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Abstract
Innovations in medicine provide us longer and healthier life, leading lower mortality. Sooner rather than later, much
greater longevity would be possible for us due to artificial intelligence advances in health care. Similarly, Advanced
Driver Assistance Systems (ADAS) in highly automated vehicles may reduce or even eventually eliminate accidents
by perceiving dangerous situations, which would minimize the number of accidents and lead to fewer loss claims
for insurance companies. To model the survivor function capturing greater longevity as well as the number of
claims reflecting less accidents in the long run, in this paper, we study a Cox process whose intensity process is
piecewise-constant and decreasing. We derive its ultimate distributional properties, such as the Laplace transform
of intensity integral process, the probability generating function of point process, their associated moments and
cumulants, and the probability of no more claims for a given time point. In general, this simple model may be
applicable in many other areas for modeling the evolution of gradually disappearing events, such as corporate
defaults, dividend payments, trade arrivals, employment of a certain job type (e.g., typists) in the labor market, and
release of particles. In particular, we discuss some potential applications to insurance.

1. Introduction

Technological advances, such as medical innovations, have delivered significant improvements in sur-
vival and quality of life for us. Many diseases and epidemics were fatal to human being throughout a
long history, and recently become curable. A notable example is Malaria. Dr. Tu Youyou managed to
develop drugs based on artemisinin from Chinese traditional herbal medicines, which have led to the
survival and improved health of millions of people. In 2015, she got the Nobel Prize in Physiology or
Medicine for her discoveries concerning a novel therapy against Malaria. In addition, the National Can-
cer Institute recently found sudden reductions in mortality rates for prostate cancer, which is likely due to
effective treatments, screening methods for early diagnosis and public health programs [18]. Moreover,
although the recent coronavirus (COVID-19) pandemic is still ongoing currently, it is possible that the
deaths caused by the COVID-19 would be gradually disappearing in the long run with more effective
government interventions, vaccine development, and further enhancement of public health systems.

Similarly, the Advanced Driver Assistance Systems (ADAS) in highly automated vehicles may
reduce or even ultimately eliminate accidents by perceiving dangerous situations. The development of
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Figure 1. Motor vehicle traffic fatality rates, 1921–2018 (NHTSA).

highly automated vehicles and the ADAS is ongoing even though it is a challenge. Highly automated
vehicles will minimize the number of accidents leading to a much lower number of claims for insurance
companies ultimately. In addition, we can observe that the annual fatality rate per 100 million miles
that motor vehicle traveled in the U.S. provided by the National Highway Traffic Safety Administration
(NHTSA) [33] has declined gradually from 1920 to 1930 as plotted in Figure 1. The 1920’s average
rate is 18.52, and the 2010’s average rate is only 1.13, where we can see that it declines substantially in
a long run. Of course, other positive factors, such as improved infrastructure developments and safety
regulations, may all together contribute to this decline. The longevity of ourselves has significantly
increased in the last decade. It is certain for us to live longer and healthier on average in the long run due
to artificial intelligence (AI) advances in health care. AI applications in the automotive industry will
also change the risk landscape of insurance industry. They will help avoid accidents and saving lives,
and consequently insurers will have fewer claims.

In the actuarial literature, there is a plethora of papers aiming at modeling improvements in life
expectancy due to systematic factors, notably, the Lee–Carter model [31] and its extensions which are
mortality projection models on time-series mortality. Beside, alternative continuous-time stochastic
models for modeling mortality can be found in for example [5,12,26,27,32,36]. The aim of this paper is
to develop a specific continuous-time model which is based on doubly stochastic Poisson processes or
Cox processes [9]. It could be used as a model component for the long-term survivor function capturing
the greater longevity within a general competing-risks framework similarly as the literature of survival
analysis for a particular failure type of interest, see for example [19,22,29, Sect. 8]. More precisely, it
is a Cox Process with piecewise-constant decreasing intensity, since its underlying intensity process
is piecewise-constant, and it jumps downward with random sizes to lower (but still positive) levels
at random times as illustrated in Figure 2. Apparently, the occurrence timing of each innovation is
uncertain in nature, so jump times in the underlying intensity process is random in our model, which is
different from a simpler inhomogeneous Poisson process with a piecewise-constant decreasing intensity
function. More generally, our model may be applicable to modeling many events of other types which are
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Figure 2. Piecewise-constant decreasing intensity process 𝜆𝑡 .

gradually disappearing. Recently, alternative intensity functions for Cox processes have been specified,
see [1,2,14,25,37] and just to name a few.

We first obtain the Laplace transform of ultimate intensity integral in an analytic form. For insurance
modeling based on a Cox process in general, the integral of the claim intensity process is crucial, as
it is linked to the probability generating function (PGF) of claim numbers. More broadly, the integral
of an underlying stochastic process has been played an important role to many applications in both
finance and insurance. For example, the integral of the interest rate process is used to price zero-coupon
bonds [11,23,24,38], and the integral of the stock price process is also used for pricing Asian-type
options [4,8,15,17,34,35]. The integral of the default intensity process is also required to obtain the
default probability in reduced-form credit risk models [16,30]. The integrated hazard rate is required
to derive the survivor function [13,26] in life insurance. In non-life insurance, Jarrow [28] proposed
pricing formulas for catastrophe bonds, where the integral of the intensity process is used to derive the
probability of no catastrophic event. Under certain assumptions, other key distributional properties, such
as the PGF of point process, their associated moments and cumulants, and the probability of no more
claims for a given time point, are derived in analytic forms (with some additional assumptions), which
are all important for model applications. We then apply our results to calculate the survival probability
in life insurance and reinsurance premium in non-life insurance.

This paper is structured as follows. In Section 2, we define our model of the Cox Process with a
piecewise-constant decreasing intensity, and analyze its theoretical distributional properties. In Section
3, we apply our results to calculate the survival probability for life insurance and stop-loss reinsurance
premium for non-life insurance, respectively. Section 4 makes a brief conclusion.

