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GENERALISED SOLUTIONS OF HESSIAN EQUATIONS

ANDREA COLESANTI AND PAOLO SALANI

We introduce a definition of generalised solutions of the Hessian equation Sm {D2u)
= / in a convex set fi C R", where Sm(D2u) denotes the m-th symmetric
function of the eigenvalues of D2u, f S Lp(Cl), p ^ 1, and m € { l , . . . , n } .
Such a definition is given in the class of semi-convex functions, and it extends the
definition of convex generalised solutions for the Monge-Ampere equation. We
prove that semiconvex weak solutions are solutions in the sense of the present
paper.

0. INTRODUCTION

In this note we deal with the so-called Hessian equations:

(0.1) Sm(D2u)=f>0 in ft.

Here Sm(D2u) denotes the m-th symmetric function of the eigenvalues of the Hessian
matrix of u, m e { 1 , . . . , n } , and ft is an open bounded subset of R".

The aim of the present paper is introducing a definition of generalised solution of
equation (0.1). To do this, we restrict ourselves to the class of semiconvex functions
defined over a convex set fi and we prove that if u belongs to such class, n + 1 Borel
real measures <ro(u; • ) , . . . , (rn(u; •), can be denned, which generalise the integrals of the
functions Sm(D2u). Namely, if u € C2(U), then

K W f c ( u ; i j ) = I Sk(D
2u), k = 0,...,n,

for every Borel subset t] of £i. Then we say that u is a generalised solution of (0.1) if

for every Borel subset r\ of Cl (see Definition 4.1).

Notice that, if u is convex, then an(u; •) is the measure of the subgradient map of u
(see Section 2 for details). Hence for m = n, that is, when (0.1) is the Monge-Ampere
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equation, the above definition coincides with the usual notion of convex generalised
solution of the Monge-Ampere equation, introduced by Aleksandrov (see for instance
[2, 12] and references therein).

The present paper originated from a private communication between the authors
and professor Neil Trudinger, during a conference on Elliptic PDE held in Cortona
(Italy) in May 1996. Trudinger [11] establishes existence and uniqueness results for
weak solutions of certain Dirichlet problems involving equations (0.1); such solutions
are limit of solutions of smooth approximating problems. In Theorem 4.2 we prove that
a semiconvex weak solution of (0.1) is also a generalised solution.

In Section 1 we give some preliminaries on semiconvex functions, while in Section
2 and Section 3 we state and then prove the existence of the measures ak{w, •) • Finally,
in Section 4, we give the definition of the generalised solutions and we prove Theorem
4.2.

1. SEMICONVEX FUNCTIONS

In this section we recall briefly the notion of a semiconvex function. This class of

functions was studied by several authors: see for instance [3] and [7].

Throughout, f2 is an open convex and bounded subset of Rn and ||-|| denotes the

Euclidean norm. Cn stands for the n-dimensional Lebesgue measure and 53(̂ 4) is the

family of Borel subset of a measurable set i d " .

DEFINITION: A real-valued function u, defined in fi, is semiconvex if there exists

c ^ 0 such that the function u(x) + c \\x\\2 /2 is convex in fl.

If u is semiconvex in Q, we call the real number

f cllxll2 i
(1.1) sc(u, Q) = infjc ^ 0 : u + " " is convex in fij

the semiconvexity modulus of u in il.

We denote the class of semiconvex functions in f2 by W(Cl) and set W(Q,c) —

{u G W(Q) : sc(u,Q) ^ c} for every O 0.

For a convex function v let dv(x) be the subdifferential oft) at i . If u is semicon-
vex we denote by du(x) the set {w — ex : w G d(u + (c ||x|| )/2) (x)}, which coincides
with the Clarke generalised gradient of u at x (see [7] for references). By well-known
properties of the subdifferential of a convex function, du(x) is a nonempty closed and
convex set for every x G f2.

2. GENERALISED SYMMETRIC FUNCTIONS OF THE HESSIAN

We recall that, for real numbers /3i,...,/?„, and 1 ^ m ^ n, the m-th symmetric
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function of /3i , . . . , / ? „ is defined by

Furthermore, we set S0(f3i,..., /3n) = 1.

