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RATING THE DISCOUNT FOR A MOTOR INSURANCE EXCESS *

G. C. TAYLOR

The problem of rating the discount for an excess is considered under the condi-
tion where premium rates for excess-free policies are calculated according to a
multiplicative (or equivalently, points rating) model.

Section 3 obtains some inequalities on the manner in which the discount should
vary over the various risk-classes in the portfolio and compares the results with
the current practical situation in Australia.

Section 4 derives a formula for rating the discount and gives some reasonable
and practical approximations.

1. DIFFICULTIES IN RATING THE DISCOUNT

This paper considers the discount, or reduction in premium, which can be
allowed in respect of an excess on a comprehensive motor insurance policy.
In Australia such policies are limited almost entirely to property damage
cover.

To establish terminology, let E be the amount of the excess. Then, in the
event of a claim involving damage of an amount x, the insurer is required to pay

max (o, x — E).

Most motor insurance portfolios include policies at various levels of excess,
and so it may be thought that determining the discounts justified by these
levels of excess would be a reasonably simple matter—merely a matter of
examining the insurer's experience to discover the manner in which claims
cost per vehicle varies with excess.

At this point one meets the perennial problem of motor insurance rating.
It is that, according to the dictates of both experience and market practice,
premiums for motor insurance are differentiated according to number of risk
factors each of which can assume several values. This usually has the effect
of producing so many subdivisions of the portfolio that the majority of them
are statistically unreliable for rating purposes.

A further differentiation according to excess level obviously exacerbates
this difficulty.

Furthermore, since many insurers overcome the difficulty discussed in the
second last paragraph by using some mathematical technique, such as a
multiplicative formula (discussed in more detail in Section 2), it is necessary
to ensure in such cases that the manner in which a discount for excess is
introduced is not such as to throw up anomalies relative to the rating formula.

* Presented at the 14th ASTIN Colloquium, Taormina, October 1978.
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2. A RATING MODEL (FOR A GIVEN EXCESS)

For the present the question of excess will be ignored. Equivalently, it will
be assumed that a unique excess applies to all risks insured in the portfolio.

It will be supposed, that there are m risk factors, designated R1, R2, . . ., Rm.
It is supposed that Rl can assume %i different values R{, . . ., Rl

n . Any partic-
ular risk is then described by the w-tuple of values assumed by the risk factors.
For example, (i?^, R^, . . ., R^J will represent a risk for which the risk factor
Rl assumes the value i?J i= 1, 2, . . ., m.

Let P(ji, jz, .. ., jm) denote the risk premium for this risk. In the sequel we
shall make

Assumption 1.

The risk premium is defined by a multiplicative structure. More precisely, there
exists a set of quantities {icj. i= 1, 2, . . . , m; ji= 1, 2, . . ., nt} such that the
risk premium has the form:

(2.1) P{juj2, ...,jm) = K n 4 .
i-l

As remarked in Section 1 this is a widely used rating device and often appears
to fit the facts reasonably well. It is a device sometimes extended into a slightly
different form which is more convenient administratively. The new form is
obtained by noting that one may write

(2.2)

whence (2.1) becomes:

(2.3) P

with

(2.4)

(ii, . . . , ; «

p =

(1

) -

m

2

It is usual to refer to p} as the points score associated with the value Rj of
the risk factor Ri. It is apparent from (2.4) that the risk premium is calculated
by obtaining p, the total points score for the risk under consideration and raising
the factor (1 + r) to this power.

3. VARIATION OF DISCOUNT FOR EXCESS WITH RISK-CLASS

Henceforth the m-tuple (ji, . .., jm) describing the risk will be denoted by j in
vector notation.

Let X(j) be the claims frequency associated with risk j and let F( . | j) be
the corresponding d.f. of claim sizes. Then

P(i) = Mi)
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where

(x(j) = \ xdF{x I j),

which is the mean claim size associated with j .

We now wish to introduce an excess into the rating system. Let PE(j) be
the risk premium required under the action of an excess E,

(3-1) PEG) = X(j)MJ).

where

(3.2) i) = ](x-E)dF(x\i)

= JH{x\j)dx,

where H is the complementary d.f.

H(x\i) = i - F (

The difference between the premium rate applicable in the absence of an
excess and that applicable in the presence of an excess of E is called the discount
for excess E. If it is denoted by DE(]), then

(3-3) DE(i) = P0(j)-PE(i)

= x(j) [Ml) - Mi) ]

= X(j) JH(x I j) dx.

The first qualitative question in which one might be interested is how DE

responds to changes in j (for given E). Clearly, without any assumptions
about the way in which X and F vary with j , practically any type of response
of DE is possible. In order to cut down on the range of possibilities and gain
some insight into the problem, we make a distributional assumption.

Assumption 2.

The same distribution of claim sizes occurs in risk-classes j and k except that
the claim sizes differ by a scalar multiple. More precisely,

F(x I j) = F(a( j» ,

for some d.f. F which is independent of j .

It should perhaps be pointed out that the meaning of the scaling constant
a(j) is that oc(j) > <x(k) means that the j amount is stochastically smaller than
the k amount.
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Note that

[by (3.2)] Mi) = /#(«(j)*) dx

(34) = fWa(j),

where [xo is the mean associated with the d.f. F. Thus

(3-5) Po(i) = (XoX(j)/K(j).

Now

[by (3-3)] DE(j) = X(j) fH(x I j) dx
0

= X(j) J H(a(i)x) dx
0

(3-6) = [MJ)/«(J)1 J

Therefore, by substitution of (3.5) into (3.6):

(37) DB(i) = ^PoO) I H(y)dy.

