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PAIRS OF ADDITIVE EQUATIONS III:
QUINTIC EQUATIONS

by R. J. COOK

(Received 15th March 1982)

1. Introduction

We consider R simultaneous equations of additive type

fl(\) = anx\+---+aiNxk
N = 0, l^i^R, (1)

where the coefficients atJ are integers. Artin's conjecture, for additive forms, is that the
equations (1) have a non-trivial solution in integers xu...,xN provided that they have a
non-trivial real solution, which is clearly satisfied when k is odd, and

N^Rk2 + l. (2)

When R = 1 this conjecture was proved by H. Davenport and D. J. Lewis [8] except
when 7^/eg 17, and R. C. Vaughan [13] proved the result when 11 ^fc^ 17. When
R = 2 the conjecture has been proved when fc = 3, see Davenport and Lewis [9], Cook
[4] and Vaughan [14], and for odd fc^l9, see Cook [5]. In the case of two quadratic
equations 9 variables are sufficient provided that every form in the pencil is an indefinite
quadratic form containing at least five variables explicitly, see Cook [2]. Davenport and
Lewis [10] have shown that when k is odd 2fc2 +1 variables are sufficient to ensure the
solubility of two additive equations in every p-adic field.

Theorem 1. Two additive equations of degree 5

(3)
--- +aNx5

N =

btx{+ ••• +bNxs
N = 0

with integer coefficients and N^51 variables xu...,xN have a non-trivial solution in
integers.

The proof of Theorem 1 depends on an analogue of Theorem 2 of Davenport [7]
concerning admissible exponents. We obtain this, Theorem 3, in a form suitable for an
application to R additive equations although at present there is inadequate information
about the p-adic solutions of R ̂  3 quintic equations. When R is fixed and k > ko{e, R) is
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192 R. J. COOK

a sufficiently large odd integer we have recently shown [6] that for any e > 0

log 2
(4)

variables are sufficient to ensure that the equations (1) have a non-trivial solution in
every p-adic field.

Theorem 2. Let e>0, R^.2 and let k>ko(e,R) be an odd integer. If N satisfies (4)
then the equations (1) have a non-trivial solution in integers xt,...,xN.

For large odd k this improves on Theorem 1 of Davenport and Lewis [11] which
states that

N^9R2k\og3Rk (5)

variables are sufficient when k is odd.

2. Admissible Exponents

The s real numbers Xu...,ls satisfying

A 1 ^ l 2 ^ - - -^A s >0 (6)

will be called admissible exponents (for R additive equations of degree k) if for any
RxsR integer matrix A, whose columns form s consecutive non-singular RxR matrices,
the number of solutions of

AX = AY, (7)

where

X = [x\,xk
2,...,x

k
sR]T,Y = \;y\,f2,...,fsR]T (8)

are integer vectors satisfying

CjPx*<Xj,yj<CjP^ (9)

with v = 1 + [0 ' - l)/R~\ and 0 < Cj < Cp is

for any £>0.
If Xt,...,Xs are admissible exponents and 0>O then 6k1,...,6ks are also admissible

exponents and also, for any r^R Xl,...,Xs are admissible exponents for r additive
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QUINTIC EQUATIONS 193

equations of degree k. Our next result is the analogue for R equations of Theorem 2 of
Davenport [7], the case R = 2, s = k = 3 will give Lemma 19 of Davenport and Lewis
[9]-

Theorem 3. Let XU...,XS be admissible exponents for R additive equations of degree k.
Let

cr = Xl+---+Xs and d = kX1 — (k — l). (11)

Ifd>0 then \,Xu...,Xs are also admissible exponents provided that there exists an integer
t satisfying

(12)

(13)

(14)
Proof. Since the first R columns of the matrix of coefficients are in general position

we can take suitable linear combinations of the equations to diagonalise the first R
columns. It is then sufficient to prove that the number of solutions of a set of R
equations

fliui ^li/j

(15)... l+AX= ... \+AY

where a1...aR^0,A,X and Y satisfy the conditions stated in the definition, and

cP<uhvt<CP for i=l,...,R, (16)

with 0 < c < C , is

O(PR(1+<T)+e) as P-KDO (17)

for any e>0 .
Let N(j), O^j^R, denote the number of solutions of (15) subject to the extra

condition that uf̂ =u,- for exactly ; values of the suffix i. Since XU...,XS are admissible
exponents

N(0)<Pm+a)+e as P-oo . (18)