If u is of class C 2 , we denote by Sm{D2u) the m - t h symmetric function of the
eigenvalues of the Hessian matrix D2u of u. For a Borel subset 77 of Q, and for p ^ 0,
consider the set Pp(u\r]) = {x + pVu(x) : a; € 77}. If u S C2(f2), then by the area
formula, for sufficiently small p , we get

Cn(Pp(u; 77)) = /" det (J + pD2
U) = £ ( 7 $(£>2u)) />';

here / stands for the n x n identity matrix.

Now let u G W(fi) ; for any nonnegative p and for any subset 7} C f2, we set

Pp(U; TJ) = {z e Rn
 : z = x + pv, x £ TJ, v € du{x)} .

Clearly if u 6 C1(fi) n W(Q) this definition coincides with the one given above.

The following result generalises [4, Theorem 1.1] (see also [8, Proposition 3.1]).

THEOREM 2 . 1 . Let Ci be an open bounded convex set in R", let u £ W(Q, c)

for some c ^ 0, and let u be Lipschitz. Then, for every Borel subset r\ C f2 and for

every p € [0,1/c), the set Pp(u; 77) is Lebesgue measurable. Moreover, there exist n + l

real-valued Borel measures cfi{u; •), i = 0 , . . . , n, such that:

(2.1) cn(pP(u-,v)) = J2
3=0

for every p £ [0,1/c] and for every Borel subset n of Q..

If u is convex, then, as proved in [4, Theorem 3.1] an(u;r]) — Cn ({v G Rn :

v € du(x), x € 77}), for every 77 € 93(f2). Thus an(u; •) is the measure of the subgradi-

ent map of u.

REMARK. In [6] Federer established a well-known Steiner formula for sets with positive

reach. Formula (2.1) can be seen as a counterpart of such formulas in the context of
semiconvex functions. Note that, as proved by Fu [7], sets of positive reach can be
characterised as sublevel sets of semiconvex functions.
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3. P R O O F OF THEOREM 2.1

In order to prove Theorem 2.1 we need some preliminary results.

LEMMA 3 . 1 . Let u € W(fl,c), c ^ 0, and let 0 ^ pc < 1. There exists a
Lipschitz map TTU from Pp(u; ft) to Q, such that for every z € Pp(u; ft), z = TTU(Z) + pv,
where v € 8U(T:U(Z)) .

PROOF: Let z, z' € Pp{u; ft) and let x,x' £ Q be such that z = x + pv, v £ du(x),

and z' = x' + pv', v' £ du(x'). We prove that there exists a constant L > 0 such that
\\x — x'\\ ^ L||z — z'\\. We choose a coordinate system such that x = (0,0, . . . ,0)
and x' = (t',0,... , 0), t' ^ 0. Let u*(t) = u(t, 0 , . . . ,0): such a function is denned
and semiconvex, with semiconvexity modulus not greater than c, on an open interval
(-£, t' + e), for some e > 0. Moreover, if v = (^1,^2, • • •, vn) and v' = (v[, v'2,..., v'n),

then vi € du*(0) and v[ G du*(t'). By the definition of subgradient, this implies
v'i - vi ^ -cf', and, if cp < 1, then

||z - z'\\ > \(z - z1, e)\ = \(x + pv, e) - (x' + pv',e)\

= \p(v[ - Vl) + t'\ > t'{\ - cp) = \\x - x'\\ (1 - cp),

where e = (1,0, . . . , 0 ) . Thus TTU is well defined and ||a; - x'\\ = \\TTU(Z) - nu(z')\\

s: L\\z- z'||, with L = 1 / ( 1 - cp). D

REMARK. The continuity of nu implies that Pp(u;r]) — TT~1(T/) is measurable for any

Borel subset 77 of ft.

For a positive R, let B(R) be the open ball centred at the origin with radius R.

LEMMA 3 . 2 . Let u € VF(ft, c), c ^ 0, and Jet u be Lipschitz. Then there exists
a semiconvex function w € W(M.n, c) which extends u to R". Furthermore w is radially
symmetric and C°° in the complement of B(R), for some R > 0.