We now wish to compare the size of the discount for different values of j .
From (3.1), if <x(j) > <x(k), then

DE{\) = X(j) J H(OLQ)X) dx
0

sa(i)/a(k)
= X(j) [a(k)/a(j)] J H(a(k)y) dy

(3-8) = [X(j)/cc(J)][a(k)/X(k)]Z?a(k),
by (3.6).

Using (3.5) in (3.8):

Pod)
DE(k) > P0(k) "
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It may be noted that equality holds here if and only if there is zero
probability of obtaining in risk-class k a claim size between E and £a(j)/oc(k).
Thus, for practical cases we may take

DBW PofJl
(3A0) DE(k) > Po(k) •

Returning to (3.6):
Ea(i)

J H(y) dy

£a(k)
J ff(*oc(j)/a(k)) dx

0

J H(x) dx
0

(3-11) = [X(j)/X(k)J DE(k).

Again we note that equality holds only if in both risk-classes j and k there
is zero probability of a claim below the excess. Thus, combining (3.10) and
(3.11) for practical cases:

Now it is common in motor insurance to find that X(j) and (xo(j) vary in
sympathy as j varies, i.e.

X(j) <X(k) if and only if (i,o(j) < î o(k). It then follows from (3.4) and (3.5) that

Po(j) < Po(k) if and only if «(j) > «(k).

In this case (3.12) can be replaced by:

( 3 1 3 )
(3-13) Po(k) < DBW < X(k) K K

if and only if P0(j) < Po(k).

What this means in graphic terms is illustrated in the following diagram.
In this diagram, risk-classes are arranged along the horizontal axis in such

a way that the premium rates, plotted against the premium rate for a standard
risk-class, form a linear graph. The shaded area shows the area of the graph in
which the discount for excess E, also expressed as a percentage of the discount
for the standard risk-class, can lie.

The result embodied in (3.13) and the diagram is an interesting one because,
in Australia at least, there is currently a strong tendency to allow a constant
or near-constant discount for all risk-classes. This seems difficult to justify on
the facts.
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4- CALCULATING THE DISCOUNT

Equation (3.3) gives an expression for the discount for excess E under quite
general conditions. Clearly, it is difficult to proceed in the absence of a know-
ledge of all the d.f.'s F( . | j) unless some other assumptions are made. In this
section we retain Assumption 1 from Section 2. We also make the assumption
that, over all the risk-classes, claim frequency and average claim size vary in
sympathy in a specific way, i.e.

Assumption 3.

;xo(j)/jAo(k) = [X(j)/X(k)]P, for some constant (3.

By (3.1),

PQ{\) [Mi)_ Mi)
(4A} >o(k) Lx(k) (io

by Assumption 3. Then, by (2.3) and (4.1),

(4.2)

[Mi! MJTI = [MiT|1+p

Lx(k) [xo(k)J LX(k)J

X(k)

where

(4-3) P(i) =

which is an alternative form of (2.4).

PJV
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Now b y (4.2) a n d (4.3)

(44) rjTTs = n (i + r ) , v * '<"

which means that claim frequency has a multiplicative structure. It follows
immediately from (4.4) and Assumption 2 that average claim size has a multi-
plicative structure also.

We now revert to (3.6):
*x(i)

DB(\) = [X(j)/a(j)] J H(y) dy

= [{ioX(k)/a(k)] ^ - ^ J

= ^| | Po(k) r o >

by (3.4) and (3.5). Thus, by (4.2),
i/d+3)

(4-5) DE(j) = y(j)Po(k) 'K • ' '

where

(4-6) y(j) = -7TT J H{y)

Now, as is apparent from (2.i)-2.4), it is possible to choose K= P(k), say, so
that p(k) = o, i.e. k is a risk-class with zero points score.

Then (4.5) becomes

(4-9) DE(j) = y(j)Po(k)(l+^>'<1 + e>,

where y is defined by (4.6).

4.1 First approximation to the discount.

Normally £oc(j) will be fairly small in relation to fzo (perhaps of the order of
10%) and H(y) will vary fairly smoothly for small values of y. Therefore,
a first approximation to y(j) is

(4.1.1)

or even

(4.1.2) y(j) = £/(xo(k).

,
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The second of these has the advantage of being simple. It has the disad-
vantage of overestimating the discount. Equation (4.1.1) is preferable, and an
unsophisticated examination of claim sizes should be sufficient to form an
idea of the size of H(\Ea.Qs)).

4.2 Second approximation to the discount

The disadvantage of approximations (4.1.1) and (4.1.2) is that both disregard
the dependence of (j) on j . This can be taken into account by means of the
approximation:

= [£/[xo(k)] [1 + EH'(±E*()))y,olMJ)l (by (3-4))

(4.2.1) = [2/Mk)] {1 + no#'(i£a(j)) [£/[io(k)] (l + r)->V^ + V}

by Assumption 3 and (4.2).

4.3 Rule for calculation of discount

The verbal statement of calculation of the discount for excess E in risk-class j
is as follows:

1. Calculate the points score for risk-class j .
2. Divide this points score by the constant (1 + (3).
3. Raise (1 + r) to that power.
4. Multiply the result by y times the excess-free premium rate for risk-

classes with zero points score. Note that y is defined in (4.1.1), (4.1.2)
or (4.2.1) in terms of the mean claim size in risk-classes with zero points
score.

Note that our expressions for the discount, in the form of (4.5), satisfy the
inequality (3.13).

5. ESTIMATION OF THE PARAMETER

By Assumption 3,

!og (AO(J) = P log Mi) + const.,

which suggests that, as a simple measure, (3 might be estimated as the
regression coefficient of log [j.o(j) on log X(j). More efficient estimators could be
found, e.g. maximum likelihood, which would be asymptotically efficient.

E. S. Knight and Co., Sydney, Australia.
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