∥L∞(Rn)∑
l∈Z

( ∫
∣x ∣/2≤∣x−z∣≤2∣x ∣

∣K l
Ω ∗ ϕ l− j(x − z)∣ ∣ f (z)∣sdz)

1
s

× ( ∫
∣z∣<R

∣K l
Ω ∗ ϕ l− j(x − z)∣dz)

1/s′

≲ ∥b∥L∞(Rn)(MΩM(∣ f ∣s)(x))
1/s

R
n

s′q′ ∣x∣−
n

s′q′ ,

which gives (3.3).
We turn our attention to (3.4). Let b ∈ C∞0 (Rn). Without loss of generality, we

may assume that ∥b∥L∞(Rn) + ∥∇b∥L∞(Rn) = 1. For each ûxed t ∈ Rn with ∣t∣ < δ/4,
write

sup
v∈Z

∣T j,δ ,v
Ω ,b f (x) − T j,δ ,v

Ω ,b f (x + t)∣

≲ ∣b(x + t) − b(x)∣ sup
k∈Z

∣
∞

∑
l=k
∫
Rn

K l
Ω ∗ ϕ l− j(x − y)φ(δ−1

(x − y)) f (y)dy∣

+ sup
k∈Z

∣ ∫
Rn

U j,δ ; k(x , y; t)(b(y) − b(x + t)) f (y)dy∣

= J j1 f (x , t) + J j2 f (x , t),
with

U j,δ ;k(x , y; t) =
∞

∑
l=k

(K l
Ω ∗ ϕ l− j(x − y)φ(δ−1

(x − y))

− K l
Ω ∗ ϕ l− j(x + t − y)φ(δ−1

(x + t − y))) .

To estimate J j1 , let

J j11 f (x , t) =∑
l∈Z
∫
Rn

∣K l
Ω ∗ ϕ l− j(x − y)φ(δ−1

(x − y))

− K l
Ω ∗ ϕ l− j(x − y)χ{∣x−y∣>2δ}(x − y)∣ ∣ f (y)∣dy,

and

J j12 f (x , t) = sup
k∈Z

∣
∞

∑
l=k
∫
Rn

K l
Ω ∗ ϕ l− j(x − y)χ{∣x−y∣>2δ}(x − y) f (y)dy∣ .
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A trivial computation gives us

J j11 f (x , t) ≲∑
l∈Z
∫
δ/2≤∣x−y∣≤2δ

∣K l
Ω ∗ ϕ l− j(x − y)∣ ∣ f (y)∣dy ≲ MΩM f (x).

On the other hand, we have

J j12 f (x , t) ≲ ∫Rn
∣
∞

∑
l=k

K l
Ω ∗ ϕ l− j(x − y) − K j

(x − y)χ{∣x−y∣>2k}(x − y)∣ ∣ f (y)∣dy

+ ∣ ∫
Rn

K j
(x − y)χ{∣x−y∣>max{2δ ,2k}}(x − y) f (y)dy∣

≲ MΩM f (x) + T j,⋆
Ω f (x).

Combining the estimates for J j11 and J j12 f (x , t) leads to

J j1 f (x , t) ≲ ∣t∣( J j11 f (x , t) + J j12 f (x , t)) ≲ ∣t∣(MΩM f (x) + T j,⋆
Ω f (x)) .

To consider the term J j2 f (x , t), set

J j21 f (x , t) =∑
l∈Z
∫
∣x−y∣>δ

∣K l
Ω ∗ ϕ l− j(x − y) − K l

Ω ∗ ϕ l− j(x + t − y)∣ ∣ f (y)∣dy,

J j22 f (x , t) =∑
l∈Z
∫
Rn

∣K l
Ω ∗ ϕ l− j(x − y)∣ ∣φ( x − y

δ
) − φ( x + t − y

δ
) ∣ ∣ f (y)∣dy.

It then follows that
J j2 f (x , t) ≲ J j21 f (x , t) + J j22 f (x , t).

We know from (2.6) in Lemma 2.1 that for s ∈ (1,∞),

J j21 f (x , t) ≲
∣t∣
δ

2 jn/s2 jMs f (x).