PROOF: We consider the function k(x) = u(x) + (c||x|| ) / 2 , which is convex and

Lipschitz in ft. [4, Lemma 2.3] ensures that k can be extended by a convex and

Lipschitz function k*, denned in K", which is radially symmetric and C°° in the

complement of B(R), for a suitable R. Consequently w(x) = k*{x) — (c ||a;||2)/2

provides the required extension of u. D

LEMMA 3 . 3 . Let w be a semiconvex and Lipschitz function defined in R" , such
that w is radially symmetric and C°° in the complement set of B(R), R > 0. Then, for

every p such that 1/p > sc(w,Rn), Pp(w;B(2R)) = B{2R + pL), where L = ||£>w(x)||
for ||a;|| = 2R.

PROOF: By the continuity of TTW we get

Pp(w; B(2R)) = TT (

U 3B(2R)) = ir~1(B(2R)) U K
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On the other hand Pp(w; B(2R)) = n-l(B(2R)) is open, hence dPp(w;B(2R)) C

•K~1(dB(2R)) = dB(2R + pL). Since the only open sets whose boundary is contained
in dB(2R + pL) are B(2R + pL) and its complement, and since the Lipschitz continuity
of w entails that Pp{w\ri) is bounded for every bounded 77, the assertion follows. D

Let ue = 4>£*u be the standard mollification of u. As usual <j>e(x) = (l/en)4> {x/e),

e > 0, where <j) € Co°(Rn) is a radially symmetric function supported in the unit ball,

such that 0 ^ <fi ^ 1 a n d JR™ <t> = 1 •

It is easily seen that if u € W(M.n,c), then ue € W(R",c) for every e ^ 0, and

ue converges uniformly to u on compact sets as e —> 0. For brevity, we set Uj = u^/i,

z € N .

PROOF OF THEOREM 2.1: Let w be a function which extends u t o R " , radially

symmetric and C°° outside a ball B(R); such a function exists by Lemma 3.2. Consider

the sequence u>i, i 6 N. It is easily seen that, for sufficiently large i, Wi is radially

symmetric outside the ball B(2R); let B = B(4R) throughout.

For a fixed p £ [0,1/c) and for every Borel subset rj c Q, the sets Pp(w,r)) and

PP{u>i',v) a r e measurable for every i G N. (See the remark following Lemma 3.1.)

Let e(p,r]) = Cn(Pp(w;r])) and ei{p,rj) = £ n ( P P ( ^ ; v)), V7?e<B(5), V J 6 N .

We first prove that the sequence of measures 0 j , converges weakly to 6 in B .

(We refer to [1] for the notion of weak convergence of measures and related properties.)

By [1, Theorem 4.5.1] it suffices to prove that lim QAp,B) = O(p,B), and that for
i—*oo

every closed 77 C B we have limsup0i(p, rj) ^ 9(p, 77).
i—>oo

By Lemma 3.3 we get 6(p, B) = Cn{B{4R + pL)) and G^p, B) = Cn(B(4R + pLt)),
where Lj = ||Dwi(a;)||, for x G dB. By the uniform convergence of the sequence u>i to
w on compact sets, we have lim Li — L where L = \\Dw{x)\\ for x € dB. Hence it

i—i-oo

follows that lim G^p, B) = G(p, B).
i—»oo

Next we prove that, if e > 0, rj is a closed subset of B and i is sufficiently large,
then

(3.1) (Pp(w;r,))cDPp(wi;r,)

where Ae = {x € Mn : dist(:c, 4̂) ^ e} for a set A C K". We argue by contradiction:
assume for every i there exist Aj ^ i and 3;.^ £ 77 such that

(3.2) xXi + pDwXl (xXi) i (Pp(w; V))£ .

Since 77 is compact and the functions u>i are uniformly Lipschitz, the sequences xXi and
DwXi (xXi), are both bounded. Thus there exists a subsequence xILi of xXi, such that
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Xy,x -¥ x € r) and £)iuMi(a:Mj) -+ v e dw(x). Hence lim x w + pDw^Jx^) = x + pv
i—• o o

which contradicts (3.2) since x + pv £ Pp(w;ri). Thus (3.1) is proved.