2. A Cox process with piecewise-constant decreasing intensity

In this section, we explain how to construct a Cox process with a piecewise-constant decreasing intensity
for modeling gradually disappearing events (e.g., insurance claims of a certain type) in general, and
then obtain its key distributional properties.

Let us first start by a brief review for the Cox process [9] in general. If 𝜆𝑡 is the intensity process of
a Cox point process 𝑁𝑡 , it is well known that the PGF of 𝑁𝑡 is given by

E
[
𝜃𝑁𝑡 | 𝜆0

]
= E

[
exp

(
−(1 − 𝜃)

∫ 𝑡

0
𝜆𝑠 d𝑠

)����𝜆0

]
, 𝜃 ∈ [0, 1], (2.1)

which suggests that the problem of finding the distribution of point process 𝑁𝑡 is equivalent to the
problem of finding the distribution of the integral of intensity 𝜆𝑡 . By convention, we denote the intensity
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integral process by

Λ𝑡 :=
∫ 𝑡

0
𝜆𝑠 d𝑠.

In the large family of Cox processes, we can consider various candidates of non-negative stochastic
processes for 𝜆𝑡 , which provide us a great flexibility for modeling event arrivals in practice. For more
details about Cox processes, see for example [3,13], and the books by [6,7,10,20,21].

To construct a Cox process with piecewise-constant decreasing intensity, we introduce a positive
continuous-time stochastic process 𝑋𝑡 as a state process for intensity process 𝜆𝑡 . That is, 𝜆𝑡 is a
deterministic function for a given state of 𝑋𝑡 . We denote this function by ℎ(·), that is, 𝜆𝑡 = ℎ(𝑋𝑡 ), and
further assume that it is a strictly increasing function of 𝑢 on the positive real line. For example, ℎ(𝑢)
could be a nonlinear function, such as

ℎ(𝑢) = 𝑢1+𝑐 , 𝑢 ∈ R+, 𝑐 > 0, (2.2)

where the constant 𝑐 can be considered as a measure of the nonlinear amplification effect of states to the
intensity, for example, the impact of vaccine advance to the fatality rate of COVID-19. In addition, we
assume that state process 𝑋𝑡 is piecewise-constant and stochastically decreasing. More precisely, 𝑋𝑡 is
constant until a random downward jump (i.e., random drop) potentially occurs at time point 𝑇𝑖 (for any
given 𝑖 = 1, 2, . . .): it jumps to a new (lower) level 𝑌𝑖 if 𝑌𝑖 < 𝑋𝑇𝑖− , or, it just stays (the same) at 𝑋𝑇𝑖− if
𝑌𝑖 > 𝑋𝑇𝑖− , where jump sizes {𝑌𝑖}𝑖=1,2,... are independent identical distributed (i.i.d.) with the cumulative
distribution function (CDF) 𝐺 (𝑦) and density function 𝑔(𝑦), 𝑦 ∈ R+. The interarrival times of these
jumps at {𝑇𝑖}𝑖=1,2,... are also i.i.d. with the density function 𝑝(𝑡), and they are independent of jump
sizes {𝑌𝑖}𝑖=1,2,.... Through the functional transformation ℎ(·), the resulting intensity process 𝜆𝑡 = ℎ(𝑋𝑡 ),
therefore, is still piecewise-constant and decreasing as visualized in Figure 2. Note that these arrival
times {𝑇𝑖}𝑖=1,2,... are labeled for the jump times in the intensity process 𝜆𝑡 rather than the jump times
generated from the point process 𝑁𝑡 . The evolution of technological developments and breakthroughs,
such as AI algorithms which have been developed for health care and automotive industry, could be
aggregately modeled by this state process 𝑋𝑡 as a proxy. The impacts of these technological advances to
the health care and automotive industries are measured by the nonlinear function of ℎ(𝑢). The intensity
process 𝜆𝑡 remains constant until a breakthrough, represented by a drop to a new level as the result of
this breakthrough.

2.1. Laplace transform of ultimate intensity integral

For convenience, the Laplace transform of intensity integral at the ultimate time 𝑡 → ∞ conditional on
𝑋0 = 𝑥 > 0 is denoted by

𝜙(𝑥) := E
[
𝑒−𝑣Λ∞ | 𝑋0 = 𝑥

]
, 𝑣 ≥ 0.

Proposition 2.1. The Laplace transform of ultimate intensity integral Λ∞ conditional on 𝑋0 = 𝑥 > 0
satisfies

𝜙(𝑥) = 𝑝 (𝑣ℎ(𝑥))

[∫ 𝑥

0
𝜙(𝑦)𝑔(𝑦) d𝑦 + 𝜙(𝑥)�̄� (𝑥)

]
, (2.3)

where

𝑝(𝑣) :=
∫ ∞

0
𝑒−𝑣𝑢 𝑝(𝑢) d𝑢, �̄� (𝑢) :=

∫ ∞

𝑢

𝑔(𝑦) d𝑦.
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Proof. By construction, the interarrival times of these jumps at {𝑇𝑖}𝑖=1,2,... are independent of jump
sizes {𝑌𝑖}𝑖=1,2,..., therefore, 𝑇1 and 𝑋𝑇1 are independent, and we have

𝜙(𝑥) = E

[
exp

(
−𝑣

∫ 𝑇1

0
ℎ(𝑋𝑠) d𝑠

)
× exp

(
−𝑣

∫ ∞

𝑇1

ℎ(𝑋𝑠) d𝑠
)���� 𝑋0 = 𝑥

]

= E

[
𝑒−𝑣ℎ (𝑥)𝑇1 × exp

(
−𝑣

∫ ∞

𝑇1

ℎ(𝑋𝑠) d𝑠
)���� 𝑋0 = 𝑥

]

= E

[
E

[
𝑒−𝑣ℎ (𝑥)𝑇1 × exp

(
−𝑣

∫ ∞

𝑇1

ℎ(𝑋𝑠) d𝑠
)���� 𝑋0 = 𝑥, 𝑇1

] ]

= E

[
𝑒−𝑣ℎ (𝑥)𝑇1 × E

[
exp

(
−𝑣

∫ ∞

𝑇1

ℎ(𝑋𝑠) d𝑠
)���� 𝑋0 = 𝑥, 𝑇1

] ]
= E

[
𝑒−𝑣ℎ (𝑥)𝑇1 × 𝜙(𝑋𝑇1)

]
= 𝑝 (𝑣ℎ(𝑥)) × E

[
𝜙(𝑋𝑇1)

]
.