On the other hand, when ∣t∣ < δ/4, it is obvious that φ( x−y
δ ) − φ( x+t−y

δ ) /= 0 only if
∣x − y∣ > δ/2; we then deduce that

J j22 f (x , t) ≲
∣t∣
δ ∑l∈Z

∫
δ/2<∣x−y∣≤3δ

∣K l
Ω ∗ ϕ l− j(x − y)∣ ∣ f (y)∣dy ≲ ∣t∣

δ
MΩM f (x).

_erefore,

J j2 f (x , t) ≲
∣t∣
δ

2 j(n+1)Ms f (x) +
∣t∣
δ

MΩM f (x).

_e estimate (3.4) follows from the estimates for J j1 , J
j
2, Lemma 2.2, and the weighted

estimate for MΩ .
We now verify claim (iii). Let D > 0 and N ∈ N such that 2N−2 > D. _en for l ≥ N

and x ∈ Rn with ∣x∣ ≤ D,

∫
Rn

∣K l
Ω ∗ ϕ l− j(x − y)∣∣ f (y)∣dy = ∫

Rn
∣K l

Ω ∗ ϕ l− j(x − y)∣∣ f (y)χ{∣y∣≤2 l+3}∣dy.
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_erefore, for v ∈ Z with v > N ,

∣T j,δ ,v
Ω ,b f (x)∣ ≲ ∑

l>N
∫
Rn

∣K l
Ω ∗ ϕ l− j(x − y)∣∣ f (y)∣dy

≲ ∑
l>N
∫
∣y∣≤2 l+3

∣ f (y)∣dy∥K l
Ω∥L1(Rn)∥ϕ l− j∥L∞(Rn)

≲ 2n j
∑
l>N

2−nl
∫
∣y∣≤2 l+3

∣ f (y)∣dy

≲ 2n j
∥ f ∥Lp(Rn ,w) ∑

l>N
2−nl

( ∫
B(0,2 l+3)

w− 1
p−1 (y)dy)

1
p′ .

Since w ∈ A∞(Rn), we can take a positive constant θ such that

∫
B(0,D)

w(y)dy ≤ (
D
2l )

nθ
∫
B(0,2 l+3)

w(y)dy;

see [17, p. 305]. A straightforward computation now leads to

( ∫
B(0,D)

sup
v>N

∣T j,δ ,v
Ω ,b f (x)∣

p w(x)dx)
1/p

≲ 2n j
∥ f ∥Lp(Rn ,w) ∑

l>N
2−nl

( ∫
B(0,2 l+3)

w− 1
p−1 (y)dy)

1
p′
( ∫

B(0,D)
w(x)dx)

1
p

≲ 2n j
∥ f ∥Lp(Rn ,w)(

D
2N )

nθ
p .

_is gives us (3.5) immediately. On the other hand, we have that for N ∈ N and
v < −N ,

∣T j,δ ,v
Ω ,b f (x) − T j,δ ,−N

Ω ,b f (x)∣

≤ ∥∇b∥L∞(Rn)

−N
∑

l=−∞
∫
Rn

∣x − y∣∣K l
Ω ∗ ϕ l− j(x − y)∣ ∣ f (y)∣dy

≲ ∥∇b∥L∞(Rn)2−NMΩM f (x),
which obviously implies that

∥ sup
v<−N

∣T j,δ ,v
Ω ,b f − T j,δ ,−N

Ω ,b f ∣ ∥
Lp(Rn ,w)

≲ 2−N
∥∇b∥L∞(Rn)∥ f ∥Lp(Rn ,w) ,

and in turn gives (3.6).

Now let j ∈ N and l ∈ Z. Deûne the operator W j,v
Ω ,b by

W j, l
Ω ,b f (x) = ∣ ∫

Rn
∣K l

Ω ∣ ∗ ϕ l− j(x − y)∣b(x) − b(y)∣2 f (y)dy∣ .