As % tends to infinity in (3.1), we obtain

for an arbitrary e. On the other hand, since Pp(w;rj) is closed,

e ( p ^ ) = inf£n((Pp(«;;T,))e).

Finally we proved that
lim sup &i{p,rj) ^ Q(p,r)).

i—»oo

Hence we c o n c l u d e t h a t t h e sequence Q j , j £ N , converges weak ly t o t h e m e a s u r e

e.
Formula (2.1) applies to Wi, for every i:

n

(3.3) Qi(p,v) = Y,
j=0

where aj{wi\rf) = (n) / Sj(D2u>i)dx, j = 0 , 1 , . . . , n , are real bounded measures.

For a fixed m > 0 such tha t n / m < 1/c, let pk = k/m, k = 0 , . . . , n . Writing

equality (3.3) for p = po, Pi, • • •, pn > for every i we get the linear system

The square matrix ((n)/Jj.) is invertible, indeed it can be written as the product of a

diagonal invertible matrix times a matrix of Vandermonde type. If (ajk) denotes its

inverse matrix, we can write
n

(rj(wi;ri) = ^2ei(j>k,rt)ajk, Vr?eQ3(S), Vj = 0 , 1 , . . . ,n .
fc=0

Notice that the coefficients ajk are independent of i and r\. Consequently, the sequence

of measures <jj{wi\ ), i € N, converges weakly for every j = 0 , 1 , . . . , n, as i —> oo.

Denote by <Jj(w; •) the weak limit of &j(wi\ •): <Tj(w; •) is a real bounded measure.

The weak limits of the left and the right hand-sides of (3.3) must coincide, then

, V T , G « 8 ( B ) , V p ^ O .

Finally, since u = w in f2, and fi is open, for every x £ Cl we have du(:r) = dw(x)

and consequently Pp(u;r]) = Pp(w;r]) for every Borel set 77 and for every p ^ 0. D

REMARK. Notice that the measures 0j(u; •) are uniquely determined by virtue of the
identity principle for polynomials.
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4. GENERALISED SOLUTIONS OF THE HESSIAN EQUATIONS

Consider the following Dirichlet problem involving the Hessian equations:

(Sm(D*u)=f>0 infi,

[ u = g on d£l.

Solvability of this problem in the classical sense is studied in [5] and [10]; while in
[11] weak solutions are considered. The measures <7j(tt;-), introduced in the previous
section, allow us to give a notion of generalised solution of this problem.

DEFINITION 4.1: Let fie Rn be a bounded convex open set, / G L}oc{ty a n d

g G C(dCl); a semiconvex function u € C(fi) is said to be a generalised solution of (4.1)
if

(4 f C K ( « ; V) = fv f(x)dx, Vr? e B(fi),

[ u = g on dQ.

We prove that a semiconvex function which is limit of classical solutions, is a
generalised solution in the sense of Definition 4.1. This implies in particular that if u
is a weak solution of problem (4.1) in the sense of Trudinger [11], and u is semiconvex,
then u is also a generalised solution.

THEOREM 4 . 2 . Let fi C R" be a bounded convex open set and let Q,i be a

sequence of smooth bounded convex open sets, converging to fl in the Hausdorff metric.

Moreover, let Ui G C°°(£2i) and fc = Sm(D2Ui) in £lit i G N. Ifui converges uniformly

on compact subsets of Cl to a semiconvex function u and fi converges to f in LX(Q),
then u is a generalised solution of the equation

Sm(D2u) = f i n f i .

REMARKS. Here the functions fi, i € N are assumed to be extended as zero in R n \ n $ .

For the notion of Hausdorff metric, see [9].

PROOF: First consider the sequence of measures

»i(v) = / fi{x)dx,

defined for every Borel subset r] C n . Since fi —> / in L1(r2), this sequence converges

strongly to the measure

M7?) = / f(x)dx;

thus lim fj,i(n) = fi(r]) for every r\ G 93(n).
n—>oo

On the other hand, from the uniform convergence of the sequence Ui to u, using
the same argument as in the proof of Theorem 2.1, it follows that /Zj(-) converges weakly
to (^)(Tm(u; •) in n . By the uniqueness of the weak limit, this concludes the proof. D
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