For ; > 0 it is sufficient to prove that the number N'(j) of solutions of a system

(19)
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194 R. J. COOK

in variables uu...,Uj, vu...,Vj, X and Y, subject also to Ui>vh is

Let At(f(x))=f(x + t)—f(x), Ui = Vi + t(i) for i=l,...,j and then write u, in place of v{.
The equations (19) become

AY, (21)

«Ao>(";) J
so that

0<t(i)<$Ps for i=l , . . . , ; . (22)

Let m = [m1,...,mR]T be an integer vector and let r(m) and r(t,m) denote the number
of representations of m by the right and left sides of (21) respectively, with the variables
lying in the specified ranges. Then

1/2

(23)

say. It is now sufficient to prove that for any e>0

M1 = A#1(/'HPJto+*2~')+* as P->oo. (24)

For l^i^j and l^/i_<f let u(i,h) = (ull,...,ua,-l) be an integer vector satisfying

0<uin<P for l^i^j, l^n = / i - l . (25)

We write

A,(i),U(i,/,) for At(i)iU.ii...iUtt_i.

Let Mh = Mfc0) denote the number of solutions of

•+AY (26)

J)uU.h)(vj) \

in all these variables, lying in the specified ranges.
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Let

OL(h)=-{2h-l)5 + h+\, (27)

then from (24) it is now sufficient to prove that for 1 g/i ^

Mh(j)<PRa+ixWJre as P->-oo. (28)

We use induction on) , when j = 0 (28) is true because Al5...,As are admissible exponents.
The contribution to Mh(j) coming from those sets of variables such that U; = u, for
exactly s > 0 of the suffixes 1,2,...,j is

^29)

since

Now we may suppose that for 1 ^ i ^j

Ui = Vi + uih where 0<uih<P. (30)

Writing v( in place of u, the equations (26) become

+AX = AY. (31)

Let r(t, u,m) denote the number of representations of the integer vector m by the left
side of (31) with the variables lying in the specified ranges, then the number of solutions
of (31) that are now under consideration is at most

r(m)r(t, u, m) ̂  £ I r2(tn) \ I r\t, u, m)
t,o,m ( J (, J

^{pHi + V + Rt + zyilMm^y ( 3 2 )

Thus for l g / i g Z - l

(33)
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We now estimate MJj). If Uj = «,- for some i^j then the inductive hypothesis shows
that this contribution to Me{j) is

If u^v, for i = l,...,j then we consider any X, Y satisfying the last R—j equations of
AX = AY. Since XU...,XS are admissible exponents for R—j equations the number of
solutions involved, subject to (9), is

For each such X, Y the remaining variables are determined to within O(PE) possibilities,
since for 1 ^ i ̂ j, t{i), uin and u, — vt are divisors of a fixed non-zero number that is 0(Pk)
and A, u(uf) is of degree at least 2 in u,-. Thus

M;(j) <| p&°+M')+' + pRo + ja + e

(36)

since «r̂ a(<f), from (14).
Now

a(h)=%5 + h)+teh+l) (37)

so from (33) we have

Mh{j)<PRa+m)+t for lSh^f (38)

which completes the proof.

3. A calculation

If Xu...,XS are admissible exponents with

A1 = l,ff = o<s) = A1+•••+*, (39)

then for any 9>0, 611,...,9XS are also admissible exponents. We apply Theorem 3 with
k = 5 and see that if

0 = 0(s)>4/5 (40)

and either

i = 1,0 = min (9/10,6/(5 + a)), or (41)

• = 2,0 = min(17/2O,15/(15 + cr)), or (42)
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t = 3,0 = min (33/40,32/(35 + a))

then 1, QXU..., 9XS are admissible exponents with

) = l + 9a(s).

197

(43)

(44)

From our version of Hua's Lemma [3] we see that 1,1 are admissible exponents.
Iterating from this result we obtain the numerical results in Table 1, the essential feature
of these results is that <T = <7 (10) satisfies

2CT+1/2 = 10.025448... > 10. (45)

Table 1

5

2
3
4
5
6
7
g
9

o(s)

2
19/7

3.298387
3.721169
4.069964
4.333478
4.525528
4.663883

(

1
2
3
3
3
3
3
3

8(s)

6/7
0.846774
33/40
33/40

0.819043
0.813556
0.809603
0.806779

CT(S + 1)