Lemma 3.4 Let Ω be homogeneous of degree zero, let Ω ∈ Lq(Sn−1) for some q ∈

(1,∞], and let p and w be the same as in _eorem 1.3. _en for b ∈ C∞0 (Rn), the
operator ∆ j deûned by

(3.7) ∆ j f (x) = {W j, l
Ω ,b f (x)} l∈Z

is compact from Lp(Rn ,w) to Lp(l∞; Rn ,w).
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Proof For δ ∈ (0, 1/2), let

W j,δ , l
Ω ,b f (x) = ∣ ∫

Rn
∣K l

Ω ∣ ∗ ϕ l− j(x − y)∣b(x) − b(y)∣2φ(δ−1
(x − y)) f (y)dy∣ .

It is obvious that for b ∈ C∞0 (Rn),

sup
l∈Z

∣W j,δ , l
Ω ,b f (x)∣ ≲ MΩM f (x),

and so supl∈Z ∣W j,δ , l
Ω ,b f (x)∣ deûne a bounded operator on Lp(Rn ,w). On the other

hand, as in the proof of Lemma 3.3, we can verify that for δ ∈ (0, 1/2), the operator
∆ j,δ deûned by

∆ j,δ f (x) = {W j,δ , l
Ω ,b f (x)} l∈Z

is compact from Lp(Rn ,w) to Lp(l∞; Rn ,w). Also, as in Lemma 3.2,we deduce that

∥∆ j f − ∆ j,δ f ∥Lp(l∞ ;Rn ,w) ≲ δ∥ f ∥Lp(Rn ,w) .

_us, ∆ j is compact from Lp(Rn ,w) to Lp(l∞; Rn ,w).

Proof of_eorem 1.3 We only consider the compactness of T⋆⋆
Ω ,b on Lp(Rn ,w),

since the argument for TΩ ,b is similar and simpler. Let p and w be the same as in
_eorem 1.3. For j ∈ N, let Γj be the operator deûned by

(3.8) Γj f (x) = {T j,v
Ω ,b f (x)}v∈Z ,

with

T j,v
Ω ,b f (x) =

∞

∑
l=v
∫
Rn

K l
Ω ∗ ϕ l− j(x − y)(b(x) − b(y)) f (y)dy.

Also, set

(3.9) Γ f (x) = {Tv
Ω ,b f (x)}v∈Z ,

with

Tv
Ω ,b f (x) =

∞

∑
l=v
∫
Rn

K l
Ω(x − y)(b(x) − b(y)) f (y)dy.

Lemma 3.2 now tells us that for b ∈ C∞0 (Rn),

(3.10) ∥Γj f − Γj,δ f ∥Lp(l∞ ;Rn ,w) ≲ δ∥ f ∥Lp(Rn ,w) .

_us, by Lemma 3.3, Γj is compact from Lp(Rn ,w) to Lp(l∞; Rn ,w). On the other
hand, for b ∈ C∞0 (Rn),

∥Γj f (x) − Γ f (x)∥ l∞ ≲ sup
k∈Z

∣
∞

∑
l=k
∫
Rn

(b(x) − b(y))S j
l (x − y) f (y)dy∣

≲ ∥b∥L∞(Rn) sup
k∈Z

∣
∞

∑
l=k

S j
l ∗ f (x)∣ + sup

k∈Z
∣
∞

∑
l=k

S j
l ∗ (b f )(x)∣ ,

which, via_eorem 2.3, yields

(3.11) ∥Γj f − Γ f ∥ Lp(l∞ ;Rn ,w)
≲ 2−β j

∥b∥L∞(Rn)∥ f ∥Lp(Rn ,w) .
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_erefore, for b ∈ C∞0 (Rn), Γ is also compact (and completely continuous) from
Lp(Rn ,w) to Lp(l∞; Rn ,w). Observing that for functions f1 and f2,

∣T⋆⋆
Ω ,b f1(x) − T⋆⋆

Ω ,b f2(x)∣ ≤ sup
v∈Z

∣Tv
Ω ,b f1(x) − Tv

Ω ,b f2(x)∣ ,

we then know that T⋆⋆
Ω ,b is completely continuous on Lp(Rn ,w) when b ∈ C∞0 (Rn).

It iswell known that the limit of a sequence of completely continuous operators is also
a completely continuous operator. Recalling that for b ∈ BMO(Rn), T⋆⋆

Ω ,b is bounded
on Lp(Rn ,w) with bounded C∥b∣∣BMO(Rn), we ûnally deduce that T⋆⋆

Ω ,b is completely
continuous on Lp(Rn ,w) when b ∈ CMO(Rn).