Note that, given the initial state level 𝑋0 = 𝑥 > 0 and the realization of the first jump size 𝑌1 = 𝑦, the
state process at the first-jump time, 𝑋𝑇1 , stays at the same level as 𝑋𝑇 −

1
if 𝑦 > 𝑋𝑇 −

1
, or moves down to a

new level 𝑦 if 𝑦 < 𝑋𝑇 −
1

, so we have

E
[
𝜙(𝑋𝑇1)

]
=

∫ 𝑥

0
𝜙(𝑦)𝑔(𝑦) d𝑦 +

∫ ∞

𝑥

𝜙(𝑥)𝑔(𝑦) d𝑦 =
∫ 𝑥

0
𝜙(𝑦)𝑔(𝑦) d𝑦 + 𝜙(𝑥)�̄� (𝑥).

�

Corollary 2.1. If jump sizes follow a uniform distribution on [0, 1], then, the Laplace transform of Λ∞

conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

𝜙(𝑥) = 𝑝 (𝑣ℎ(𝑥))

[∫ 𝑥

0
𝜙(𝑦) d𝑦 + (1 − 𝑥) 𝜙(𝑥)

]
. (2.4)

Proof. Set 𝑔(𝑦) = 1 in (2.3) with the condition 𝑋0 = 𝑥 ∈ (0, 1), the result follows immediately. �

Corollary 2.2. If jump sizes follow a uniform distribution on [0, 1] and interarrival times of jumps
follow an exponential distribution with parameter 𝜈 > 0, that is, 𝑝(𝑡) = 𝜈 𝑒−𝜈𝑡 , then the Laplace
transform of Λ∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

𝜙(𝑥) = exp
(
−

∫ 𝑥

0

𝑣ℎ′(𝑦)

𝜈𝑦 + 𝑣ℎ(𝑦)
d𝑦

)
. (2.5)

Proof. Set 𝑝(𝑡) = 𝜈𝑒−𝜈𝑡 in (2.4), then we have

𝜙(𝑥) =
𝜈

𝜈 + 𝑣ℎ(𝑥)

[∫ 𝑥

0
𝜙(𝑦) d𝑦 + (1 − 𝑥) 𝜙(𝑥)

]
,

or

𝜈

∫ 𝑥

0
𝜙(𝑦) d𝑦 = [𝜈𝑥 + 𝑣ℎ(𝑥)] 𝜙(𝑥).

Differentiate it with respect to 𝑥 both sides, then we have

[𝜈𝑥 + 𝑣ℎ(𝑥)] 𝜙′(𝑥) + 𝑣ℎ′(𝑥)𝜙(𝑥) = 0,
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or

𝜙′(𝑥) = −
𝑣ℎ′(𝑥)

𝜈𝑥 + 𝑣ℎ(𝑥)
𝜙(𝑥).

Given the initial condition 𝜙(0) = 1, we can solve this ODE by

ln 𝜙(𝑥) − ln 𝜙(0) = −

∫ 𝑥

0

𝑣ℎ′(𝑦)

𝜈𝑦 + 𝑣ℎ(𝑦)
d𝑦,

and the result follows. �

By further specifying the functional form for ℎ(𝑥), then, nicely, we can find the exact distribution of
Λ∞.

Corollary 2.3. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps follow
an exponential distribution with parameter 𝜈 > 0, that is, 𝑝 (𝑡) = 𝜈 𝑒−𝜈𝑡 and ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then
the Laplace transform of Λ∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

𝜙(𝑥) =

( 𝜈
𝑥𝑐

𝜈
𝑥𝑐 + 𝑣

) (𝑐+1)/𝑐

, (2.6)

which implies

Λ∞ | 𝑋0 = 𝑥 ∼ Gamma
(
𝑐 + 1
𝑐

,
𝜈

𝑥𝑐

)
. (2.7)

Proof. Set ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then we have ℎ′(𝑢) = (𝑐 + 1)𝑢𝑐 . Hence, from (2.5), we have

𝜙(𝑥) = exp
(
−(𝑐 + 1)

∫ 𝑥

0

𝑣𝑦𝑐

𝜈𝑦 + 𝑣𝑦1+𝑐 d𝑦
)

= exp
(
−
𝑐 + 1
𝑐

∫ 𝑥

0

𝑐𝑦𝑐−1

𝜈
𝑣 + 𝑦𝑐

d𝑦
)

= exp
(
−
𝑐 + 1
𝑐

∫ 𝑥𝑐

0

1
𝜈
𝑣 + 𝑢

d𝑢
)

= exp
(
−
𝑐 + 1
𝑐

ln
( 𝜈
𝑣 + 𝑥𝑐

𝜈
𝑣

))

=

( 𝜈
𝑥𝑐

𝜈
𝑥𝑐 + 𝑣

) (𝑐+1)/𝑐

,

which is the Laplace transform of a gamma distribution with the shape parameter (𝑐 + 1)/𝑐 and rate
parameter 𝜈/𝑥𝑐 . �

2.2. Probability generating function of event numbers

Let us find the expression for the PGF of 𝑁∞.