19/7
3.298387
3.721169
4.069964
4.333478
4.525528
4.663883
4.762724

4. Allocation of variables

In proving Theorem 1 we can obviously make the additional assumptions that N = 51
and that each column of coefficients contains at least one non-zero entry. Davenport
and Lewis [8] have pointed out that a single quintic equation

+anx
5

n=0 (46)

has a non-trivial solution in integers provided that n^23. Suppose first that 22 or more
of the ratios ajb{ occurring in (3) are equal, then the equations (3) are equivalent to a
pair

••• +a'Nx5
N =

(47)

after renumbering the variables. Let ^23,...,£N be a non-trivial integer solution of the
second equation, and then solve the single equation

a'ix
5
i+---+a'22x

5
22 + (a'23i

5
23 + •+a'^5

N)t5=0 (48)

to give a solution of the equations (47). Thus we may assume for the rest of the proof of
Theorem 1 that no ratio ajb{ occurs more than 21 times. In order to allocate the
variables suitably we need a combinatorial lemma.
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Lemma 1. The 51 ratios ajbi, with no ratio occurring more than 21 times, can be
partitioned into two sets £f and ST such that

| ^ | = 15 , | ^ | = 36, (49)

no ratio occurs more than 5 times in £f and no ratio occurs more than 16 times in 2T.

Proof. If no ratio occurs more than 5 times the result is trivial. Otherwise we begin
with the most common ratio ajbh put 5 of the terms into y and the remaining ratios of
that value (at most 16) into 9~. We repeat this for the second most common ratio a ^ ,
then the third and so on until we reach a ratio that occurs less than 5 times at which
point it does not matter how the ratios are allocated.

Since the fourth most common ratio occurs at most 12 times all subsequent ratios
can, if necessary, be allocated to 3T.

We now relabel the variables so that the suffixes 1,2,..., 15 correspond to Sf and the
suffixes 16,17,...,51 correspond to 2T. The ratios in 3" can be arranged into 18 unequal
pairs and renumbered so that

^16 , « 1 7 £ l 8 , ^ 1 9 « 5 O , ^ 5 1

»16 "17 Ol8 &19 050 °51

Since the ratios aJb^l^i^lS) are not all equal the linear equations

••• +015^15=0

have a real solution with no yt zero. Replacing xt by — xt in (3), if necessary, and
changing the signs of the corresponding coefficients we may suppose that each yt > 0.

Let P be large and positive. For 1^/^15 we choose constants pj and r, so that,
taking Zj = yj15,

0<pJ<z,.<rJ. (52)

and rj—pj is suitably small. Let N(P) denote the number of solutions of (3) such that the
variables Xj satisfy

PjP<Xj<rjP for 7=1,...,15 (53)

and

Px"<x}<2Px* for 7= 16,...,51 (54)

where v = [(/' — 8)/4] and l , ^ ) ^ , •••>^io a r e t n e admissible exponents determined by the
process of sections 2 and 3.
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Let

Aj=api + bjP for ; = 1,...,51 (55)

and

= Xe(AJ.x5) (56)

where e(6) = exp (2ni6) and x ranges over an interval of the form (53) or (54), depending
on the suffix j . The number N{P) of integer solutions of (3) in the box defined by (53)
and (54) is given by

N(P) = ]]nTJ(AJ)d^dp. (57)

In order to evaluate this integral by the Hardy-Littlewood mathod, the equations (3)
must have non-singular solutions in every p-adic field.

Lemma 2. If N = 51 and no ratio ajb^ occurs more than 25 times then the equations
(3) have a non-singular solution in every p-adic field.

This follows from Theorems 1 and 2 of Davenport and Lewis [10].

5. The minor arcs

The unit square is divided up into major arcs M, where a and P both have good
rational approximations, and the minor arcs m which consist of the rest of the unit
square. The major arc M(A,B, Q) consists of those (cc,j?) which have simultaneous
rational approximations A/Q, B/Q satisfying

|a-^/e|<e-ip-4-M^-B/e|<e-i/j-4-* (58)

where (A, B,Q) = 1 and 8 is a sufficiently small number, independent of P. The major
arcs M are the union of those M(A, B, Q) for which

l^Q^Pl-s,0^A,B<Q,(A,B,Q)=l. (59)

By Dirichlet's theorem on Diophantine approximation, for any number A we can find
relatively prime integers a and q such that

and |qA-a |<P" 4 - < i . (60)

Lemma 3. Suppose that

\qA-a\<p-*-* and P^^q^P**', (61)

https://doi.org/10.1017/S0013091500016904 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016904
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where a and q are relatively prime integers. Then

\T(A)\<P15'16+S (62)

where the exponential sum T is taken over a range of the form (53).