Proof of_eorem 1.5 Let p andw be as in_eorem 1.5. Recall that T⋆
Ω ,b is bounded

on Lp(Rn ,w) with bound C∥b∥BMO(Rn). _us, it suõces to prove that for b ∈

C∞0 (Rn), f ∈ Lp(Rn ,w) and { fk}k∈N ⊂ Lp(Rn ,w),

(3.12) ∣ fk − f ∣⇀ 0 in Lp
(Rn ,w)⇒ ∥T⋆

Ω ,b fk − T⋆
Ω ,b f ∥Lp(Rn ,w) → 0.

To prove (3.12), we observe that for { fk} and f ,

(3.13) ∣T⋆
Ω ,b fk(x) − T⋆

Ω ,b f (x)∣ ≤ (MΩ ,b(∣ fk − f ∣)(x))
1
2
(MΩ( fk − f )(x))

1
2

+ T⋆⋆
Ω ,b( fk − f )(x),

with MΩ ,b the operator deûned by (1.4). Via the weighted estimate ofMΩ , this yields

(3.14) ∥T⋆
Ω ,b fk − T⋆

Ω ,b f ∥ Lp(Rn ,w)
≲ ∥MΩ ,b(∣ fk − f ∣)∥

1
2

Lp(Rn ,w)
∥ fk − f ∥

1
2
Lp(Rn ,w)

+ ∥T⋆⋆
Ω ,b( fk − f )∥ Lp(Rn ,w)

.

In the proof of _eorem 1.3, we have shown that the operator Γ is compact from
Lp(Rn ,w) to Lp(l∞; Rn ,w); thus, for fk ⇀ f ,

(3.15) ∥Γ( fk − f )∥Lp(l∞ ;Rn ,w) → 0 and lim
k→∞

∥T⋆⋆
Ω ,b( fk − f )∥L2(Rn) = 0.

On the other hand, a trivial computation shows that

∣MΩ ,b f (x) − sup
l∈Z

W j, l
Ω ,b f (x)∣

≤ sup
l∈Z

∣ ∫
Rn

S j
l (x − y)∣b(x) − b(y)∣2 f (y)dy∣

≲ ∥b∥2
L∞(Rn) sup

l∈Z
∣S̃ j

l ∗ f (x)∣ + sup
l∈Z

∣ S̃ j
l ∗ (∣b∣2 f )(x)∣

+ ∥b∥L∞(Rn) sup
l∈Z

∣ S̃ j
l ∗ ( fReb)(x)∣ + ∥b∥L∞(Rn) sup

l∈Z
∣ S̃ j

l ( f Imb)(x)∣ ,

and so by (2.9) in _eorem 2.3,

(3.16) lim
j→∞

∥MΩ ,b f − sup
l∈Z

W j, l
Ω ,b f ∥ Lp(Rn ,w)

≲ 2−β j
∥ f ∥Lp(Rn ,w) .

By Lemma 3.4 and the fact that ∆ j is linear, we know that

hk ⇀ 0 in Lp
(Rn ,w)⇒ ∥∆ jhk∥Lp(l∞ ;Rn ,w) → 0.
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_erefore,

∣ fk − f ∣⇀ 0 in Lp
(Rn ,w)⇒ ∥MΩ ,b(∣ fk − f ∣)∥Lp(Rn ,w) → 0.

_is together with (3.14) and (3.15) leads to the conclusion of_eorem 1.5.

4 Proof of Theorem 1.8

For p ∈ [1,∞) and λ ∈ (0, n), let Lp,λ(l∞; Rn) be the Banach space of sequences of
functions deûned by

Lp,λ
(l∞; Rn

) = {{ fk}k∈Z ∶ ∥{ fk}∥Lp,λ(l∞ ;Rn) <∞} ,

with
∥{ fk}∥Lp,λ(l∞ ;Rn) = ∥ sup

k∈Z
∣ fk ∣∥ Lp,λ(Rn)

.