Corollary 2.4. If jump sizes follow a uniform distribution on [0, 1] and interarrival times of jumps
follow an exponential distribution with parameter 𝜈 > 0, that is, 𝑝 (𝑡) = 𝜈𝑒−𝜈𝑡 , then the PGF of 𝑁∞

conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

E
[
𝜃𝑁∞ | 𝑋0 = 𝑥

]
= exp

(
−

∫ 𝑥

0

(1 − 𝜃)ℎ′(𝑦)

𝜈𝑦 + (1 − 𝜃) ℎ(𝑦)
d𝑦

)
. (2.8)
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Proof. Based on the relationship between the PGF of 𝑁∞ and the Laplace transform of Λ∞ as given by
in (2.1), we can set 𝑣 = 1 − 𝜃 in (2.5) and hence obtain (2.8) immediately. �

Corollary 2.5. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps follow
an exponential distribution with parameter 𝜈 > 0, that is, 𝑝 (𝑡) = 𝜈𝑒−𝜈𝑡 and ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then
the PGF of 𝑁∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

E
[
𝜃𝑁∞ | 𝑋0 = 𝑥

]
=

(
1 − 𝑥𝑐

𝜈+𝑥𝑐

1 − 𝑥𝑐

𝜈+𝑥𝑐 𝜃

) (𝑐+1)/𝑐

, (2.9)

which implies

𝑁∞ | 𝑋0 = 𝑥 ∼ Negative Binomial
(
𝑐 + 1
𝑐

,
𝑥𝑐

𝜈 + 𝑥𝑐

)
. (2.10)

Proof. Set 𝑣 = 1 − 𝜃 in (2.8), then we have

E
[
𝜃𝑁∞ | 𝑋0 = 𝑥

]
=

( 𝜈
𝑥𝑐

𝜈
𝑥𝑐 + 1 − 𝜃

) (𝑐+1)/𝑐

=

(
1 − 𝑥𝑐

𝜈+𝑥𝑐

1 − 𝑥𝑐

𝜈+𝑥𝑐 𝜃

) (𝑐+1)/𝑐

,

which is the PGF of a negative binomial distribution with parameters (𝑐 + 1)/𝑐 and 𝑥𝑐/(𝜈 + 𝑥𝑐). �

2.3. Cumulants and moments of intensity integral

Let us find the expressions for the cumulants and the first two moments of Λ∞.

Theorem 2.1. The 𝑚th cumulant of Λ∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

𝜅𝑚 = 𝑚!
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦

(
ℎ(𝑦)

𝜈𝑦

)𝑚−1

d𝑦, 𝑚 = 1, 2, . . . , (2.11)

Proof. By taking logarithm for the Laplace transform (2.5), we obtain the cumulant generating function

ln 𝜙(𝑥) = lnE
[
𝑒−𝑣Λ∞ | 𝑋0 = 𝑥

]
= −

∫ 𝑥

0

𝑣ℎ′(𝑦)

𝜈𝑦 + 𝑣ℎ(𝑦)
d𝑦

= −

∫ 𝑥

0

ℎ′ (𝑦)
𝜈𝑦 𝑣

1 +
ℎ (𝑦)
𝜈𝑦 𝑣

d𝑦

= −

∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
𝑣

∞∑
𝑘=0

(
−

ℎ(𝑦)

𝜈𝑦
𝑣

) 𝑘
d𝑦

=
∞∑
𝑘=0

[∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
(−1)𝑘+1

(
ℎ(𝑦)

𝜈𝑦

) 𝑘
d𝑦

]
𝑣𝑘+1 𝑚 = 𝑘 + 1

=
∞∑
𝑚=1

[∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
(−1)𝑚

(
ℎ(𝑦)

𝜈𝑦

)𝑚−1

d𝑦

]
𝑣𝑚

=
∞∑
𝑚=1

(−1)𝑚
𝜅𝑚
𝑚!

𝑣𝑚.
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Hence, we have ∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
(−1)𝑚

(
ℎ(𝑦)

𝜈𝑦

)𝑚−1

d𝑦 = (−1)𝑚
𝜅𝑚
𝑚!

,

and the cumulants (2.11) for any 𝑚 = 1, 2, . . .. �

The expression for any moment of Λ∞ given 𝑋0 = 𝑥 can easily be obtained using its cumulants (2.11).
For example, we provide the mean and variance as below.

Corollary 2.6. The mean and variance of Λ∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1) are, respectively, given by

E [Λ∞ | 𝑋0 = 𝑥] =
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦, (2.12)

Var [Λ∞ | 𝑋0 = 𝑥] = 2
∫ 𝑥

0

ℎ′(𝑦)ℎ(𝑦)

𝜈2𝑦2 d𝑦. (2.13)

By specifying the form of ℎ(𝑢), we may obtain the mean and variance explicitly.

Corollary 2.7. If ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then the mean and variance of Λ∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1)
are respectively given by

E [Λ∞ | 𝑋0 = 𝑥] =
1
𝜈

(
𝑐 + 1
𝑐

)
𝑥𝑐 ,

Var [Λ∞ | 𝑋0 = 𝑥] =
1
𝜈2

(
𝑐 + 1
𝑐

)
𝑥2𝑐 .

Proof. The results follow immediately from (2.7) in Corollary 2.3. Alternatively, set ℎ(𝑢) = 𝑢1+𝑐 and
ℎ′(𝑢) = (𝑐 + 1)𝑢𝑐 in (2.12) and (2.13), respectively, then the results follow. �

2.4. Moments of event numbers

Let us find the expressions for the first two moments of 𝑁∞.

Corollary 2.8. The mean and variance of 𝑁∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1) are respectively given by

E [𝑁∞ | 𝑋0 = 𝑥] =
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦,

Var [𝑁∞ | 𝑋0 = 𝑥] = 2
∫ 𝑥

0

ℎ′(𝑦)ℎ(𝑦)

𝜈2𝑦2 d𝑦 +
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦.

Proof. Since

E [𝑁∞ | 𝑋0 = 𝑥] =
d
d𝜃
E

[
𝜃𝑁∞ | 𝑋0 = 𝑥

] ����
𝜃=1

=
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦,

and

E [𝑁∞ (𝑁∞ − 1) | 𝑋0 = 𝑥] =
d2

d𝜃2E
[
𝜃𝑁∞ | 𝑋0 = 𝑥

] ����
𝜃=1

=

(∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦

)2

+ 2
∫ 𝑥

0

ℎ′(𝑦)ℎ(𝑦)

𝜈2𝑦2 d𝑦,
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Figure 3. Conditional mean and variance of 𝑁∞ against the parameter 𝑐 for amplification effect.

the variance of 𝑁∞ can be obtained by

Var[𝑁∞ | 𝑋0 = 𝑥] = E [𝑁∞ (𝑁∞ − 1) | 𝑋0 = 𝑥] + E [𝑁∞ | 𝑋0 = 𝑥] − (E [𝑁∞ | 𝑋0 = 𝑥])2

=

(∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦

)2

+ 2
∫ 𝑥

0

ℎ′(𝑦)ℎ(𝑦)

𝜈2𝑦2 d𝑦 +
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦 −

(∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦

)2

= 2
∫ 𝑥

0

ℎ′(𝑦)ℎ(𝑦)

𝜈2𝑦2 d𝑦 +
∫ 𝑥

0

ℎ′(𝑦)

𝜈𝑦
d𝑦.