This version of Weyl's inequality is Lemma 15 of Davenport and Lewis [11].

Lemma 4. Suppose that

\q\-a\<p-*-1 and l^q^P1'6. (63)

Let

A = a/q + y. (64)

Then an exponential sum T(A), over a range of the form (53), satisfies

r(AMq-1/5min(P, P^H" 1 ) . (65)

This is Lemma 18 of Davenport and Lewis [11].

Lemma 5. Suppose that for some i with l ^ r ' ^ 1 5

lUAdl^P1-6 (66)

where

0^1/16-2(5. (67)

Then A, has a rational approximation A/Q satisfying

Proof. We choose a rational approximation A/Q to A, satisfying the inequalities (60).
If Q>P1~S we use Lemma 3 to obtain a contradiction to the inequality (67). Thus
Q^pi-* a n c i S 0 ; from Lemma 4,

Pl~6 = \Tt{A^Q~^mini P,P~* A,-- (69)
V 2 /

which gives the inequalities (68).

Lemma 6. Suppose that (a,)?)em. Let i and j be two of the suffixes 1,2,...,15 for
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which afr^api. Then

either |7XA,.)|<P15/16 + 2a or Ir/A

Proof. Let

W^P1-" and

201

(70)

and suppose that (70) is false. Appealing to Lemma 5, we have rational approximations
to A, and Aj respectively such that

Now

• ' er*J

and

so that a and /? have simultaneous rational approximations A/Q, B/Q with (A,B,0=1
and

Thus

Further

(71)

and similarly

(72)

(73)

If 5(0; + 0j) = 1 - 25 then (a, y?) e M(v4, B, Q) and therefore
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Hence

and therefore

R. J. COOK

)| = P
2
 -OI-

min
0+d < P l 5/16 + 2S. (74)

Now let K(a, /?) be the product of four sums Tj[Aj), j e y , with no ratio a,/fr; occurring
more than twice.

Lemma 7. For any e >0

(i v(«,p) (75)

This follows from the definition of admissible exponents and Cauchy's inequality.

Lemma 8. For any e > 0

JJ
51n (76)

Proof. The 15 suffixes in Sf are partitioned into blocks of equal ratios ajbi, no block
containing more than 5 suffixes. For any (a, /?) e m

(77)

for all the suffixes in ^ apart from those in one block. For each suffix j let m,- denote
the subset of m for which

max (78)

To estimate the contribution of m, we put 4 exponential sums into a product
V=Vj{a,P) so that at most 3 sums from the block of ajbj remain outside the product.
The estimate (77) holds for at least 8 of the 11 sums which remain and so

51n 1 1

00

51

i=16
da dfi

(79)

and (76) follows on summing over j .
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6. The major arcs

(80)

and

(81)
9j Q > w ' ^

Then

i~afl J ~qj yj

where

yj=aj(p + bj\J/. (83)

Lemma 9. We have

co oo 15

j J nmin(P,p-4|y./|-1)d<MiMP5 (84)
— oo — oo j = 1

and for any T > 0

15

JJ J~[ min(P,P~4|yJ-|~
1)d</>di/'<^P5~6t (85)

D(r) J = 1

where

D(z) = {((/>, ip): \<p\> P~5+\\\]/\> P~5+z}. (86)

This may be proved in the same way as Lemma 22 of Davenport and Lewis [11],
since 14 of the ratios ajb{ can be arranged into 7 unequal pairs.

Lemma 10. For any e > 0 and k = k2 = 0.806779...we have

A,B

where the summation is over

0^A,B<Q,(A,B,Q) = l (88)

and q, is defined by (81).
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This may be proved in the same way as Lemma 35 of Davenport and Lewis [9] since,
in their notation, we have

and 0 t+

Their arguments then show that the sum in (87) is

where K is fixed and non-zero, which implies (87).
Our next step is to take an arbitrary small positive number a> and to estimate the

contribution of those major arcs with Q > f*°.

Lemma 11. The contribution made to the integral by all those major arcs M(A, B, Q)
with Q>PW is (provided d<co/80)

This may be proved in the same way as Lemma 37 of Davenport and Lewis [9],
using Lemmas 9 and 10 in place of their Lemmas 35 and 36.

The next step is to replace the remaining major arcs M(A, B, Q) by truncated major
arcs M0(A, B, Q) defined by

| | + T , (90)

where T is a small positive constant.