Lemma 4.1 Let p ∈ (1,∞) and λ ∈ (0, n), G ⊂ Lp,λ(l∞; Rn). Suppose that G
satisûes the following four conditions:
(i) G is a bounded set in Lp,λ(l∞; Rn);
(ii) for each ûxed є > 0, there exists a constant A > 0 such that for all { fk}k∈Z ∈ G,

∥ sup
k∈Z

∣ fk ∣χ{∣ ⋅ ∣>A}( ⋅ )∥ Lp,λ(Rn)
< є;

(iii) for each ûxed є > 0, there exists a constant ρ > 0 such that for all t ∈ Rn with
∣t∣ < ρ and f⃗ = { fk}k∈Z ∈ G,

∥ f⃗ ( ⋅ + t) − f⃗ ( ⋅ )∥Lp,λ(l∞ ;Rn) < є;

(iv) for each ûxed D > 0 and є > 0, there exists N ∈ N such that for all { fk}k∈Z ∈ G,

∥ sup
k>N

∣ fk ∣χB(0,D)∥ Lp,λ(Rn)
< є, ∥ sup

k<−N
∣ fk − f−N ∣∥ Lp,λ(Rn)

< є.

_en G is strongly pre-compact in Lp,λ(l∞; Rn).

Proof As in the proof of Lemma 3.1, it suõces to prove that for each ûxed є > 0, there
exists a δ = δє > 0 and a mapping Φє on Lp,λ(l∞; Rn) such that Φє(G) = {Φє( f⃗ ) ∶
f⃗ ∈ G} is a strongly pre-compact set in Lp(l∞;Rn), and for any f⃗ , g⃗ ∈ G,

∥Φє( f⃗ ) −Φє(g⃗)∥Lp,λ(l∞ ;Rn) < δ⇒ ∥ f⃗ − g⃗∥Lp(l∞ ;Rn) < 10є.

Now let є > 0. As in the proof of Lemma 3.1, we choose A > 1 large enough, as in
assumption (ii), and ρ small enough, as in assumption (iii). Let Q be the largest cube
centered at the origin such that 2Q ⊂ B(0, ρ), let Q1 , . . . ,QJ andD be as in the proof
of Lemma 3.1, and let N ∈ N be such that for all { fk}k∈Z ∈ G,

∥ sup
k>N

∣ fk ∣χB(0,2A)∥ Lp,λ(Rn ,w)
< є/2, ∥ sup

k<−N
∣ fk − f−N ∣∥ Lp,λ(Rn ,w)

<
є
2J

.

Let Φє be the operator deûned by (3.1). Note that

∣mQ i ( fk)∣ ≲ ∥ sup
k∈Z

∣ fk ∣∥ Lp,λ(Rn)
∣Q i ∣

λ/(np)−1/p .
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For f⃗ = { fk}k∈Z and each ball B(y, r), we see that

∫
B(y ,r)

∣Φє( f⃗ )(x)∣p dx =
J
∑
i=1
∫

Q i∩B(y ,r)
sup
k∈Z

∣mQ i ( fk)∣
p dx ≲ Jrλ∥ f⃗ ∥ p

Lp,λ(l∞ ;Rn)
,

since ∣Q i ∩ B(y, r)∣ ≤ ∣Q i ∣
1−λ/n ∣B(y, r)∣λ/n . _us, Φє(G) = {Φє( f⃗ ) ∶ f⃗ ∈ G} is a

strongly pre-compact set in Lp,λ(l∞; Rn). For a ball B(y, r),

∫
B(y ,r)

∥ f⃗ (x)χD(x) −Φє( f⃗ )(x)∥p
l∞ dx

≲ ∫
B(y ,r)

sup
∣k∣≤N

∣ fk(x)χD(x) −
J
∑
i=1

mQ i ( fk)χQ i (x)∣
p dx

+ ∫
B(y ,r)

sup
k≤−N

∣ fk(x)χD(x) −
J
∑
i=1

mQ i ( f−N)χQ i (x)∣
p dx

+ ∫
B(y ,r)

{ sup
k>N

∣ fk(x)∣ χB(0,2A)(x)}
p dx

= I + II + III.