�

Corollary 2.9. If ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then the mean and variance of 𝑁∞ conditional on 𝑋0 = 𝑥 ∈ (0, 1)
are respectively given by

E [𝑁∞ | 𝑋0 = 𝑥] =
1
𝜈

(
𝑐 + 1
𝑐

)
𝑥𝑐 ,

Var [𝑁∞ | 𝑋0 = 𝑥] =
1
𝜈2

(
𝑐 + 1
𝑐

)
𝑥2𝑐 +

1
𝜈

(
𝑐 + 1
𝑐

)
𝑥𝑐 .

Proof. The results follow immediately from (2.10) in Corollary 2.5. �

For example, by setting the initial state 𝑥 = 0.9 and varying the parameter 𝑐 for amplification effect,
the conditional means and variances of 𝑁∞ for 𝜈 = 0.5, 1 are plotted in Figure 3.

2.5. Probability of last event

As the intensity process is decreasing and eventually approaching to zero, the resulting points (i.e.,
events) are gradually disappearing, and an interesting problem is the probability of no more event (e.g.,
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insurance claim of a certain type) beyond a given time point 𝑡, that is,

Pr {𝑇∗ < 𝑡} = Pr
{
𝑁 [𝑡 ,∞) = 0

}
= E

[
exp

(
−

∫ ∞

𝑡

ℎ(𝑋𝑠) d𝑠
)]

, (2.14)

where 𝑇∗ is the time point at which the last event occurs. In order to find (2.14), let us first derive the
CDF of 𝑋𝑡 in Lemma 2.1.

Lemma 2.1. If interarrival times of jumps follow an exponential distribution with parameter 𝜈 > 0,
that is, 𝑝 (𝑡) = 𝜈 𝑒−𝜈𝑡 , then the CDF of 𝑋𝑡 conditional on 𝑋0 = 𝑥 > 0 is given by

Pr {𝑋𝑡 < 𝜍} = 1 − 𝑒−𝜈𝑡𝐺 (𝜍 )1{𝜍<𝑥 } . (2.15)

Proof. By construction, 𝑋𝑡 is piecewise-constant and decreasing, which can be expressed by

𝑋𝑡 = min
{
𝑥,𝑌1, 𝑌2, . . . , 𝑌𝑀𝑡

}
,

where 𝑀𝑡 is a homogeneous Poisson process of constant rate 𝜈. Given 𝑀𝑡 = 𝑚, the CDF of the minimum
of 𝑚 i.i.d. random variables {𝑌𝑖}𝑖=1,...,𝑚 with the CDF 𝐺 (𝜍) is [1 − (1 − 𝐺 (𝜍))𝑚], that is,

Pr
{
min

{
𝑌1, 𝑌2, . . . , 𝑌𝑀𝑡

}
< 𝜍 | 𝑀𝑡 = 𝑚

}
= 1 − (1 − 𝐺 (𝜍))𝑚 .

Then, we have

Pr
{
min

{
𝑌1, 𝑌2, . . . , 𝑌𝑀𝑡

}
< 𝜍

}
=

∞∑
𝑚=0

[1 − (1 − 𝐺 (𝜍))𝑚]
𝑒−𝜈𝑡 (𝜈𝑡)𝑚

𝑚!

= 1 −

∞∑
𝑚=0

(1 − 𝐺 (𝜍))𝑚
𝑒−𝜈𝑡 (𝜈𝑡)𝑚

𝑚!
,

where
∞∑
𝑚=0

(1 − 𝐺 (𝜍))𝑚
𝑒−𝜈𝑡 (𝜈𝑡)𝑚

𝑚!
= 𝑒−𝜈𝑡𝐺 (𝜍 ) .

Note that,

Pr {𝑋𝑡 < 𝜍} = Pr
{
min

{
min

{
𝑌1, 𝑌2, . . . , 𝑌𝑀𝑡

}
, 𝑥

}
< 𝜍

}
= 1 − Pr

{
min

{
min

{
𝑌1, 𝑌2, . . . , 𝑌𝑀𝑡

}
, 𝑥

}
> 𝜍

}
= 1 − Pr

{
min

{
𝑌1, 𝑌2, . . . , 𝑌𝑀𝑡

}
> 𝜍

}
× 1{𝑥>𝜍 }

= 1 − 𝑒−𝜈𝑡𝐺 (𝜍 ) × 1{𝜍<𝑥 },

and the result (2.11) follows. �

Based on Lemma 2.1, let us now derive the PGF of 𝑇∗ in Theorem 2.2.

Theorem 2.2. If jump sizes follow a uniform distribution on [0, 1] and interarrival times of jumps
follow an exponential distribution with parameter 𝜈 > 0, that is, 𝑝 (𝑡) = 𝜈 𝑒−𝜈𝑡 , then the CDF of 𝑇∗

conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

Pr {𝑇∗ < 𝑡} = 𝜈𝑡

∫ 𝑥

0
exp

(
−

∫ 𝜍

0

ℎ′(𝑦)

𝜈𝑦 + ℎ(𝑦)
d𝑦

)
𝑒−𝜈𝑡 𝜍 d𝜍. (2.16)
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Proof. Set 𝑣 = 1 in (2.5), then we have

E

[
exp

(
−

∫ ∞

𝑡

ℎ(𝑋𝑠) d𝑠
)
| 𝑋𝑡

]
= exp

(
−

∫ 𝑋𝑡

0

ℎ′(𝑦)

𝜈𝑦 + ℎ(𝑦)
d𝑦

)
.