Lemma 12. The total difference between the contributions of the major arcs
M(A,B,Q) and the truncated major arcs M0{A,B,Q) with Q^LP01 is

This may be proved in the same way as Lemma 25 of Davenport and Lewis [11],
with our Lemma 9 replacing their Lemma 22.

Thus

E l JJ ft TJ{\}daidfS + o{Pl+*<'). (92)
Q g P™ A, B M0(A, B, Q) j = 1

7. Proof of Theorem 1

On the truncated major arcs M0(A,B,Q) there is a good approximation to the
exponential sums ^{Aj).
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Lemma 13. Let (a, 0) e M0(A, B, Q). For 1 £j ^ 15

7XAj) = qriS(c7,gj)/J<7J.) + O(P2") (93)

where

S(c,q)= t e^x5) (94)
x = l

and

I/LVj)=fe(yjX5)dx (95)

and *; is smaZ/ if co and % are small. If 1 6 ^ / ^ 5 1 tnen

T/7j) = «7 ^(c j , q ^ + 0(P2"A«) (96)

wnere v = [ ( / -

This is essentially Lemma 27 of Davenport and Lewis [11].
Substituting these approximations into (92) we obtain, as in [11, Lemma 28]

(97)

where

S(P'°)= Z I ft QT'SiWj) (98)
QgPmABjl

and

1»JJ f| ^ ) # # (99)
J = l

where C is a positive constant and the integration is over the region

Lemma 14. / / the equations (3) have a non-singular p-adic solution for every prime p
then

as P->oo (100)

where S is a positive constant.
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This is essentially a combination of Lemmas 29 and 31 of Davenport and Lewis [11].

Lemma 15. We have

/ (p-5 + t ) = CoP1+4"(l+o(l)) as P -oo (101)

where Co is positive and independent of P.

This is essentially Lemma 30 of Davenport and Lewis [11], we have C0>0 since the
box defined by (53) contains a non-singular real solution of the equations (23).

Thus, if no ratio ajbi occurs more than 21 times

(102)

which completes the proof of Theorem 1.

8. Proof of Theorem 2

A single additive equation of odd degree k

= 0 (103)

has a non-trivial solution in integers provided that

N^max(G*(k),r*(k)) (104)

where G*(k) is the number of variables needed for the Hardy-Littlewood method to
work and F*(fc) is the number of variables needed to ensure that (103) has non-trivial
p-adic solutions for every prime p.

A. Tietavainen [12] has shown that as k->co through odd values

^ oo, k odd

Davenport and Lewis [8] showed that for any <5 > 0 and sufficiently large k > ko(3)

(106)

and the methods of Vaughan [13], adapted from those of I. M. Vinogradov [16], show
that

G*(k)<(3 + S)klogk (107)

and so the equation (103) has a non-trivial solution in integers provided that

N>(3 + S)k\ogk. (108)
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Vaughan has also remarked [13, 15 p. 131] that another method of Vinogradov [17]
can be adapted to show that

G*(k)<{2 + 5)klogk (109)

which would imply the case R = 1 of Theorem 2. However, since there is no detailed
proof of (109) in print we shall use only the weaker result (108), which is adequate for
our purposes.

Lemma 16. Let s>0 and let k>ko(s,R) be a sufficiently large odd integer. If N
satisfies (4) then the equations (1) have a non-trivial p-adic solution for every prime p.

This was proved in [6]; however, for the analytic arguments we need non-singular
p-adic solutions.

Lemma 17. Let e>0 and put

J^2 (110)

For S = 1,...,R let Qs denote the minimum number of terms that occur, with at least one
non-zero coefficient, in any S independent linear combinations of fu...,fR. Suppose that
k > ko(E, R) is a sufficiently large odd integer and that

S) for S=l,...,R. (Ill)

Then for every prime p the equations (1) have a non-singular p-adic solution.

This may be deduced from Lemma 16 using the same argument as Theorem 4 of
Davenport and Lewis [11].