A straightforward computation leads to

I ≤
J
∑
i=1
∫

Q i∩B(y ,r)
{ sup

∣k∣≤N
∣ fk(x) −

J
∑
l=1

mQ l ( fk)χQ l (x)∣}
p
dx

≲
J
∑
i=1

1
∣Q i ∣
∫

Q i∩B(y ,r)
sup
∣k∣≤N
∫

Q i
∣ fk(x) − fk(y)∣p dy dx

≲ rλ sup
∣h∣≤ρ

∥ f⃗ ( ⋅ ) − f⃗ ( ⋅ + h)∥p
Lp,λ(l∞ ;Rn)

.

From theHölder inequality, we obtain that for k < −N ,

∣mQ i ( fk) −mQ i ( f−N)∣
p
≲ ∥ sup

k<−N
∣ fk − f−N ∣∥

p
Lp,λ(Rn)

∣Q i ∣
λ/n−1 ,

which implies that

II ≲
J
∑
i=1
∫

Q i∩B(y ,r)
{ sup

k<−N
∣ fk(x) −

J
∑
l=1

mQ i ( fk)χQ l (x)∣}
p
dx

+
J
∑
i=1
∫

Q i∩B(y ,r)
{ sup

k<−N
∣mQ i ( fk) −mQ i ( f−N)∣}

p
dx

≲ rλ sup
∣h∣≤ρ

∥ f⃗ ( ⋅ ) − f⃗ ( ⋅ + h)∥p
Lp,λ(l∞ ;Rn)

+ ∥ sup
k<−N

∣ fk − f−N ∣∥
p
Lp,λ(Rn)

J
∑
i=1

∣Q i ∩ B(y, r)∣
∣Q i ∣1−λ/n

≲ rλ sup
∣h∣≤ρ

∥ f⃗ ( ⋅ ) − f⃗ ( ⋅ + h)∥p
Lp,λ(l∞ ;Rn)

.

_e estimates for I, II, together with assumption (iv), prove that

∥ f⃗ χD −Φє( f⃗ )∥Lp,λ(l∞ ;Rn ,w) < 3є,
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which, via assumption (ii), tells us that for all f⃗ ∈ G,

∥ f⃗ −Φє( f⃗ )∥Lp,λ(l∞ ;Rn ,w) < 4є.
_is leads to our claim and completes the proof of Lemma 4.1.

Lemma 4.2 Let p, s ∈ [1,∞), and let {Tl}l∈Z be a sequence of sublinear operators
on Lp(Rn). Suppose that for all measurable sets E and all r ∈ (s,∞),

∥ sup
l∈Z

∣Tl f ∣∥ Lp(Rn , χE)
≲ D(r)∥ f ∥Lp(Rn ,Mr χE) ,

with D(r) a constant depending only on p, n, and r. _en for λ ∈ (0, n/s), σ ∈ (1,∞)

such that n > λsσ ,

∥ sup
l∈Z

∣Tl f ∣∥ Lp,λ(Rn)
≲ D(sσ)∥ f ∥Lp,λ(Rn) .

Proof _is lemma was essentially proved in [9]. For the sake of self-containment,
we present the proof here. For ûxed ball B and f ∈ Lp,λ(Rn), decompose f as

f (y) = f (y)χ2B(y) +
∞

∑
k=1
f (y)χ2k+1B/2kB(y) =

∞

∑
k=1
fk(y).

It is obvious that

( ∫
B
( sup

l∈Z
∣Tl f0(y)∣)

pdy)
1/p

≲ D(sσ)( ∫
B(x ,2r)

∣ f (y)∣pdy)
1/p

≲ D(sσ)rλ/p∥ f ∥Lp,λ(Rn) .

On the other hand, our assumption implies that for each k ∈ N,

( ∫
B
( sup

l∈Z
∣Tl fk(y)∣)

pdy)
1/p

≲ D(sσ)( ∫
Rn

∣ fk(y)∣p{M χB(y)}
1
sσ dy)

1/p

≲ D(sσ)2
−kn
sσ p ( ∫

2k+1B
∣ f (y)∣pdy)

1/p

≲ D(sσ)rλ/p2−k( n
sσ p−

λ
p )∥ f ∥Lp,λ(Rn) ,

where in the second inequality, we have invoked the fact that for y ∈ 2k+1B/2kB,
M χB(y) ≲ 2−kn ; see [23] for details. Recall that n > λsσ . _erefore,

( ∫
B
( sup

l∈Z
∣Tl f (y)∣)

pdy)
1/p

≲
∞

∑
k=0

( ∫
B
( sup

l∈Z
∣Tl fk(y)∣)

pdy)
1/p

≲ D(sσ)rλ/p
∞

∑
k=0

2−k( n
sσ p−

λ
p )∥ f ∥p

Lp,λ(Rn)

≲ D(sσ)rλ/p∥ f ∥p
Lp,λ(Rn)

.