Hence,

Pr {𝑇∗ < 𝑡} = E

[
exp

(
−

∫ ∞

𝑡

ℎ(𝑋𝑠) d𝑠
)]

= E

[
exp

(
−

∫ 𝑋𝑡

0

ℎ′(𝑦)

𝜈𝑦 + ℎ(𝑦)
d𝑦

)]
.

Based on the CDF (2.11) for 𝑋𝑡 , we have the density of 𝑋𝑡 as

Pr {𝑋𝑡 ∈ d𝜍} = 𝜈𝑡 𝑒−𝜈𝑡𝐺 (𝜍 )𝑔(𝜍)1{𝜍<𝑥 }d𝜍,

and then,

Pr {𝑇∗ < 𝑡} = 𝜈𝑡

∫ 𝑥

0
exp

(
−

∫ 𝜍

0

ℎ′(𝑦)

𝜈𝑦 + ℎ(𝑦)
d𝑦

)
𝑒−𝜈𝑡𝐺 (𝜍 )𝑔(𝜍) d𝜍.

With a uniform distribution on the interval [0, 1] for jump sizes, (2.12) follows immediately. �

Corollary 2.10. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps follow
an exponential distribution with parameter 𝜈 > 0, that is, 𝑝 (𝑡) = 𝜈 𝑒−𝜈𝑡 and ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then
the CDF of 𝑇∗ conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

Pr {𝑇∗ < 𝑡} = 𝜈2+ 1
𝑐 𝑡

∫ 𝑥

0

1
𝑒𝜈𝑡 𝜍 (𝜈 + 𝜍𝑐) (𝑐+1)/𝑐 d𝜍. (2.17)

Proof. Based on Theorem 2.2 and the additional assumption of ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, we have

Pr {𝑇∗ < 𝑡} = 𝜈𝑡

∫ 𝑥

0
exp

(
−
𝑐 + 1
𝑐

∫ 𝜍

0

𝑐𝑦𝑐−1

𝜈 + 𝑦𝑐
d𝑦

)
𝑒−𝜈𝑡 𝜍 d𝜍

= 𝜈𝑡

∫ 𝑥

0
exp

(
−
𝑐 + 1
𝑐

ln
(
𝜈 + 𝜍𝑐

𝜈

))
𝑒−𝜈𝑡 𝜍 d𝜍

= 𝜈𝑡

∫ 𝑥

0

(
𝜈

𝜈 + 𝜍𝑐

) (𝑐+1)/𝑐

𝑒−𝜈𝑡 𝜍 d𝜍

= 𝜈2+ 1
𝑐 𝑡

∫ 𝑥

0

1
𝑒𝜈𝑡 𝜍 (𝜈 + 𝜍𝑐) (𝑐+1)/𝑐 d𝜍.

�

We can calculate the probability of no event (e.g., insurance claim of a certain type) beyond time 𝑡
as given in (2.17) via numerical integration. For example, by setting parameters 𝜈 = 2, 𝑐 = 1.2 with
the initial state 𝑥 = 0.9, the associated probabilities are reported in Table 1 and plotted in Figure 4. As
time 𝑡 is getting larger, the intensity level is getting smaller and smaller. The intensity integral increases
only marginally and events are still generated, but it will eventually arrive at the time point of no event
anymore. Hence, the larger the time 𝑡 is, the higher the probability of no more event beyond time 𝑡 is.

3. Applications in insurance

In this section, we discuss some potential applications of our model as a component to calculate the
survival probability in life insurance and reinsurance premium in non-life insurance, respectively.

https://doi.org/10.1017/S0269964821000553 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000553


Probability in the Engineering and Informational Sciences 225

Table 1. Probability of no event beyond time 𝑡.

𝑡 𝜈 = 0.5 𝜈 = 1

5 51.74% 79.88%
10 68.83% 89.56%
15 77.12% 93.13%
20 82.05% 94.96%
25 85.32% 96.06%
30 87.65% 96.79%
35 89.38% 97.31%
40 90.71% 97.69%
45 91.77% 97.98%
50 92.63% 98.21%

Figure 4. Probability of no event beyond time 𝑡.

3.1. Life insurance

Medical innovation has made us live longer, healthier, and more prosperous lives. Additionally, due to
artificial intelligence advances in health care, a much greater longevity would be possible in the long
term as 𝑡 → ∞ or even within a couple of decades. Hence, we may apply our results to calculate survival
probabilities which are the key inputs for life insurance. In general, by setting 𝑣 = 1 in (2.3) and solving
the equation, we can obtain the ultimate survival probability (or survivor function) due to a particular
event-type of interest as

Pr
{
𝜏∗𝑥 = ∞

}
= E

[
𝑒−Λ∞ | 𝑋0 = 𝑥

]
= 𝑝 (ℎ(𝑥)) ×

[∫ 𝑥

0
𝜙(𝑦)𝑔(𝑦) d𝑦 + 𝜙(𝑥)�̄� (𝑥)

]
, (3.1)
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Figure 5. Survival probability against the parameter 𝑐 for amplification effect.

Table 2. Survival probability against the parameter 𝑐 for amplification effect.

Parameter 𝑐 𝜈 = 0.5 𝜈 = 1

1.0 12.76% 27.70%
1.5 19.01% 35.75%
2.0 23.58% 41.07%
2.5 27.16% 45.02%
3.0 30.15% 48.19%
3.5 32.74% 50.87%
4.0 35.07% 53.23%
4.5 37.22% 55.35%
5.0 39.23% 57.30%

where 𝜏∗ is the first jump-arrival time in the point process 𝑁𝑡 , that is,

𝜏∗𝑥 := inf {𝑡 > 0 : 𝑁𝑡 = 1 | 𝑁0 = 0, 𝑋0 = 𝑥} ,

which is modeling the first event-arrival time of a particular type. More specifically, if jump sizes follow
a uniform distribution on [0, 1], interarrival times of jumps follow an exponential distribution with its
parameter 𝜈, that is, 𝑝 (𝑡) = 𝜈 𝑒−𝜈𝑡 and ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0, then the survival probability Pr

{
𝜏∗𝑥 = ∞

}
can be immediately obtained by setting 𝑣 = 1 in (2.6). For example, by setting the initial state 𝑥 = 0.9
and varying the parameter 𝑐 for amplification effect, the survival probabilities for 𝜈 = 0.5, 1, are plotted
in Figure 5, and the associated detailed numerical output is reported in Table 2.