We deduce Theorem 2 from Lemma 17 by an application of the Hardy-Littlewood
method along the same lines as Davenport and Lewis [11], which shows that

{4 + 5)Rk\ogk (112)

variables are sufficient for the analytic arguments (provided that the coefficients are in
general position). It may be possible to replace 4 by 3 or even by 2, along the lines of
(108) and (109), however, as

log 2

for R^.2 such an improvement in the analytic method would give no new information
unless it was matched by an improvement in the p-adic results. Since this proof closely
follows that of Davenport and Lewis [11] only a brief outline is given.
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We suppose that the N variables contain 2/ + 3/c sets of cardinality R where for each
set of R variables the corresponding submatrix of (a,j) is non-singular and ( is the least
integer such that

Rk(l-l/kY<———, * , — - — - . (113)
v 2fc(21og/c + loglog/c + 3)

Then, for fixed R,

*f~2/clog/c as k->co. (114)

Let p ~1 = 2k\2 log k + log log k + 3) and define the major arc M(A, Q) to consist of all
those a = (al5...,ocR) satisfying

for integers Q, Au..., AR satisfying

l^Q<Pk»,0^Ai<Q,(Q,A1,...,AR) = L (116)

The minor arcs m consist of the rest of the ^-dimensional unit cube.

Lemma 18. Let A1,...,AR be linearly independent forms in <xl,...,a.R with integral
coefficients. Let

(117)

where the summation is over a range of length O(P). If a. em then

rii
. 7 = 1

This is essentially Lemma 19 of Davenport and Lewis [11] and we see that the 3/c
sets of R independent variables save Pu where u is the term on the right in (113). The 2t
sets of R independent variables are used with the technique of diminishing ranges.

Let 0 = ( l - l / /c )and

P^P9"'1 for v = l,...,*f. (119)

The 2*f sets of R variables Bu...,B(, B\,...,B'e are allowed to range over values

PjPv<Xj<rjPv,Xj€Bv or B'v (120)

where 0 < ps < rj. Let

t/,{A,)=2>(A;X*) (121)

where Xj ranges over an interval of the form (120).
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Lemma 19. We have

\ \ \ . . P i ) R (122)

where 3& is the set of 2JR variables.

This is Lemma 14 of Davenport and Lewis [11], it saves P" where

v = Rk{\-Qe). (123)

Since u>RkQ/ we have saved an exponent greater than Rk on the minor arcs and the
3k sets of R variables can be used to treat the major arcs in precisely the same way as
in Davenport and Lewis [11], provided that the equations have non-singular p-adic
solutions. Thus it is now sufficient to prove that we may assume that

(I) we can choose 2t + 3/c sets of R variables, for each of which the submatrix of (a,v)
is non-singular; and

(II) QS^NO(S) for S=l,...,R. (124)

Lemma 20. Suppose that any linear combination of fu...,fR contains more than
(n— l)R variables with coefficients not all zero. Then it is possible to select n disjoint RxR
submatrices, each of rank R, from the coefficient matrix (ai}).

This is essentially Lemma 12 of Davenport and Lewis [11], they proved it with a
particular value for n but the general case may be proved in exactly the same way. We
can now replace condition (I) by

(III) e 1 ^ ( 2 / + 3fc-l)K~4R/clog/c as *-><©. (125)

We prove Theorem 2 by induction on R, the case R = 2 was proved in [5] so we may
suppose that the result has been proved for 2 ,3 , . . . ,R -1 . If Qt does not satisfy (125) we
can choose one form, fR say, to have Qt variables explicitly. We set these variables to
zero and obtain a system of R — 1 equations in

R2k log k - (4 + rj)Rk\og k
log 2

(126)

variables, on taking r\ = 2e and k>ko(e,R). By the inductive hypothesis, this system of
equations has a non-trivial solution in integers.

Now we may suppose that (125) holds, and therefore (124) holds when S = l. Suppose
that there is some S for which

^ f (127)
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then 1 < S < R. The original R equations are equivalent to a system in which S of the
equations contain only Qs variables explicitly. We set these variables to zero and obtain
a system of R — S equations in

P^(R
log 2

2 (128)

variables. For 1 _ R — S < R these equations have a non-trivial solution in integers and
this provides a solution for the equations (1).

9. An analytical improvement

The condition JV—-51 arises from the conditions for p-adic solubility in Theorem 1. If
we assume the existence of p-adic solutions and impose some extra conditions on the
ratios ajbt then fewer variables are sufficient. For example, if the ratios aijbi are all
different then the inequality

2<x(9) +11/16= 10.015266 > 10 (129)

indicates that 47 variables would be sufficient for the analytical argument. In fact 47
variables will be sufficient if we can partition the suffixes into two sets Sf and 3~ such
that

(i) | ^ | = 15, |^ | = 32;
(ii) no ratio ajbi occurs more than twice in Sf; and

(iii) no ratio ajbt occurs more than 16 times in T.
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