_is leads to our desired conclusion directly.

Lemma 4.3 Let Ω be homogeneous of degree zero and have mean value zero, let
Ω ∈ Lq(Sn−1) for some q ∈ (1,∞], p ∈ (1,∞) and λ ∈ (0, n) or p ∈ (1, q′] and
λ ∈ (0, n/q′). _en for δ ∈ (0, 1/2) and b ∈ C∞0 (Rn),
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(i) the operator T j,δ
Ω ,b is compact on Lp,λ(Rn);

(ii) the operator Γj,δ deûned by (3.2) is compact from Lp,λ(Rn) to Lp,λ(l∞;Rn).

Proof We only prove conclusion (ii). From Lemmas 2.2 and 3.2, we know that

(4.1) ∥T j,δ ,⋆⋆
Ω ,b f ∥Lp(Rn ,w) ≲ ∥ f ∥Lp(Rn ,w) ,

if p andw are the same as in_eorem 1.3. By repeating the argument used in the proof
of [21,_eorem 2], we see that (4.1) still holds if p ∈ (1,∞) and wq′ ∈ Ap(Rn). Note
that for all measurable set E and r ∈ (1,∞), Mr χE ∈ A1(Rn) (see [17]). _erefore,

∥T j,δ ,⋆⋆
Ω ,b f ∥Lp(Rn , χE) ≲ ∥ f ∥Lp(Rn ,Ms χE) ,

provided that p ∈ (q′ ,∞) and s ∈ (1,∞) or p ∈ (1,∞) and s ∈ (q′ ,∞). Via Lemma
4.2, this shows that

∥T j,δ ,⋆⋆
Ω ,b f ∥Lp,λ(Rn) ≲ ∥ f ∥Lp,λ(Rn) ,

provided p ∈ (q′ ,∞) and λ ∈ (0, n), or p ∈ (1, q′] and λ ∈ (0, n/q′). Similarly,we can
deduce from (3.3) and (3.4) that for any ûxed є, we can choose A large enough such
that

∥T j,δ ,⋆⋆
Ω ,b f χ{∣ ⋅ ∣>A}∥ Lp,λ(Rn)

≲ є∥ f ∥Lp,λ(Rn)

and ς small enough such that for t ∈ Rn with ∣t∣ < ς,

∥Γj,δ f ( ⋅ ) − Γj,δ f ( ⋅ + t)∥ Lp,λ(l∞ ;Rn)
≲ є∥ f ∥Lp,λ(Rn) .

Also, for ûxed є > 0 and A > 0, by (3.5), (3.6), and Lemma 4.2, we can take N ∈ N
such that

∥ sup
v>N

∣T j,δ ,v
Ω ,b f ∣χB(0,A)∥ Lp,λ(Rn)

< є∥ f ∥Lp,λ(Rn) ,

∥ sup
v<−N

∣T j,δ ,v
Ω ,b f − T j,δ ,−N

Ω ,b f ∣ ∥
Lp,λ(Rn)

< є∥ f ∥Lp,λ(Rn) .

Employing Lemma 4.1 then leads to the compactness from Lp,λ(Rn) to Lp,λ(l∞;Rn)
for Γj,δ .

Lemma 4.4 Let Ω be homogeneous of degree zero and let Ω ∈ Lq(Sn−1) for some
q ∈ (1,∞]. Let p ∈ (1,∞) and λ ∈ (0, n) or p ∈ (1, q′] and λ ∈ (0, n/q′). _en for
b ∈ C∞0 (Rn) and j ∈ N, the operator ∆ j deûned by (3.7) is compact from Lp,λ(Rn) to
Lp,λ(l∞; Rn).