Note that 𝜏∗𝑥 is considered as a defective (improper) random variable with a point mass at time 𝑡 = ∞.
The survival probability (3.1) is corresponding to a particular type of gradually disappearing events
(e.g., deaths caused by traffic accidents or deaths caused by the COVID-19) rather than overall events.
Essentially, it is a marginal probability function, also well known as the subdistribution for a particular
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failure type of interest in the literature of survival analysis, see for example [19,22,29, Sect. 8]. The
Cox process with piecewise-constant decreasing intensity as introduced in Section 2 provides us a key
model component for modeling these types of gradually disappearing events rather than for all events
within a general competing-risks framework. Of course, each life is not immortal in the reality, and we
can simply add another model component acting as the force for all rest risks (e.g., the mortality force is
increasing with respect to the age, year, or many other factors). This can be done by introducing another
random time 𝜏∗𝑏 acting as a competing risk that will eventually produce a death event at time

𝜏∗ := min
{
𝜏∗𝑥 , 𝜏

∗
𝑏

}
,

where 𝜏∗𝑏 may be assumed to follow a simple Poisson process or more generally another Cox process
with time-varying intensity 𝑏(𝑡) > 0, and 𝑏(𝑡) could depends on years, ages, or many other factors.
Therefore, the overall intensity is

𝜆𝑡 + 𝑏(𝑡),

where 𝑏(𝑡) is the baseline intensity for 𝜏∗, and 𝜆𝑡 is the type-specific intensity. Trivially, the ultimate
overall survival probability (due to overall events) is zero, that is, Pr {𝜏∗ = ∞} = 0. Therefore, here we
are mainly interested in the nontrivial result of ultimate (marginal) survival probability (3.1) caused by
events of a particular type, 𝜏∗𝑥 , driven by technological advances in a very long run. In fact, this research
motivation is similar as the classical problem of ultimate ruin probability which are extensively studied
in actuarial mathematics. In this paper, we are also dealing with the ultimate probability but within a
different context considering the risk landscape change in the insurance industry.

3.2. Non-life insurance

The Advanced Driver Assistance Systems (ADAS) in highly automated vehicles may reduce or even
eventually eliminate accidents by perceiving dangerous situations. Nearly perfect automated vehicles
could be deployed as 𝑡 → ∞ or even within a couple of decades, which will minimize the number
of accidents leading to fewer and fewer loss claims. Hence, we apply our results to the stop-loss
reinsurance contract for a portfolio purely concentrated on the motor insurance business in the long
run. Standard non-life insurance contracts are typically underwritten in the short term. However, they
are often automatically renewed, and it is worth studying the long-term risk landscape in insurance
similarly as the classical ruin problem in risk theory.

Let {𝑍𝑖}𝑖=1,2,... be the claim amounts, which are assumed to be i.i.d. with the CDF 𝐻 (𝑧), 𝑧 > 0. The
total loss excess over the retention limit 𝐾 > 0 up to the time of 𝑡 → ∞ is given by

(𝐶∞ − 𝐾)+ := max {𝐶∞ − 𝐾, 0} ,

where 𝐶∞ =
∑𝑁∞

𝑖=1 𝑍𝑖 , and 𝑁∞ is the ultimate number of claims. Therefore, the stop-loss reinsurance
premium is given by

E
[
(𝐶∞ − 𝐾)+ | 𝑋0 = 𝑥

]
,

which is similar to a perpetual call option in finance.

Corollary 3.1. If jump sizes follow a uniform distribution on [0, 1], the interarrival times of jumps
follow an exponential distribution with parameter 𝜈, that is, 𝑝(𝑡) = 𝜈 𝑒−𝜈𝑡 and ℎ(𝑢) = 𝑢1+𝑐 , 𝑐 > 0,
and the claim sizes follow an Erlang distribution Erlang(𝜑, 𝛽), then the expected ultimate total loss
conditional on 𝑋0 = 𝑥 ∈ (0, 1) is given by

E [𝐶∞ | 𝑋0 = 𝑥] =
𝑥𝑐

𝜈

(
𝑐 + 1
𝑐

)
𝜑

𝛽
,
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and the stop-loss reinsurance premium with the retention limit 𝐾 is given by

E
[
(𝐶∞ − 𝐾)+ | 𝑋0 = 𝑥

]
=

(
𝑥𝑐

𝜈 + 𝑥𝑐

) (𝑐+1)/𝑐 ∞∑
𝑛=1

Γ(𝑛 + 𝑐+1
𝑐 )

𝑛!Γ(𝑛)

( 𝜈

𝜈 + 𝑥𝑐

)𝑛

×

[
𝑛𝜑

𝛽

(
1 −

𝛾(𝑛𝜑 + 1, 𝛽𝐾)

(𝑛𝜑)!

)
− 𝐾

(
1 −

𝛾(𝑛𝜑, 𝛽𝐾)

(𝑛𝜑 − 1)!

)]
, (3.2)

where 𝛾(·, ·) is the lower incomplete gamma function.

Proof. We assume that the claim sizes follow an Erlang distribution denoted by Erlang(𝜑, 𝛽), that is,

ℎ(𝑧) =
𝛽𝜑𝑧𝜑−1𝑒−𝛽𝑧

(𝜑 − 1)!
, 𝑧, 𝛽 > 0, 𝜑 ≥ 1,

where 𝛽 is the rate parameter and 𝜑 is the shape parameter. Note that,

𝑁∞∑
𝑖=1

𝑍𝑖 | 𝑁∞ ∼ Erlang(𝑁∞𝜑, 𝛽),

so, 𝐶∞ follows an Erlang-mixture distribution with the density function

∞∑
𝑛=1

Pr {𝑁∞ = 𝑛 | 𝑋0 = 𝑥} ×
𝛽𝑛𝜑𝑐𝑛𝜑−1𝑒−𝛽𝑐

(𝑛𝜑 − 1)!
.

Then, we have

E [𝐶∞ | 𝑋0 = 𝑥] = E [𝑁∞ | 𝑋0 = 𝑥] × E [𝑍] =
1
𝜈

(
𝑐 + 1
𝑐

)
𝑥𝑐 ×

𝜑

𝛽
,

and

E
[
(𝐶∞ − 𝐾)+ | 𝑋0 = 𝑥

]
= E [(𝐶∞ − 𝐾) 1{𝐶∞ ≥ 𝐾} | 𝑋0 = 𝑥]

=
∞∑
𝑛=1

Pr {𝑁∞ = 𝑛 | 𝑋0 = 𝑥} ×

[∫ ∞

𝐾

𝑐
𝛽𝑛𝜑𝑐𝑛𝜑−1𝑒−𝛽𝑐

(𝑛𝜑 − 1)!
d𝑐 − 𝐾

∫ ∞

𝐾

𝛽𝑛𝜑𝑐𝑛𝜑−1𝑒−𝛽𝑐

(𝑛𝜑 − 1)!
d𝑐

]

=
∞∑
𝑛=1

Pr {𝑁∞ = 𝑛 | 𝑋0 = 𝑥} ×

[
𝑛𝜑

𝛽

∫ ∞

𝐾

𝛽𝑛𝜑+1𝑐𝑛𝜑𝑒−𝛽𝑐

(𝑛𝜑)!
d𝑐 − 𝐾

∫ ∞

𝐾

𝛽𝑛𝜑𝑐𝑛𝜑−1𝑒−𝛽𝑐

(𝑛𝜑 − 1)!
d𝑐

]

=
∞∑
𝑛=1

Pr {𝑁∞ = 𝑛 | 𝑋0 = 𝑥} ×

[
𝑛𝜑

𝛽

(
1 −

𝛾(𝑛𝜑 + 1, 𝛽𝐾)

(𝑛𝜑)!

)
− 𝐾

(
1 −

𝛾(𝑛𝜑, 𝛽𝐾)

(𝑛𝜑 − 1)!

)]

=
∞∑
𝑛=1

Γ(𝑛 + 𝑐+1
𝑐 )

𝑛!Γ(𝑛)

(
𝑥𝑐

𝜈 + 𝑥𝑐

) (𝑐+1)/𝑐 ( 𝜈

𝜈 + 𝑥𝑐

)𝑛

×

[
𝑛𝜑

𝛽

(
1 −

𝛾(𝑛𝜑 + 1, 𝛽𝐾)

(𝑛𝜑)!

)
− 𝐾

(
1 −

𝛾(𝑛𝜑, 𝛽𝐾)

(𝑛𝜑 − 1)!

)]
,

since ∫ ∞

𝑥

𝛽𝜑𝑧𝜑−1𝑒−𝛽𝑧

(𝜑 − 1)!
d𝑧 = 1 −

𝛾(𝜑, 𝛽𝑥)

(𝜑 − 1)!
,

https://doi.org/10.1017/S0269964821000553 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000553


Probability in the Engineering and Informational Sciences 229

Figure 6. Expected total loss against the parameter 𝑐 for amplification effect.

Figure 7. Stop-loss reinsurance premium.

and

𝑁∞ | 𝑋0 = 𝑥 ∼ Negative Binomial
(
𝑐 + 1
𝑐

,
𝑥𝑐

𝜈 + 𝑥𝑐

)
,

we have the probability mass function (PMF) of 𝑁∞ conditional on 𝑋0 = 𝑥 explicitly as

Pr {𝑁∞ = 𝑛 | 𝑋0 = 𝑥} =
Γ(𝑛 + 𝑐+1

𝑐 )

𝑛!Γ(𝑛)

(
𝑥𝑐

𝜈 + 𝑥𝑐

) (𝑐+1)/𝑐 ( 𝜈

𝜈 + 𝑥𝑐

)𝑛
, 𝑛 = 0, 1, . . . .

�
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Table 3. Stop-loss reinsurance premium.

𝐾 𝜈 = 0.5 𝜈 = 1

0 0.6739 0.8084
1 0.3379 0.4384
2 0.1642 0.2279
3 0.0779 0.1148
4 0.0363 0.0565
5 0.0166 0.0272
6 0.0075 0.0129
7 0.0034 0.0061
8 0.0015 0.0028
9 0.0007 0.0013
10 0.0003 0.0006

For example, by setting parameters 𝑐 = 1.2, 𝜑 = 1, 𝛽 = 1 with the initial state 𝑥 = 0.9, we can
calculate the expected total loss and stop-loss reinsurance premiums for 𝜈 = 0.5, 1, which are plotted in
Figures 6 and 7, respectively. The associated detailed numerical output is reported in Table 3.

4. Conclusion

A Cox process with piecewise-constant decreasing intensity has been introduced in this paper. The
intensity process is a stochastic piecewise-constant decreasing function of time. Subject to the arrival
of a breakthrough event, the intensity process might, or might not, be reduced to a new minimum
level. The long-term properties are of our focus. We derive its ultimate distributional properties, such
as the Laplace transform of the intensity integral process, the probability generating function of the
point process, their associated moments and cumulants, and the probability of no more claims for a
given time point. Using our model as a component within a general competing-risks framework, these
results may be potentially applied to calculate survival probability for life insurance and reinsurance
premium for non-life insurance in a very long run. Similarly, this model may be applicable in many other
areas for modeling the evolution of gradually disappearing events, such as corporate defaults in credit
risk modeling, trade arrivals in market microstructure, dividend payments by a stock, employment of a
certain job type (e.g., typists) in labor market, and release of particles, as long as the underlying intensity
process of the associated event arrivals is piecewise-constant and decreasing. Similarly as the classical
ruin problem in insurance, the distributional properties and associated applications for a given finite-time
horizon are much more difficult to be analytically studied, which are proposed for further research.
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