Lemma 4.4 can be proved by the argument in the proof of Lemma 4.3, together
with the estimates in the proof of Lemma 3.4. We omit the details for brevity.

We are now ready to prove_eorem 1.8.

Proof of_eorem 1.8 By Lemma 4.2 and the weighted norm inequalities for TΩ ,b
and T⋆

Ω ,b , we see that both TΩ ,b and T⋆
Ω ,b are bounded on Lp,λ(Rn) with bound

C∥b∥BMO(Rn), provided that p ∈ (q′ ,∞) and λ ∈ (0, n), or p ∈ (1, q′] and λ ∈

(0, n/q′). _us, it suõces to prove the conclusions for the case b ∈ C∞0 (Rn). For
simplicity, we only consider T⋆

Ω ,b and T⋆⋆
Ω ,b .
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To consider the compactness of T⋆⋆
Ω ,b on Lp,λ(Rn), let p ∈ (q′∞) and λ ∈ (0, n)

or p ∈ (1, q′] and λ ∈ (0, n/q′). For j ∈ N, δ ∈ (0, 1/2), let Γj,δ and Γj be the operators
deûned by (3.2) and (3.8), respectively. Let b ∈ C∞0 (Rn). Repeating the argument
used in the proof of [21,_eorem 2], we obtain from (3.10) that

∥Γj f − Γj,δ f ∥Lr(l∞ ;Rn ,w) ≲ δ∥b∥L∞(Rn)∥ f ∥Lr(Rn ,w)

provided that r ∈ (q′ ,∞) and w ∈ Ar/q′(Rn), or r ∈ (1,∞) and wq′ ∈ Ar(Rn). _us,
by Lemma 4.2,

∥Γj f − Γj,δ f ∥Lp,λ(l∞ ;Rn) ≲ δ∥b∥L∞(Rn)∥ f ∥Lp,λ(Rn) .

_is, via Lemma 4.3, shows that Γj is compact from Lp,λ(Rn) to Lp,λ(l∞; Rn). Sim-
ilarly, we get from (3.11) and Lemma 4.2 that for some constant ι ∈ (0, 1),

∥Γj f − Γ f ∥ Lp,λ(l∞ ;Rn)
≲ 2−ι j

∥b∥L∞(Rn)∥ f ∥Lp,λ(Rn) .

_erefore, the operator Γ deûned by (3.9) is also compact from Lp,λ(Rn) to
Lp,λ(l∞; Rn)when b ∈ C∞0 (Rn), and so T⋆⋆

Ω ,b is completely continuous on Lp,λ(Rn).
It remains to consider the operator T⋆

Ω ,b . Let p ∈ (1,∞) and λ ∈ (0, n) or p ∈ (1, q′]
and λ ∈ (0, n/q′). For { fk} ⊂ Lp,λ(Rn) and f ∈ Lp,λ(Rn) with ∣ fk − f ∣ ⇀ 0, we get
from (3.13) that

∥T⋆
Ω ,b fk − T⋆

Ω ,b f ∥ Lp,λ(Rn)
≲ ∥T⋆⋆

Ω ,b( fk − f )∥ Lp,λ(Rn)

+ ∥MΩ ,b(∣ fk − f ∣)∥
1/2
Lp,λ(Rn)

∥ fk − f ∥1/2
Lp,λ(Rn)

.

_e fact that Γ is completely continuous from Lp(Rn) to Lp,λ(l∞; Rn) implies that

lim
k→∞

∥T⋆⋆
Ω ,b( fk − f )∥ Lp,λ(Rn)

= 0.

On the other hand, the estimate (3.16), via Lemma 4.2, tells us that for b ∈ C∞0 (Rn),

lim
j→∞

∥MΩ ,bh − sup
l∈Z

W j, l
Ω ,bh∥ Lp,λ(Rn)

≲ 2−ι j
∥h∥Lp,λ(Rn) .

We then deduce from Lemma 4.4 that

lim
k→∞

∥MΩ ,b( ∣ fk − f ∣)∥ Lp,λ(Rn)
= 0.

_is leads to

lim
k→∞

∥T⋆
Ω ,b fk − T⋆

Ω ,b f ∥Lp,λ(Rn) = 0

and completes the proof of_eorem 1.8.
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